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1  | INTRODUC TION

With the progress of medical technology and the extension of human 
life expectancy, non-communicable diseases have become the main 
cause of threats to human life, especially the cancers.1 It is estimated 
that there were more than 18.1 million new cancer cases and 9.6 million 
deaths worldwide in 2018.1,2 Precise biomarkers are believed to be of 
great important for cancer diagnosis and therapy but currently remain 
great limited. Recently, the accumulated big omics-data provides great 
opportunities for exploring cancer biomarkers, however, the biomark-
ers found by this data-driven strategy often do not work well on new 
datasets.3 Currently, although some biomarkers have been discovered 
and applied in the diagnosis, treatment and prognosis of cancers,4-6 
due to the heterogeneity and diversity of diseases, the deficiency of 

efficient biomarkers represents one of the main bottlenecks limiting 
cancer medicine.7,8 In order to diagnose and treat effectively, extend 
the survival time and improve the prognosis, there is an urgent need for 
universal and effective diagnosis and prognostic evaluation biomarkers.

Atavism is considered as a reappearance of lost progenitor phenotype 
in genetics.9 In the last decade, the hypothesis that cancer is an atavistic 
condition was proposed, which holds that the genes related to cell coop-
eration that evolved into multicellular organisms about 1 billion years ago 
match the genes that cause cancer. This 'unlock of ancient toolkit' leads to 
the occurrence of cancer.10 Cancer cells are moulded into protozoan-like 
organisms whose original specific functions and characteristics disappear 
and become purely for survival.11 Another study pointed out that in the 
process of drug resistance of tumours, in addition to the accumulation 
of somatic mutations, which is the traditional view of the occurrence of 
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Abstract
One important challenge for cancer is efficient biomarkers monitoring its formation 
and developments remain greatly limited. Although the accumulated big omics data 
provide great opportunities to the above purpose, the biomarkers identified by the 
data-driven strategy often do not work well in new datasets, which is one of the main 
bottlenecks limiting their utilities. Given that atavistic phenotype is generally ob-
served in cancer cells, we have been suggested that the activity of progenitor genes 
in tumour could serve as an efficient cancer biomarker. For doing so, we first curated 
77 progenitor genes and then proposed a quantitative score to evaluate cancer pro-
genitorness. After applying progenitorness score to ~ 22 000 samples, 33 types of 
cancers from 81 datasets, this method generally performs well in the diagnosis, prog-
nosis and therapy monitoring of cancers. This study proposed a potential pan-cancer 
biomarker and revealed a significant role of atavism in the formation and develop-
ment of cancers.
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cancer, there is also the regulation of some non-mutated genes, which 
is very ancient and conservative and may be the basis of life.12 Thus, at-
avistic model can be combined with somatic selection model as a new 
explanation for the occurrence and development of cancer.13

Given the above observation, we have been suggested that progeni-
tor genes might serve as biomarkers for cancer. To confirm this hypothe-
sis, we first curated 77 progenitor genes according to the phyletic age and 
the essentiality of genes from the database of Online Gene Essentiality 

(OGEE).14,15 Then we proposed a score to quantify the progenitorness 
of a sample using its expression profile data. By applying progenitorness 
score to 33 types of cancers of 81 datasets from the Cancer Genome 
Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Gene 
Expression Omnibus (GEO) and the Integrative Molecular Database of 
Hepatocellular Carcinoma (HCCDB)16 databases, we showed that the 
proposed progenitorness score work efficiently for the diagnosis, prog-
nosis, grading and monitoring therapy of various cancers.

F I G U R E  1   Progenitorness score distinguishes tumours from normal samples. A, Distribution of progenitorness score in different cancer 
types and sample types in TCGA. Significances of difference between primary tumours and normal tissues were analysed by two-side 
Wilcoxon rank-sum test. ***P < 0.001. B, ROC curves of progenitorness scores discriminating primary tumours from normal tissues in TCGA. 
(C) ROC curves of progenitorness scores discriminating primary tumours from normal tissues in HCCDB. The area under ROC curves are 
shown in parentheses. The cancer type abbreviations of TCGA is in https://gdc.cancer.gov/resou rces-tcga-users /tcga-code-table s/tcga-
study -abbre viations
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2  | MATERIAL S AND METHODS

2.1 | Curation of progenitor genes and single-
sample gene set enrichment analysis

Given that this study is based on the atavism hypothesis of can-
cer, here we aim to investigate whether ancient progenitor genes 
can be used as cancer biomarkers. The database of Online Gene 
Essentiality (OGEE, http://ogee.medge nius.info/brows e/) de-
fines the phyletic age and the essentiality of genes. Six different 
phyletic ages for the genes were defined from ancient to present: 
cellular organisms, Eukaryota, Fungi/Metazoa group, Metazoa, 
Chordata and Mammalia. We define the progenitor genes as 
essential genes whose phyletic ages are cellular organisms or 
Eukaryota. As a result, we curated a total of 77 progenitor genes 
(File S1). To calculate the progenitorness score, we perform single-
sample gene set enrichment analysis17 (ssGSEA) of gene expres-
sion profiles in the progenitor gene set by python (v3.6.8) package 
gseapy (v0.9.16), which is a python wrapper for GSEA and ssGSEA.

2.2 | Data collection and pre-processing

TCGA RNA sequencing (RNAseq) data in fragments per kilobase of tran-
script per million mapped reads (FPKM) and clinical information were 
downloaded from GDC data portal (https://portal.gdc.cancer.gov/). 
Histology type and WHO grade of TCGA lower grade glioma (LGG) 
and glioblastoma multiforme (GBM) were obtained from the study 

by Ceccarelli et al18 CGGA (http://www.cgga.org.cn/) contains gene 
expression and clinical data of more than 1000 patients with glioma, 
which are separated into one microarray and two RNAseq batches, giv-
ing researchers an opportunity to delve deeper into glioma. HCCDB16 
(http://lifeo me.net/datab ase/hccdb /home.html) provides 15 public 
hepatocellular carcinoma (HCC) gene expression matrices from TCGA, 
the International Cancer Genome Consortium (ICGC) and GEO data-
sets, which were processed in a unified process. HCC proteome data 
were obtained from Gao et al19 In addition, microarray gene expression 
profiling data and RNAseq data were collected from GEO database 
(https://www.ncbi.nlm.nih.gov/gds/). Cancer Cell Line Encyclopedia20 
(CCLE, https://porta ls.broad insti tute.org/ccle/) provides RNAseq data 
for thousands of cancer cell lines. Gene expression data were struc-
tured with gene symbols as row names, sample ids as column names, 
duplicate gene symbols were dropped except their max value. Drug sen-
sitivity data are available from Cancer Therapeutics Response Portal21 
(CTRP, http://porta ls.broad insti tute.org/ctrp/)and Genomics of Drug 
Sensitivity in Cancer22 (GDSC, https://www.cance rrxge ne.org/).

2.3 | Statistical Analysis

All statistical significances were calculated by R (v3.5.2). Cox pro-
portional hazards regression and Kaplan-Meier (K-M) curves were 
processed by R package survival (v3.1-7) and survminer (v0.4.6). 
Log-rank test was used to evaluate the difference between two 
K-M curves. Receiver operating characteristic (ROC) curve and area 
under ROC curve (AUROC) were performed by R package pROC23 

F I G U R E  2   Progenitorness score predicts the survival of cancer patients. A, Analysis between progenitorness score and survival of 
different cancer types in TCGA, ln(hazard ratio) and 95% confidence interval (95% CI) of progenitorness score using Cox proportional 
hazards regression models were shown. 95% CI that does not include zero is considered significant. (B-G) Kaplan-Meier curve of survival 
in different tumour gene expression datasets. Group was separated by the median value of progenitorness scores. Differences between 
two curves were estimated by log-rank test. B, CGGA RNAseq batch 2. C, Liver Cancer – RIKEN, Japan Project from International Cancer 
Genome Consortium, processed by HCCDB. D, GSE25066 breast cancer. E, GSE30219 lung cancer. F, GSE32918 lymphoma. G, GSE13876 
ovarian cancer
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(v1.15.3). Significance of difference between two groups of continu-
ous variables was calculated by two-side Wilcoxon rank-sum test. 
Differences of paired samples were evaluated by Wilcoxon signed-
rank test. Spearman's tests were used to estimate correlation be-
tween two continuous variables. The P values of Spearman's test 
were adjusted using R package fdrtool (v1.2.15).

3  | RESULTS

3.1 | Progenitorness score distinguishes tumours 
from normal samples

Firstly, we investigated whether the proposed progenitorness score 
is able to distinguish tumour samples from normal samples. As ex-
pected, primary tumours showed significantly higher progenitorness 
scores than normal tissues for all 17 types of cancers in the TCGA 
database (Figure 1A). Moreover, progenitorness score showed a 

good prediction performance in distinguishing tumours from normal 
samples (Figure 1B). We obtained similarity results in datasets from 
GEO and HCCDB (Figure 1C, Figure S1, S2). We noted that progeni-
torness score did not work well on only one dataset (GSE46444), 
which could be resulted from the fact that the samples of this dataset 
were formalin-fixed paraffin-embedded (AS-FFPE). In addition, the 
GSE25097 dataset has samples of cirrhotic liver. As expected, the 
progenitorness scores of cirrhotic livers are between those from the 
cancer samples and those from the adjacent samples (Figure S2E, I).

3.2 | Progenitorness score predicts the survival of 
cancer patients

Survival analysis found that higher progenitorness score indi-
cates shorter survival time in various cancers in TCGA (Figure 2A; 
Figure S3). Meanwhile, 16 datasets of 7 types of cancers with sur-
vival information were collected from CGGA, HCCDB and GEO 

TA B L E  1   The predictive ability on survival time of progenitorness score adjusted using age, gender, WHO grade and histology

Datasets

Unadjusted Adjusted

n Hazard Ratio (95% CI) p n Hazard Ratio (95% CI) p

CGGA Microarray 298 43.6 (11.9-160) 1.23 × 10−8 293 3.11 (0.766-12.7) 0.112

CGGA RNAseq batch 1 311 3.85 × 109 (3.67 × 107-4.04 × 1011) 1.47 × 10−20 307 31 800 (126-8.02 × 106) 2.38 × 10−4

CGGA RNAseq batch 2 619 8.57 × 107 (3.08 × 106-2.38 × 109) 5.04 × 10−27 618 1.63 × 105 (3420-7.77 × 106) 1.15 × 10−9

TCGA GBM + LGG 695 4.04 × 1020 (1.5 × 1017-1.09 × 1024) 5.48 × 10−32 634 2.14 × 108 (2610-1.75 × 1013) 8.92 × 10−4

GSE4412-GPL96 85 1.19 × 105 (23.2-6.14 × 108) 0.00733 85 391 (0.0333-4.59 × 106) 0.212

Note: Hazard ratio (HR) and 95% confidence interval (95% CI) of progenitorness score using univariate and multivariate Cox proportional hazards 
regression models for gliomas were shown. HR with 95% CI that does not include one is considered significant.

TA B L E  2   The predictive ability on survival time of progenitorness score in several types of cancers

Datasets
Cancer 
type

Survival 
type n HR (95% CI) P

HCCDB ICGC-LIRI-JP Liver OS 212 3.07 × 1014 (2.61 × 108-3.59 × 1020) 2.89 × 10−6

HCCDB TCGA-HCC Liver OS 351 9.35 × 107 (77 500-1.13 × 1011) 3.99 × 10−7

GSE25066 Breast DRFS 508 3600 (9.62-1.35 × 106) 0.00675

GSE32603 Breast RFS 248 119 (10.1-1410) 1.48 × 10−4

GSE30219 Lung OS 293 7.95 × 106 (75 300-8.38 × 108) 2.33 × 10−11

GSE30219 Lung DFS 278 2.83 × 108 (4.11 × 105-1.95 × 1011) 5.32 × 10−9

GSE37745 Lung OS 196 1510 (2.82-8.06 × 105) 0.0224

GSE41271 Lung OS 274 2.42 × 107 (398-1.47 × 1012) 0.00249

GSE41271 Lung RFS 274 1.09 × 106 (18.5-6.38 × 1010) 0.0131

GSE42127 Lung OS 176 5.59 × 107 (5.52-5.65 × 1014) 0.0302

GSE50081 Lung OS 181 4430 (1.52-1.29 × 107) 0.0391

GSE32918 Lymph OS 249 2.20 × 105 (87-5.58 × 108) 0.00209

GSE13876 Ovary OS 415 82 (1.93-3490) 0.0213

GSE62452 Pancreas OS 65 2.39 × 107 (361-1.59 × 1012) 0.00271

Abbreviations: DFS, disease-free survival; DRFS, distance recurrence-free survival; OS, overall survival; RFS, recurrence-free survival.
Hazard ratio (HR) and 95% confidence interval (95% CI) of progenitorness score using univariate Cox proportional hazards regression models were 
shown. HR with 95% CI that does not include one is considered significant.
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datasets. K-M curves showed that patients with higher progenitor-
ness scores had shorter overall/recurrent-free/disease-free sur-
vival time (Figure 2B-G; Figure S4). Cox regression also confirmed 
that progenitorness score was an effective prognostic risk factor 
in survival (Tables 1 and 2). After being adjusted with age, gen-
der, histology and WHO grade, progenitorness score was demon-
strated to be an independent risk factor for glioma (Table 1).

3.3 | Progenitorness score indicates tumour grades

We first studied the relationship between progenitorness score and 
WHO grade of glioma and found that cancers with higher grade 
had significantly higher progenitorness score in all 12 datasets from 
TCGA, CGGA and GEO datasets (Figure 3). It is worth mentioning 
that progenitorness score also shows the ability to distinguish glioma 
from normal brain tissues (Figure 3E-G,I; Figure S5). It needs to be 

noted that in other type of cancers, progenitorness score has less 
impact on the assessment of tumour stage (Figure S6).

3.4 | Progenitorness score guides cancer therapy

From the GEO gene expression data of tumour cell lines treated with 
various anticancer drugs (GSE11 6436), we observed a significant 
decrease of progenitorness score with the increase of drug concen-
tration and the extension of treatment time (Figure 4A; Figure S7; 
Figure S8). In addition to cell trials, cancer samples of breast cancer 
patients also showed a decrease in progenitorness score after treat-
ment (Figure 4B). To further investigate the relationship between pro-
genitorness score and drug response, we collected the sensitivity to 
anticancer drugs of cell lines from the Cancer Therapeutics Response 
Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC). 
Area under concentration-viability curve24 (AUC, the higher, the more 

F I G U R E  3   Progenitorness score indicates glioma grades. Distribution of progenitorness scores in different grade of gliomas or normal 
brain tissues. Significances of difference between two groups were analysed by two-side Wilcoxon rank-sum test. *P < 0.05, ** P < 0.01, 
***P < 0.001. A, TCGA lower grade glioma (LGG) and glioblastoma multiforme (GBM). B, CGGA Microarray. C, CGGA RNAseq batch 1. D, 
CGGA RNAseq batch 2. E, GSE4290. F, GSE7696. G, GSE16011. H, GSE35158. I, GSE50161. J, GSE52009. K, GSE54004. L, GSE61374
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resistant) is used to calculate the Spearman's correlation with progeni-
torness score. We found that the sensitivity of most drugs was signifi-
cantly correlated with progenitorness score (FDR < 0.05) (Figure 4C, 
File S2). For example, the AUC of Cetuximab and AZD3759, which 
both are epidermal growth factor receptor (EGFR) inhibitors,25,26 
were found to have the most significant positive correlation with pro-
genitorness score in two versions of GDSCs separately, which suggest 
a resistance to EGFR inhibitors for tumours with high progenitorness 
scores. The above results suggest that progenitorness score could be 
used to guide drug selection, either predict the efficacy before treat-
ment or evaluate the efficacy after treatment.

3.5 | Progenitorness score shows a wider 
application scenario

Furthermore, progenitorness score showed a significant predictive 
effect on vascular invasion of HCC (Figure 4D). It is worth mention-
ing that, in addition to cancer, progenitorness score also showed rea-
sonable results in cardiovascular diseases. For example, we found 
that the diseased hearts have lower progenitorness scores than the 
normal hearts (Figure 4E).

Besides microarray and bulk RNA sequencing, single-cell RNA 
sequencing (scRNAseq) data and proteome data have been also ac-
cumulated rapidly in recent years. Yao et al27 studied the differen-
tiation from human embryonic stem cells (hESCs) to early forebrain 

and mid/hindbrain cells using scRNAseq technique. We downloaded 
the scRNAseq data (GSE86977) of hESCs for different culture days 
during differentiation from GEO datasets and then calculated their 
progenitorness scores. Although fewer genes were detected in 
scRNAseq data (Figure 4F), it showed ideal and reasonable evalua-
tion results: progenitorness score decreased significantly with time 
(Figure 4G). Meanwhile, we asked whether progenitorness score 
works well on protein expression data. For doing so, we downloaded 
the proteome data of an HCC-normal paired study by Gao et al19 The 
result showed that progenitorness score showed significant ability 
to classify cancer samples from normal tissues (Figures 1C and 4H).

4  | DISCUSSION

From the atavism of cancer, we collected 77 essential genes ap-
peared at the age of cellular organisms and eukaryote and proposed 
the progenitorness score as a biomarker for multi usages of multi 
cancers. Biomarkers are often difficult to popularize due to different 
batches, different platforms (microarray, bulk RNAseq, scRNAseq, 
proteome), different types of cancers and tissues, different process-
ing methods of original data.3 But the progenitorness score was vali-
dated by dozens of datasets from TCGA, GEO, CGGA and HCCDB, 
etc Although fewer genes (proteins) were detected, and mRNA can 
only explain about 40% of the variability of protein,28 progenitor-
ness score is robust in scRNAseq and proteome data.

F I G U R E  4   Progenitorness score guides cancer therapy and shows a wider application scenario. A, Variation of progenitorness scores 
in NCI-60 cell lines treated with Doxorubicin in different drug concentration and treatment time. B, Distribution of progenitorness scores 
in breast cancer patients with different treatments. C, Drugs correlated with progenitorness scores in CTRP and two versions of GDSC. 
D, Progenitorness scores of HCC patients with/without vascular invasion. E, Distribution of progenitorness scores in heart with/without 
heart failure. F, Number (mean ± sd) of genes detected (read count > 0) in different datasets. G, Distribution of progenitorness scores in 
human embryonic stem cells of different culture days. (A, B, D, E, G) Two-side Wilcoxon rank-sum test, *P < 0.05, **P < 0.01, ***P < 0.001. H, 
Variation of progenitorness scores in an HCC-normal paired proteome data. Wilcoxon signed-rank test, ***P < 0.001
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It has been reported that older genes show greater necessity,29 
we also found this phenomenon (Figure S9A). In addition, gene ex-
pression at each stage of embryonic development also showed a 
correlation with gene age.30 To further explore the function of gene 
set that we collected, we performed GO enrichment analysis. The 
results showed that the genes were enriched on functions about 
protein degradation, DNA replication and cell cycle (Figure S9B). 
These results may be due to a common characteristic of ancestral 
organisms, embryos and cancers: rapid proliferation, which partly 
explains why progenitorness score is effective in a wide variety 
of tumours. However, it needs to be pointed out that our progeni-
torness gene set has no intersection with stemness gene set in the 
Kyoto Encyclopedia of Genes and Genomes31 (KEGG, pathway id: 
hsa04550) and PathCards,32 which reveals a new perspective on 
cancer progression.

We also tried to reduce the gene set and optimize it for various 
tissue types separately. RNA sequencing data for different tissues 
from the Genotype-Tissue Expression (GTEx)33 database have been 
downloaded and the specificities of each progenitor gene in various 
tissues were calculated. We then applied the specific gene sets to 
TCGA cancers of the corresponding tissues. However, the diagnostic 
and prognostic abilities of these gene sets were not increased, com-
paring with the original 77 genes (data not shown).

An interesting phenomenon is that in rectum adenocarcinoma 
(READ) of TCGA, progenitorness score shows a negative correlation 
with survival (HR = 3.00 × 10−28, P = 0.0199). At the same time, stom-
ach adenocarcinoma (STAD) showed the same but not significant 
trend (HR = 4.44 × 10−5, P = 0.147). Similar results were observed 
in the analysis of colorectal and gastric cancer data from GEO data-
sets (Figure S10), which were probably not by accident. The reason 
is worth further validating and exploring.

In summary, to explore the atavism of cancer, we have been sug-
gested that ancient genes could serve as a biomarker of cancer. As a 
result, 77 progenitor genes were collected and applied to calculate 
progenitorness score. After the verification of dozens of cancer gene 
expression data, progenitorness score has been found to be used 
for the diagnosis, prognosis, grading, medication guidance and other 
purposes of a variety of cancers. Furthermore, we revealed the pos-
sible role of ancient genes in the development of cancer and showed 
an atavistic landscape of cancer.
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