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INTRODUCTION

The goal of this article is to provide a summary of the advance-
ment of urine proteomics in clinical applications with the emer-
gence of sophisticated mass spectrometry (MS)-based pro-
teomic platforms. Urine is one of the most valuable biofluids 
for biomarker discovery because it is available in almost all pa-
tients at relatively large quantities and the collection of urine is 
simple and noninvasive compared to other biofluids. The kid-
neys produce urine via the process of ultrafiltration and urine is 
primarily used to eliminate soluble waste products, such as 
electrolytes, nitrogenous compounds and hormones, from 
plasma [1]. The glomerulus filters roughly 150–180 L of plasma 
to develop the “primitive urine,” more than 99% of “primitive 

urine” is reabsorbed by the renal tubule and the “final urine” is 
excreted through the urethra [1]. Normal excretion of protein 
in urine is less than 150 mg/L per 24 hours and approximately 
30% of urinary protein originates from plasma via blood filtra-
tion, whereas the remaining 70% is derived from the kidneys 
[2]. 
  Proteomics is an important postgenomic approach that can 
provide a qualitative and quantitative assessment of the pro-
teome of biological systems [3]. Characterizing a proteome can 
offer clues about the pathological and physiological processes 
in a biological system and provide critical insight on the devel-
opment and progression of disease [4]. Therefore, analysis of 
the urine proteome could be extremely useful in the character-
ization of pathophysiological mechanisms and the identifica-
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With the technological advances of mass spectrometry (MS)-based platforms, clinical proteomics is one of the most rapidly 
growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it 
is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the 
local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. 
The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the 
identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive 
biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein bio-
markers.   
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tion of therapeutic targets of kidney and non-kidney diseases. 
Various proteomic-based technologies have been utilized to 
study the urine proteome; however, MS-based platforms have 
emerged as one of the most suitable platforms for urinary pro-
tein and peptide profiling in clinical applications. This short re-
view will highlight the following aspects of urine proteomics: 
the proteomic studies directed toward the complete character-
ization of normal urine proteome; the advances in MS-based 
approaches in urinary proteomics; and clinical applications of 
MS-based urine proteomics to assess kidney disease.

NORMAL HUMAN URINARY PROTEOME

Normal human urine contains a significant amount of proteins 
and peptides and over the past decade there has been extensive 
profiling of the normal urine proteome. In the past, numerous 
studies utilized 2-dimensional electrophoresis (2-DE) to char-
acterize urinary proteins; however, Spahr et al. [5] in 2001 em-
ployed liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) in an attempt to profile unfractionated urine pro-
teome. From this initial study, a total of 124 proteins were iden-
tified, with the majority of the MS spectra originating from 
nine of the most abundant proteins observed in plasma, includ-
ing: human serum albumin (HSA), serotransferrin, Ig kappa 
light chain c, Ig gamma heavy chain c, uromodulin, apolipo-
protein a-i, alpha-1 microglobulin, zinc-alpha-2 glycoprotein, 
and alpha-1-antitrypsin [5]. In 2004, this number increased to 
150 distinct proteins utilizing size-exclusion chromatographic 
fractionation and 2-DE separation followed by LC-MS/MS 
analysis [6]. This number increased significantly in 2006 to 
1,543 proteins by combining 1-dimensional gel electrophoresis 
and liquid chromatography coupled to high-resolution mass 
spectrometric instrumentation (LTQ-FT, LTQ-Orbitrap) from 
normal single donor and pooled urine [7]. To date, over 2,000 
proteins have been identified in normal human urine, with 
1,823 being identified by Marimuthu et al. [8] in 2011 via both 
a nonaffinity  and lectin affinity-based approach followed by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis sep-
aration and high-resolution LC-MS/MS analysis (LTQ-Orbi-
trap). In addition to the vast number of proteins in normal 
urine, the protein/peptide composition is greatly influenced by 
various factors, such as sex, age, diet, lifestyle, and physiological 
condition, and can change significantly over time. This varia-
tion in protein/peptide composition further complicates the 
characterization of normal or diseased urine proteome and 

subsequently the identification of protein/peptide biomarkers 
in urine. 
 

MS-BASED TECHNIQUES FOR URINE 
PROTEOMIC STUDIES

Over the years various MS technologies have been developed 
with varying degrees of analytical performance in terms of 
mass resolution, reproducibility, selectivity, and sensitivity. Of 
these technologies, multiple MS-based platforms have been 
employed to characterize the urine proteome in both an untar-
geted (global profiling) and targeted approach. A common ex-
perimental strategy used in urine proteomic experiments to re-
duce the complexity of the proteome is the “divide and con-
quer” strategy, which involves protein separation, fractionation 
or enrichment followed by protein identification via MS [9]. 
MS technologies used in urine proteome investigations include 
the following: matrix-assisted laser desorption/ionization-time-
of-flight (MALDI-TOF) MS, high-resolution MS and triple 
quadrupole MS. 

MALDI-TOF MS 

MALDI-TOF instrumentation can be used in both a targeted 
and untargeted proteomic approach. In MALDI-TOF MS, the 
nonvolatile analyte is mixed on a stainless steel target plate with 
excess matrix, a small ultraviolet-absorbing aromatic organic 
compound (i.e., sinapinic acid, 2,5-dihydroxybenzoic acid, or 
α-cyano-4-hydroxycinnamic acid), to promote ionization and 
vaporization of the analyte. The matrix absorbs energy from a la-
ser beam and ionization of the analyte occurs via proton transfer 
between the matrix and the analyte, which is referred to as the 
translational stage. The charged analyte species are subjected to a 
field-free drift tube (TOF mass analyzer) where they are separat-
ed on the basis of their mass-to-charge ratio (m/z). Utilizing 
MALDI-TOF MS for the identification and characterization of 
urinary proteins/peptides poses several advantages including: re-
duced analysis time; enhanced detection sensitivity; extensive 
mass range; simple mass spectrum due to the production of sin-
gly-charged species; enhanced mass resolution when equipped 
with a reflectron; increased tolerance for contaminants; and mo-
lecular imaging capabilities. Although MALDI-TOF MS is an 
ideal technique for simple matrices, analysis of urine requires 
significant sample preparation techniques, including protein 
fractionation or enrichment prior to MS analysis, to prevent un-
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dersampling of the urine proteome and suppression of low abun-
dant proteins. Previous studies have employed MALDI-TOF MS 
to characterize the normal urine proteome [6].

High-Resolution MS
In most urine proteomic studies, the high-resolution mass ana-
lyzers are coupled to a linear ion trap (i.e., LTQ), including the 
LTQ-FT (Fourier-transform, FT) and the LTQ-Orbitrap. A 
Fourier-transform mass spectrometer (FT-MS) is a supercon-
ducting magnet-based analyzer that provides high mass accu-
racy (sub-parts-per-million mass accuracy), dynamic range 
and resolving power, which has been shown to increase the 
number of high-confidence protein identifications [10]. A ma-
jor disadvantage of FT-MS instruments is their relatively slow 
acquisition rates, which could result in low sampling of com-
plex samples, such as urine. In addition to the potential for un-
dersampling, the complexity of the superconducting magnet is 
also a drawback to the FT-MS instrumentation. Therefore, the 
Orbitrap analyzer offers a comparable alternative due to the fact 
that it is a magnetic-field free mass analyzer [10] and the LTQ-
Orbitrap instrument has been utilized in numerous untargeted 
urine proteomic studies [7]. In addition to mass accuracy, the 
LTQ-Orbitrap platform also supports additional fragmentation 
methods, including electron transfer dissociation [11,12] and 
higher-energy collision dissociation [13], which expands the 
number of possible protein/peptide identifications in urine. The 
LTQ-Orbitrap mass spectrometer is used in an untargeted 
(global profiling) approach to identify proteins in urine; how-
ever, with advances in the technology, the system can also be 
used in a targeted approach [14-16]. 

Triple Quadrupole MS 
Quantitative proteomics has emerged as a premier bioanalytical 
approach in routine biomedical research and clinical experi-
mental workflows and the triple quadrupole mass spectrometer 
is the instrument of choice. The triple quadrupole mass spec-
trometer is composed of 3 quadrupoles, the first and third 
quadrupole function as mass filters to select predefined m/z 
values corresponding to the peptide precursor ion and the frag-
ment (product) ion of the peptide, respectively [17]. The second 
quadrupole operates as a collision cell for collision-induced dis-
sociation of the precursor ion to generate the product ions [17]. 
The precursor ion/product ion pair represents a multiple reac-
tion monitoring (MRM) transition. Due to the high specificity 
of this approach, multiple peptides (proteins) can be targeted in 

a single experiment which is the basis for multiplexed MS-
based protein assays. In this MS-based quantitative approach, 
the high degree of selectivity and sensitivity of the MRM mode 
that the triple quadrupole MS offers coupled with the incorpo-
ration of stable isotopically labeled internal standards enables 
the targeted absolute quantification of analytes in highly com-
plex biological matrices.  

CLINICAL APPLICATIONS OF URINARY 
PROTEOMICS

Characterization of the urine proteome can be useful in the 
generation of a comprehensive view of the pathophysiological 
mechanisms in the kidneys and the potential discovery of bio-
markers and therapeutic targets of kidney and non-kidney dis-
eases. Urine albumin characterization and quantification pro-
vides an example of how MS-based proteomic platforms can be 
effective in clinical applications [18].

Urine Albumin
Urine albumin is a major biomarker for early diagnosis, prog-
nosis, and disease management of renal disease and is critical 
for clinical decisions associated with renal therapy. Therefore, 
precise measurement of urine albumin plays an important role 
in the early detection of renal dysfunction, evaluation of treat-
ment efficacy, and reduction in the risk of kidney failure and 
cardiovascular disease [19]. To selectively measure albumin in 
urine, current clinical methodologies utilize affinity-based tech-
niques such as urine albumin-based enzyme-linked immuno-
sorbent assays, immunoturbidity assays, and radioimmunoas-
says [20,21]. Although affinity-based assays are routinely used 
in clinical laboratories to assess patient samples, there are dis-
tinct measurement challenges for the current methods, with the 
leading issue being heterogeneity of albumin species in urine. 
The presence of modified (i.e., glycated albumin) [22-24] or 
fragmented (i.e., N- and C-terminal truncation products) [25-
29] forms of albumin in urine can alter the antibody recogni-
tion site for routine clinical immunoassays and thus potentially 
bias the total urine albumin measurement [22-29]. Moreover, 
variations in urine albumin can also affect the analytical preci-
sion and intra- and interlaboratory measurement comparability 
of commonly used affinity-based assays [19]. Therefore, due to 
the clinical importance of the urine albumin measurement, the 
National Institute of Standards and Technology (NIST) has 
been assisting the National Kidney Disease Education Program 
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and the Working Group for the Standardization of Albumin 
Assays in Urine of the International Federation of Clinical 
Chemistry in the development of a reference measurement sys-
tem for urine albumin to support measurement accuracy and 
comparability across laboratories [30,31]. In support of this ef-
fort, NIST has developed a multiplexed candidate reference 
measurement procedure that utilizes isotope dilution-mass 
spectrometry and MRM to quantify full-length urine albumin 
[18]. The multiplexed MS assay incorporates an isotopically-la-
beled (15N) full-length recombinant HSA material as the inter-
nal standard, which permits the absolute quantitation of full-
length albumin in human urine [18]. Incorporation of the full-
length internal standard offers the following advantages for a 
multiplexed quantification assay: (1) The ability to target multi-
ple peptides, irrespective of amino acid composition, that span 
the full amino acid sequence of the analyte; (2) The ability to 
account for preanalytical bias (i.e., proteolytic digestion effi-
ciency and analyte recovery) due to the incorporation of the in-
ternal standard during the initial sample processing phase; and 
(3) The ability to quantitatively and qualitatively (analyte struc-
ture analysis) assess the target analyte in a single experiment. 
The LTQ-Orbitrap mass spectrometer was employed to identify 
target peptides that span the HSA amino acid sequence and the 
triple quadrupole mass spectrometer (MRM mode) was used 
to quantify urine albumin based on the selected peptides [18]. 
In addition to the quantitative advantages, use of multiple pep-
tides that span the HSA sequence enables the qualitative assess-
ment of molecular heterogeneity of endogenous urine albumin. 
Therefore, introducing MS-based platforms into the proteomic 
workflow for urine albumin assessment can enhance the accu-
racy and precision of urine albumin measurements and ulti-
mately facilitate early diagnosis of kidney dysfunction. 

CHALLENGES IN MS-BASED URINE 
PROTEOMIC STUDIES 

A major challenge researchers face when utilizing MS-based 
platforms to investigate urine is proteome variability, which is a 
common theme in most proteomic studies of biological fluids. In 
urine, proteome variability is associated with a number of fac-
tors, including inter- and intrapatient biological variability, diet, 
age, sex, and disease state. Due to the nature of urine, being the 
biofluid for excretion, the protein/peptide concentration and 
composition is highly dynamic and varies within and between 
individuals, which reduces the reproducibility of protein mea-

surements in urine. Therefore, protein heterogeneity negatively 
influences the precision and accuracy of MS-based measurement 
of urine, which could hinder the discovery of stable and specific 
urinary biomarkers. In addition to protein/peptide heterogene-
ity, the low concentration of protein present in normal urine 
coupled with the presence of urea, salts and other components 
could interfere with protein identification by MS through signal 
suppression and undersampling. The dynamic range of urinary 
proteins can alter the characterization of low abundant proteins 
excreted in normal or diseased urine. Therefore, extensive sam-
ple preparation techniques, such as desalting, enrichment, frac-
tionation, and separation, should be considered in urinary pro-
teomic investigations to reduce the complexity of the proteome. 
Reducing the complexity of the urine proteome and removal of 
signal suppressive agents, such as urea and salts, could broaden 
the scope of the proteome and facilitate the identification of both 
high and low abundant proteins. In addition to urine-specific 
characteristics, there are also challenges associated with MS-
based platforms that can influence MS measurement quality. In 
routine proteomic workflows, the proteins undergo proteolytic 
digestion to produce peptides prior to MS assessment. Subopti-
mal digestion conditions could affect the digestion efficiency of 
the proteolytic enzyme and bias the MS measurements. This bias 
could prevent the comprehensive profile of the proteome. Over-
all, there are several factors associated with sample preparation 
(such as fractionation, enrichment, and proteolysis) and sample 
processing (such as ion suppression, detection specificity, and in-
strument sensitivity) techniques that can influence the quality of 
MS-based measurements of the urine proteome. Therefore, the 
proteomic workflow should be optimized for urine analysis to 
reduce proteome complexity and enable the characterization of 
both high and low abundant proteins.
 

CONCLUSION 

Urine is a valuable biofluid for the discovery of noninvasive 
biomarkers and the proteome offers a comprehensive view of 
the local and systemic physiology. The incorporation of MS-
based technologies in urinary proteomic experimental work-
flows has broadened the understanding of normal and disease-
related mechanisms in the kidney. Moreover, usage of MS in-
strumentation in urine-based clinical diagnostics will enable 
the early detection of renal dysfunction, provide an in-depth 
assessment of treatment efficacy, and potentially reduce the risk 
of kidney failure.
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