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Embossed topographic
depolarisation maps of biological
tissues with different
morphological structures
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Tatiana V. Boronikhina3, Mikhailo Gorsky?, Alexander G. Ushenko?, Yurii O. Ushenko?,
Alexander Bykov? & Igor Meglinski?345

Layered topographic maps of the depolarisation due to diffuse biological tissues are produced using a
polarisation-holographic Mueller matrix method approach. Histological sections of myocardial tissue
with a spatially structured optically anisotropic fibrillar network, and parenchymal liver tissue with

a polycrystalline island structure are successfully mapped. The topography of the myocardium maps
relates to the scattering multiplicity within the volume and the specific morphological structures of
the biological crystallite networks. The overall depolarisation map is a convolution of the effects of
these two factors. Parenchymal liver tissues behave broadly similarly, but the different biological
structures present cause the degree of scattering multiplicity to increase more rapidly with increasing
phase. Through statistical analysis, the dependences of the magnitudes of the first to fourth order
statistical moments are determined. These moments characterise the changing distributions of the
depolarisation values through the volume of biological tissues with different morphological structures.
Parenchymal liver tissue depolarisation maps are characterised by larger mean and variance, and less
skewness and kurtosis, compared to the distributions for the myocardium. This work demonstrates
that a polarisation-holographic Mueller matrix method can be applied to the assessment of the 3D
morphology of biological tissues, with applications in disease diagnosis.

Polarimetric diagnostics of optically anisotropic structures in biological tissues are an area of active development
in biomedical optics'~°. While many techniques have been pursued and investigated, such as scattering matrices®®
and Mueller matrix polarimetry®~', perhaps the most exciting avenue has been Mueller matrix mapping!®-'.
Originally, experimental results obtained by measuring and analysing Mueller matrices were limited to represen-
tations as 1D angular dependences of the matrix elements>'**. However, the advent of digital imaging facilitated
an expansion to looking at two-dimensional distributions of the elements of the Mueller matrices'>'*!*. As such,
it became a powerful tool for studying a variety of biological samples, within the framework of approximation
models?!%%. For example, oncological diagnoses could be achieved!*?**. However, such 2D methods consider
only the integrally polarised properties, averaged through the full volume cross-section. In contrast, most bio-
logical tissues of interest have complex 3D morphologies, formed of linearly and circularly birefringent fibrillar
networks?. There is hence a clear need for the development of a technique allowing consideration of variance
in the third dimension.

Herein we develop and experimentally demonstrate a method for mapping the depolarisation of biologi-
cal tissues, in three-dimensions, using a Mueller matrix method. The method builds on conventional Stokes
polarimetry'->7%!! and interferometry*®*! techniques. Algorithms for digital holographic reconstruction® of
the amplitude-phase structure of object fields are used to obtain the interrelations between 3D divisions (set
of layered distributions) of depolarisation maps. From this, one can then analyse the peculiarities and specific
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Figure 1. Optical scheme of a 3D Mueller matrix polarimetry setup, consisting of: 1—laser; 2—collimator;
3—beam splitter; 4—reflecting mirror; 5, 7, 10, 12, 13—polarisers; 6,11—quarter-wave plates; 8—object under
investigation; 9—strain-free polarisation objective; 14—digital camera; 15—processing unit.

features of polycrystalline structures within histological sections of diffuse biological tissues with different mor-
phologies. The method provides a basis for future biomedical imaging techniques to diagnose adverse conditions.

Theory and methods

For typical (non-birefringent), diffuse biological tissues (in the volume of which multiple scattering occurs),
the magnitude of most elements of the Mueller matrix M, is insignificant (or tends to zero)” %12, However, the
elements on the leading diagonal are the clear exceptions. These diagonal matrix elements, M2;.33.44, determine
the degree of depolarisation of light propagating through the optically anisotropic object*?. The degree of
depolarisation, A, can be expressed as:

1
A=1- E(Mzz + M3;3 + Myg) (1)

The value of the parameter A is an integral, averaged over the entire volume through which the light propa-
gates, of the optical properties of a biological layer with a thickness k. It is determined by the contribution of
two mechanisms. Firstly, the formation of an orthogonal component of the amplitude of the laser radiation
(i.e. a change to the state of polarisation) due to the optical anisotropy of the biological layer. This is termed the
“A component”!~®. Secondly, statistical averaging of the state of polarisation due to the superposition of laser
waves scattered in the volume of the biological layer with different states of polarisation. This is termed the “B
component””®12. For an optically homogeneous isotropic layer (Mp;:33:44 — 1) and hence A = 0, while for a
perfect diffuser (M32;33.44 — 0) and thus A = 1. In all other cases (i.e. partially depolarizing biological layers),
changes in A are determined by the ratio between the A and B components in the longitudinal direction (z)
within a polycrystalline medium??.

Herein we focus on the possibilities of obtaining information on distributions of the depolarisation parameter
A (x, ¥ hj) within the volume of a biological tissue sample. Figure 1 presents the optical scheme of the modified
Stokes polarimeter used for polarisation-holographic Mueller matrix polarimetry measurements of biological
layers.

A parallel beam (@ = 2 x 10°jum) of He-Ne (1 = 0.6328jum) laser radiation is generated by passing through
the collimator (2). The beam splitter (3) divides the radiation equally into separate illuminating and reference
beams. The illuminating beam is given the correct polarisation by rotation of the polarisers (5, 7) and quarter
wave plate (6) and directed through the biological layer sample (8). Linear polarisations of 0, 45, 90, and 135° are
established by rotating the linear polarisers (5, 7) to the required angle, and by rotating the quarter wave plates
(6) so that its fast axis is aligned with the linear polarisation direction such that it has no effect on the polarisa-
tion state. Left- and right-circularly polarised states are established by rotating the linear polariser (5) to 45 and
135° respectively relative to the fast axis of the quarter wave plate (6). The inhomogeneous polarisation image
of the sample is projected into the plane of a digital camera (14). The reference beam is polarised, as with the
illuminating beam, and projected into the plane of the camera. As a result, an interference pattern is formed in
the image plane of the camera. The coordinate distribution of the intensity of the interference pattern is recorded.

The polarisation-holographic determination of the Mueller matrix elements follows the following procedure.
First, six distinct polarisation state sets are formed in the illuminating and reference laser beams—((0° — 0°);
(450 — 450);(900 - 900);(1350 - 1350);(® — ®);and (® — @)). Here, ®and® designate right and left circular
polarisations respectively. For each polarisation state set, the camera records the partial interference image
formed by superimposing the reference wave on the polarisation-filtered image of the sample. Polarisation
filtering is carried out by means of a polarizer-analyser with sequential orientation of its transmission plane at
the angles ©, = 0°; ©, = 90°.
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A direct fast Fourier transform of the partial interference images is performed and a complex amplitude image
of the spatial frequencies is determined in the form of two components with a frequency shifted by the frequency
of the interference pattern. One of these components is cut off and the inverse Fourier transform is performed,
providing a reconstruction of the complex wavefront of the biological tissue sample. The distribution of complex
amplitudes is given b Ox = [Uxl; Backpropagation of the complex wavefront is evaluated

p 8 Y Oy — |Uylexp(i(dy — bx)) propag p
to determine the wavefront at specific depth posmons within the sample. The position of these planes along the
zaxis is determined by the phase 6; = (¢y — Cbx) = x T7; 0 < z < h, of the object field. The planes are separated
by an arbitrary step of Abj—o.. .

For each state of the illuminating beam, the reconstructed distributions of the Stokes vector parameters (SV) in
the set of phase planes 6y are calculated from the distributions of complex amplitudes { Ux(x,y); Uy (x,y) }(6k):

(09,90°,45°,®)
(|Ux|2+’Uy|2> 5
(09,90°,45°,®)
SV (U0 Uy ) ") = | (1L - U] @ ®)
2Re| Uy || U, |(9045°),
2Im|Uy|| Uy | (0%, 90°, 45, ®)

The set of layered distributions of Mueller matrix elements M (x, y, 6k) is calculated bg/ the followmg Stokes-
polarimetric relations. For the Stokes vectors of linearly polarised probing beams SV () and SV, (°0"):

1 My + Miz
(%) — 1 (0% _ | Ma+My ||
s =y o | = VO (UL U8) = | 32 T || My M
0 My + My || M21 M
1 My — Mip = Mix = M3z M3, (Us, Uy 64)
90%) _ -1 90" _ | M2y —Mp My Mg
SV () = (M)} o |~ svO) (U, Uy, 6) = Mo — Mo
0 My — Mgy
(€)
For the Stokes vectors of linearly polarised probing beams SVo (45°); SV (135°):
1 M + Mis
150) 0 450 | My + Mas .
sV =y | | | = svO) (U, Uy, 6) = M+ |1 Miy Mis
0 My + Mgs || M2 M3
1 M — Mas = Mic =\ My My (Us, Uy.61)
135%) _ 0 1350 _ | Ma1— Mo My Mas
SVo(135") = (M) - sV (U, Uy, 6) = Mo — Mo
0 My — Mys
(4)
And lastly, for the Stokes vectors of right- and left-circularly polarized probing beams SV (®); SVo®:
1 My + Mg
0 M1 + M;
(®) — (®) — 21 24 .
SVo® =(M}| o | = SV (U Uy bi) = M+ My | |? My My
1 My + Myy || M21 My
1 My — My = Mic = My Mag (U Uy, )
0 My — M. My M.
®) — (@) — 21 24 41 Mag
SVo@ =M}| o | = SV (U, Uy.bk) = Moy — Mas
-1 My — Mays
(5)
We then obtain working relations for determining the values of the Mueller matrix elements:
0 0 0 0 0 0
sy +sv ) (sv{® = v ) (svi) - sviP) (svi® - sv®)
0 0 0 0 0 0
s v ) (sv® = v ) (sv) - v (svf® - svi®)
{M}(Uy, Uy, 6k) = 0,5 . . . 0 o 0
svi® s )> svi® = v ) (sv) — sy (svi® - svi®)
0 0 0 0 0 0
<sv4(° ) sy )> svi® —sv D) (sv() — sy (svf® - svi®)
(6)

Therefore, the polarisation-holographic Mueller matrix mapping results in the set of layered (6)) two-dimen-
sional (x, y) distributions of the values of depolarisation degree (A):

A(x,y,@k) _ 1_%{ |:(SV2(OO) B SV2(900)>} n {(SV3(450) SV(ISSO))] + [(SVIX)) . SVQ@))]} )
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Figure 2. The layered distribution of the degree of depolarisation of the histological section of the myocardium.
The distribution is shown as (a—c) 3D surfaces and (d-f) 2D contours, for the phase sections at (a, d)

O = 0.3 rad, (b, e) 6 = 0.9 rad, and (c, f) 6y = 1.5 rad respectively. Data visualised using the meshc and
contour plot functions in Matlab R2020a (www.mathworks.com).

The distributions of the values A (x,y,0k ) can then be quantitatively assessed by calculating the aggregate cen-
tral statistical moments of the first to fourth orders Z;—;.5.3.4™* in each phase plane 6. The first order moment, Z,
is the mean distribution of the magnitude of the degree of depolarisation (integral value) A; Z; is the variance of
the distribution of the magnitude of the degree of depolarisation A; Z3 is the skewness coeflicient of the distribu-
tion of the magnitude of the degree of depolarisation A; and Z, is the kurtosis coefficient of the distribution of
the magnitude of the degree of depolarisation A.

Results and discusssion

To demonstrate the method, histological sections of biological tissues with different morphological structures
were investigated. Samples were obtained by the standard method on a frozen microtome. This study was con-
ducted in accordance with the principles of the Declaration of Helsinki, and in compliance with the International
Conference on Harmonization-Good Clinical Practice and local regulatory requirements. Ethical approval was
obtained from the Ethics Committee of the Bureau of Forensic Medicine of the Chernivtsi National University
and the Bukovinian State Medical University (Chernivtsi, Ukraine), and written informed consent was obtained
from all subjects prior to study initiation.

Two types of tissues with different morphological and optically anisotropic structures were considered:

1. Depolarising (A = 85%), optically thick (attenuation coefficient T = 2.08), layers of myocardial fibrillar tis-
sue. These tissues have a spatially structured optically anisotropic mesh of protein fibrils, which are formed
by optically active myosin molecules. The anisotropic mesh gives rise to linear birefringence and dichroism.
The myosin molecules are responsible for circular birefringence and dichroism'*-!>%,

2. Parenchymal liver tissue (t = 2.04; A = 82%). The optically anisotropic components of such tissues are
small-scale "island" structures formed by polypeptide chains of optically active protein molecules'*~'>2,

Figure 2 shows a series of layered depolarisation maps A (x,y) of the histological section of the myocardium
for phase sections at: 6 = 0.3 rad (see Fig. 2a,d); 8 = 0.9 rad, (see Fig. 2b,e); and 6 = 1.5 rad, (see Fig. 2¢,f).
Figure 3 gives the values of the first to fourth order (statistical moments mean, variance, skewness, and kurtosis)
characterising the distribution of the degree of depolarisation in each phase plane. One can see immediately
that the depolarisation in each phase section 6y is characterised by a different statistical structure, such that
Zi—12:34(0j) # Zi=1234 (0j41). An increase in the mean Z; (6) and variance Z, (), characterising the distribu-
tion, is observed with increasing 6. A decrease in the magnitude of the higher order statistical moments (Z3(8)
and Z4(0)), characterising the skewness and kurtosis of the distributions occurs for increasing 6.

The topographic structure of the myocardium phase section maps (see Fig. 2d-f) can be related to different
ratios between the A and B components of the degree of depolarisation A in different phase planes 6y. In the
low-multiplicity scattering region (6 = 0.3 rad), the A component prevails. With a longitudinal increasing of
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Figure 3. The statistical moments of the first to fourth orders, as calculated in three phase sections of a
embossed topographic depolarisation map of a myocardial tissue sample. Data was plotted in OriginPro 2020
(www.originlab.com).

0.2

Figure 4. The layered distribution of the degree of depolarisation of a histological section of parenchymal
liver tissue. The distribution is shown as (a—c) 3D surfaces and (d-f) 2D contours, for the phase sections at (a,
d) 6 = 0.3 rad, (b, e) 9 = 0.9 rad, and (c, f) 6 = 1.5 rad respectively. Data visualised using the meshc and
contour plot functions in Matlab R2020a (www.mathworks.com).

Ok (an increase in the light scattering multiplicity), the contribution of the B component increases. As a result we
have an increase in the value of A (x,y,@k) for the same (x,y) position. According to the central limit theorem??,
there is then a tendency to form normally distributed values of A. That is, if the mean, Z; (A), and variance Z,(A)
increase, then conversely the skewness Z3(A) and kurtosis Z4(A) decrease, as we observe in Fig. 3.

Comparing the layered depolarisation maps of the myocardium tissue (see Fig. 2) with those of parenchymal
liver tissue (Fig. 4), one observes a slightly higher average (Z;(0k)) level of depolarisation in the set of phase
planes 6y of parenchymal liver tissue. Figure 5 gives the values of the statistical moments characterising the
distribution of the degree of depolarisation in different phase planes in the parenchymal liver tissue. Analysis of
the statistical structure of the depolarisation maps of liver tissue demonstrates broad similarity with the results
obtained for fibrillar myocardial tissue (see Fig. 3). However, there are also differences. The optically anisotropic
component of the sample of the parenchymal liver tissue is small-scale "island" structures, formed by birefringent
polypeptide chains of optically active protein molecules (affecting the A component). Hence, the diffraction
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Figure 5. The statistical moments of the first to fourth orders, as calculated in three phase sections of a 3D
depolarisation map of a liver tissue sample. Data was plotted in OriginPro 2020 (www.originlab.com).

Tissue type Myocardium (n = 36) Liver (n = 36)

Zic1;2;34 Z +20 Z +20 Z3 £ 20 Zy £20 Z +20 Z £ 26 Z3 + 20 Zy £20

6 =03rad |037+0.016 |0.22+0.009 |0.86+0.041 |133+0.063 |0.41+0.018 |027+0.012 |0.77+0.036 |1.18+0.054
6 =09rad | 0.57+0.024 |027+0.012 |0.63+0.029 |0.99+0.044 |0.65+0.031 |0.33+0.014 |0.51+0.023 |0.77+0.036
O =15rad | 0.81+0.038 |035+0016 |039+0.017 |0.61+0.027 |0.84+0.039 |0.37+0.017 |0.33+£0.014 |0.53+0.023

Table 1. Mean statistical moments of sets of layered depolarisation maps of histological sections of the
myocardium and liver.

angle of the laser radiation is much larger than the analogous parameter for large-scale fibrillar networks. In
the limit of small 6 the contributions of the different A and B components to the formation of the magnitude
of the degree of depolarisation are comparable. Therefore, the distributions for small values of the phase section
(6x < 0.6 rad) are characterised by large mean and variance, and conversely, less skewness and kurtosis compared
to the distributions for the myocardium.

The value of the integral (within the entire volume of the biological tissue layer) degree of depolarisation A is
determined by the influence of the B component. This component depends on both the attenuation (extinction)
7 and geometric thickness h. Therefore, the greater the attenuation and geometric thickness of a layer of any
tissue, the higher the level of the traditionally measured integral depolarisation. In our case, tissue samples with
different morphological structure (fibrillar myocardium and parenchymal liver) are characterized by comparable
parameters T and h. Therefore, against the background of diffuse scattering, differences in the optically aniso-
tropic structure of these samples practically do not appear, and the integral level of depolarisation turns out to be
comparable. A different situation takes place in the “intermediate” phase planes (6x = 0.3 rad and 6, = 0.9 rad).
Here, the influence of the B-component is higher for liver samples due to the greater diffraction expansion and
the subsequent superposition of differently polarized partial wave fronts, which are formed by the A-component.
With increasing 6, the contribution of the B component becomes decisive for samples of both types. Therefore,
the differences between the central statistical moments Z;—1.,3.4 (0 = 1.5rad) that characterize the distribution of
the magnitude of the degree of depolarisation A (fx = 1.5rad) are minimized for both types of biological tissues.

To check the reproducibility of the results and determine the reliability of the method, statistical measure-
ments were carried out for two representative samplings of histological sections of the myocardium (n = 36
samples) and liver (n = 36 samples). To determine the statistical reliability of the method, the root-mean-square
deviation o2 of the measured values Zj—; 5 3 4 (1) characterising the distribution of the integral degree of depo-
larisation A was determined. The specified number of samples provided the level of 2 < 0.025. This deviation
corresponds to the value of the confidence interval p < 0.05. Table 1 shows the mean values of the central
statistical moments Z;—1;2;3;4 and their mean errors =20, which characterise the layered distributions A (x,y,@k).

The analysis of the obtained statistical data (Table 1) confirms the regularities of the formation of layered
depolarisation maps A (6). For optically thick (diffuse) histological sections of the spatially structured myocar-
dium and parenchymal liver with an increase (1) in the value of 0y: Z;—=;; 1 and Z;—34 |. The most sensitive to
changes in the mechanisms of formation of depolarisation by optically anisotropic (A component) and diffuse (B
component) samples of the studied biological tissues were skewness Z3 (fy) and kurtosis Z4(6x). The maximum
differences between them were found for the phase section: ; = 0.9 rad where AZ3 = 0.12and AZ4 = 0.22.
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Conclusion

The polarisation-holographic Mueller matrix method of layered mapping of depolarisation maps of diffuse
layers of biological tissues with different morphological structures is proposed, described and demonstrated.
Changes in the statistical moments characterising the distribution of the degree of depolarisation of optically
thick layers of the myocardium (t = 2.08; A = 87%) and liver (t = 2.14; A = 88%) in different phase sections
of their volume were investigated and analysed. The topographic depolarisation structure of the myocardium
phase section maps can be related to two main factors—the scattering multiplicity within the volume, and the
specific morphological structures of the biological crystallite networks. The overall depolarisation map is a
convolution of the effects of these two factors. Liver tissues behave broadly similarly, although there are some
key differences. The different biological structures present cause the degree of scattering multiplicity to increase
more rapidly for increasing phase. Analysis of the statistical moments of the depolarisation maps demonstrates
that the distributions are characterised by larger mean and variance, and less skewness and kurtosis, compared
to the distributions for the myocardium.
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