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A B S T R A C T   

Obesity is currently one of the most alarming pathological conditions due to the progressive 
increase in its prevalence. In the last decade, it has been associated with fine particulate matter 
suspended in the air (PM2.5). The purpose of this study was to explore the mechanistic interaction 
of PM2.5 with a high-fat diet (HFD) through the differential regulation of transcriptional signa-
tures, aiming to identify the association of these particles with metabolically abnormal obesity. 
The research design was observational, using bioinformatic methods and an explanatory 
approach based on Rothman’s causal model. We propose three new transcriptional signatures in 
murine adipose tissue. The sum of transcriptional differences between the group exposed to an 
HFD and PM2.5, compared to the control group, were 0.851, 0.265, and − 0.047 (p > 0.05). The 
HFD group increased body mass by 20% with two positive biomarkers of metabolic impact. The 
group exposed to PM2.5 maintained a similar weight to the control group but exhibited three 
positive biomarkers. Enriched biological pathways (p < 0.05) included PPAR signaling, small 
molecule transport, adipogenesis genes, cytokine-cytokine receptor interaction, and HIF-1 
signaling. Transcriptional regulation predictions revealed CpG islands and common transcrip-
tion factors. We propose three new transcriptional signatures: FAT-PM2.5-CEJUS, FAT-PM2.5-UP, 
and FAT-PM2.5-DN, whose transcriptional regulation profile in adipocytes was statistically similar 
by dietary intake and HFD and exposure to PM2.5 in mice; suggesting a mechanistic interaction 
between both factors. However, HFD-exposed murines developed moderate metabolically 
abnormal obesity, and PM2.5-exposed murines developed severe abnormal metabolism without 
obesity. Therefore, in Rothman’s terms, it is concluded that HFD is a sufficient cause of the 
development of obesity, and PM2.5 is a component cause of severe abnormal metabolism of 
obesity. These signatures would be integrated into a systemic biological process that would 
induce transcriptional regulation in trans, activating obesogenic biological pathways, restricting 
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lipid mobilization pathways, decreasing adaptive thermogenesis and angiogenesis, and altering 
vascular tone thus inducing a severe metabolically abnormal obesity.   

1. Introduction 

Obesity is currently one of the most alarming pathological conditions, with its prevalence consistently increasing globally over the 
past five decades [1,2]. Defined as a multifactorial disease [3,4], it involves the excessive accumulation of body fat beyond physio-
logical needs and adaptive capacity, leading to adverse health consequences [5,6]. There are two ways to classify this disease. On one 
hand, the World Health Organization (WHO) classifies it as Class I when the Body Mass Index (BMI) is 30–34.9 kg/m2, Class II when the 
BMI is 35–39.9 kg/m2, and Class III or severe, extreme, or massive obesity when the BMI is ≥ 40 kg/m2 [7,8]. A second classification is 
based on the accompanying metabolic alterations, including metabolically healthy obesity, metabolically abnormal obesity [9,10], 
and obesity with sarcopenia [11]. 

In the last decade, environmental pollution has been suggested as a multifactorial contributor to obesity following the identification 
of correlations between the two [12,13]. Population growth, the economy reliant on fossil fuels, and natural sources of particulate 
matter have elevated air pollution worldwide to unprecedented levels [14,15]. To such an extent, in 2021, the World Health Orga-
nization declared it the most significant environmental health concern [16]. One of these pollutants is fine particulate matter sus-
pended in the air with a diameter of ≤2.5 μm (PM2.5) [16,17]. 

Recent reports indicate that over 90% of the global population is exposed to PM2.5 concentrations exceeding the guideline set by the 
WHO of 5 μg/m3 annually [16,18]. Experimental studies have been published, and their results indicate gene regulation disruption 
following exposure to PM2.5 [19,20]. An increase in the expression of the Ucp1 gene has been observed in brown adipose tissue of mice 
exposed to these particles, along with alterations in the leptin signaling pathway, among other findings. The conclusion is that pro-
longed exposure to PM2.5 induces leptin resistance, hyperphagia, and a in decreased energy expenditure [21]. 

While the scientific community acknowledges the multifactorial etiology of obesity, discrepancies persist in the weighting of 
etiological factors contributing to the rise of this disease [22]. The inconsistencies could be attributed to the dominant model of 
causality in epidemiology, the Bradford-Hill model [23–26], which, although it identifies the etiological factors, limits the estimation 
of the type of cause and its weight in the etiology of the disease. In 1976, Rothman [27] proposed an alternative model that addresses 
this limitation, bridging the gap between the metaphysical notions of cause and fundamental epidemiological parameters [28]. He 
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identifies three causes and their relationship with the disease: 1. Sufficient cause constitutes a complete causal mechanism, a minimal 
set of conditions and events sufficient for the outcome. 2. Component cause can be part of a sufficient cause. 3. Necessary cause is a 
component cause that complements all sufficient causes [27]. In 2021, Rothman et al. explored the limitations in assessing combined 
effects in biological processes. Although it can be understood if exposure to two factors causes a result, what he called mechanistic 
interaction, it is essential to distinguish between mechanistic interaction and biological interaction, as the former does not imply the 
latter [29]. 

So, in terms of Rothman,we hypothesize that long-term exposure to PM2.5 is not a sufficient cause to produce obesity but rather a 
component cause. However, these particles may interact with obesogenic factors, enhancing the development of metabolically 
abnormal obesity by disrupting gene groups in adipocytes. The study’s main purpose was to explore the mechanistic interaction [29] of 
PM2.5 with a high-fat diet (HFD) through the differential regulation of transcriptional signatures, aiming to identify the association of 
these particles with metabolically abnormal obesity. The specific objectives were: 1. To characterize obesogenic transcriptional sig-
natures with abnormal metabolism induced by exposure to HFD and PM2.5. 2. To analyze in silico the biological pathways of obe-
sogenic transcriptional signatures with abnormal metabolism induced by exposure to HFD and PM2.5. 3. To analyze in silico the 
promoters of obesogenic transcriptional signatures with abnormal metabolism induced by exposure to HFD and PM2.5. 

2. Materials and methods 

2.1. Study design, data, and variables 

The study design was observational, using bioinformatic methods and an explanatory approach based on Rothman’s causal model 
[27,29]. The research was conducted from February to June 2023. The dependent variable was metabolically abnormal obesity, while 
the independent variables were the intake of an HFD and chronic exposure to PM2.5. 

2.2. Over-Representation Analysis of genes associated with particulate matter and obesity 

The Comparative Toxicogenomics Database (CTD) [30] (Fig. 1A) identified an initial cluster of 198 human genes associated with 
particulate matter and obesity (see Table S1). This cluster underwent Over-Representation Analysis (ORA) through the WEB-based 
GEne SeT AnaLysis Toolkit (WebGestalt) platform (http://www.webgestalt.org/) [31], utilizing the ’KEGG pathway,’ ’Wikipath-
way,’ ’Panther,’ and ’Reactome’ repositories (Fig. 1B). We measured the fraction of the 198-gene cluster belonging to the reference 
gene set, extracted from Illumina humanht-123. Significance was determined with a false discovery rate (FDR) of 0.05, a minimum 
gene count of five, a maximum gene count of 2000, adjustment using the Benjamin & Hochberg (BH) method, ten expected categories 
per set, and 40 visualized categories. Obesity-related biological pathways meeting an enrichment ratio ≥10 and an FDR ≤0.05 were 
selected (Fig. S1). The resulting 80 genes are detailed in Table S2. 

2.3. GEO DataSets selection 

The 80 genes were analyzed in silico in the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [32] 
(Fig. 1C). The search focused on PM2.5, limited to expression profiling by high throughput sequencing, Mus musculus, Rattus norvegicus, 
and transcriptomic profiles in adipocytes. The results underwent content analysis (see Table S3), and only the GSE145840 series by 
Rajagopalan et al. [33] met the criteria. Raw data were normalized to transcripts per million (TPM), and the median was calculated 
using the ratios method [34–36]. 

2.4. Cases and controls 

Rajagopalan et al. [33] reported 78 out of the 80 transcripts of interest in nine brown adipose tissue (BAT) samples and eleven white 
adipose tissue (WAT) samples (78 transcripts x 20 biological samples) from DIO C57BL/6J mice (Fig. 1C). The case and control groups 
were organized as follows: Cases included three BAT and four WAT samples from mice fed an HFD and exposed to filtered air, along 
with three BAT and three WAT samples from mice with chronic exposure to PM2⋅5 and fed a regular diet. Controls comprised three BAT 
and four WAT samples from mice fed a regular diet and exposed to filtered air. 

Fig. 1. Methodological strategy 
A. Initial cluster of genes associated with obesity and particulate matter in the Comparative Toxicogenomics Database (CTD). B. The genes un-
derwent Overrepresentation Enrichment Analysis (ORA) on the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) platform using the ’KEGG 
pathway,’ ’Wikipathway,’ ’Panther,’ and ’Reactome’ repositories. C. Selection of transcriptome database in the GEO Gene Expression Omnibus 
database for in silico analysis through cases and controls. D. Analysis of differential gene expression on the Morpheus Broad Institute platform. E. 
Estimation of Spearman correlation between transcription due to PM2.5 exposure and high-fat diet (HFD) intake. F. Biological association through 
protein-protein interaction networks on the STRING platform. G. Causal inference with the mechanistic interaction of PM2.5 with HFD. H. Causal 
typology with the Rothman model. I. Analysis of biological pathway enrichment on the WebGestalt. J. Identification of gene expression type in the 
National Center for Biotechnology Information (NCBI). K. Promoter analysis using the Eukaryotic Promoter Database (EPD) platforms. L. Analysis of 
transcriptional regulatory elements on the Multiple Expectation Maximization for Motif Elicitation (MEME suite), TomTom, JASPAR2022, EMBOSS 
CpGplot program, and UCSC Genome Browser platforms. 
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2.5. Differential transcriptional regulation 

The transcripts from the cases and control groups were analyzed using the Morpheus Broad Institute program (https://software. 
broadinstitute.org/morpheus/) (Fig. 1D), using z-score [37–39], hierarchical clustering, and Euclidean distance to identify gene 
expression regulation, to identify the regulation of gene expression (see Fig. S2). Transcripts with opposite regulation were selected, 
generating four clusters: two in white adipocytes (one upregulated with seven transcripts and one downregulated with 24) and two in 
brown adipocytes (one upregulated with nine transcripts and one downregulated with 12) (see Table S4). Transcription values were 
subjected to the Shapiro-Wilk normality test using SPSS Statistics v29.0 (IBM, NY, USA); the p-value in white and brown adipose tissue 
under the three conditions was <0.05, proceeding to non-parametric inferential statistics. 

2.6. Correlation post-exposure to HFD and PM2.5 

The four transcript clusters were analyzed using the Spearman correlation coefficient (Fig. 1E) and SPSS Statistics v29.0 (IBM, NY, 
USA). To avoid statistical artifacts, correlations were also calculated between the transcriptional profile of controls and that of HFD and 
exposure to PM2.5. In both adipose tissues, no significant correlations were observed in the controls, and only one case showed a low 
inverse correlation (see Table S5). 

2.7. Protein-protein interaction network 

The four transcript clusters were analyzed using the STRING platform version 11.5 (https://string-db.org/) for protein-protein 
interaction network analysis [40], with high confidence and a 5% FDR stringency. Genes whose proteins did not show interaction 
were excluded, resulting in three final clusters (Fig. S3). One in white adipose tissue comprises 20 down-regulated genes, and two in 
brown adipose tissue, one with three up-regulated genes and another with seven down-regulated genes (Fig. 1F). These three clusters 
were identified as transcriptional signatures A, B, and C, respectively (see Table S6). 

2.8. Rothman’s causal model 

The resulting transcriptional signatures underwent causality analysis using the Rothman model [27,29] (Fig. 1G). The mechanistic 
interaction of PM2.5 with HFD was assessed through transcriptional differences using the following procedure: 1. Differences between 
the medians of the transcriptional profile of the HFD-exposed group and the control group were calculated. 2. Similar calculations were 
performed for the PM2.5-exposed group compared to the control group. 3. The interaction between HFD and PM2.5 was assessed by 
calculating the differences between their transcriptional profiles. 4. The differences were summed and compared to analyze the 
transcriptional similarity to the control group. 5. The procedure was repeated with the genes discarded during the investigation to 
avoid statistical artifacts. 6. The hypothesis test was applied using the Wilcoxon test for all groups. 

To establish the type of causation represented by HFD and exposure to PM2.5 in metabolically abnormal obesity (Fig. 1H), the 
results of body mass and metabolic biomarkers in the mice from Rajagopalan et al. [33] were analyzed. Obesity was defined as a 
20–30% increase in body mass compared to controls [41,42], accompanied by ≥ two abnormal metabolic parameters in fasting 
conditions [11,43,44]: insulin resistance [11,45], hypertriglyceridemia [11,46–48], and total hypocholesterolemia [41,49]. The 
presence of two positive criteria was classified as moderate abnormal metabolism, while three criteria were indicative of severe 
abnormal metabolism. 

Molecular signature repositories and scientific databases were reviewed, and genetic and transcriptional signatures unrelated to 
genetically originated obesity were selected (see Table S7). The selected signatures were analyzed using a Venn diagram on the 
Bioinformatics & Evolutionary Genomics platform (https://bioinformatics.psb.ugent.be/webtools/Venn/). A new transcriptional 
signature was considered when all the genes from each of the three proposed signatures did not overlap with the genes of the reference 
signatures. 

2.9. Enrichment analysis of their biological pathways 

The Log2 Folds Change (Log2FC) of the three transcriptional signatures from the HFD-exposed group compared to the control group 
and from the PM2.5-exposed group compared to the control group were calculated (Fig. 1I). The Log2FC of the signatures underwent 
Gene Set Enrichment Analysis (GSEA) on the WebGestalt platform [31] with the aforementioned repertoires for Mus musculus. The 
analysis used an FDR of 0.05, a minimum of five genes, a maximum of 2000 genes, and 1000 permutations. Signatures without results 
underwent ORA with previous parameters. Biological pathways with significant enrichment in both enrichment analyses were 
selected, considering a p-value ≤0.05 and FDR ≤0.25 [50]. In addition, in the ORA, pathways with the highest number of signature 
genes corresponding to the abnormal metabolism of the mice and the studied cell type were chosen (see Table S8). The schematics of 
each pathway were downloaded from biological repositories through the WebGestalt platform [51,52]. 

2.10. Gene expression type 

The summary annotation of each gene of the signatures was reviewed in the National Center for Biotechnology Information (NCBI) 
(https://www.ncbi.nlm.nih.gov/) (Fig. 1J) selecting the gene of interest from the Mus musculus species to identify the type of 
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expression. 

2.11. Identification of promoter regions 

The promoter regions of the genes from these signatures were determined in the Eukaryotic Promoter Database (EPD) (http://epd. 
vital-it.ch) [53] (Fig. 1K). To achieve this, genes were searched for, and their promoter annotations were copied into a table [54,55] 
from the "General information" section. The NCBI reference sequences of the primary promoters were downloaded in FASTA format 
(see Table S9). The core region was analyzed for the following elements [56]: the TATA box [57,58], initiator element (Inr) [58,59], 
Ohler 1 motif [60,61], and the TATA box-like element [62]. 

2.12. Regulatory elements of coordinated transcription 

Primary promoter sequences that did not yield significant results in the biological pathway enrichment analyses were examined 
using the Multiple Expectation Maximization for Motif Elicitation (MEME suite) version 5.5.2 (https://meme-suite.org/meme/tools/ 
meme) [55] (Fig. 1L), selecting five motifs. Results were opened in MEME HTML format to discover motifs and their locations. Se-
quences of the motifs and their locations were downloaded in block diagrams. The motifs were subjected to the TomTom platform for 
comparison with the JASPAR2022_CORE_vertebrates_non-redundant_v2 motif database to determine if a newly discovered putative 
motif resembled any of the previously discovered regulatory motifs for transcription factors (TFs), using the statistical measure of 
motif-motif similarity. TFs of the motifs with the lowest E-value were compiled for further analysis [55] (Fig. 1L). 

Finally, putative CpG islands (CGI) were searched only in the primary promoter sequences of genes that did not yield significant 
results in the biological pathway enrichment analyses, predicted using the Takai and Jones algorithm [63] in its modified form: length 
>200 bp, GC content >50%, and observed CpG/expected CpG >0.60 [55,64]. The EMBOSS CpGplot program (https://www.ebi.ac. 
uk/Tools/seqstats/emboss_cpgplot/) [59,65] was used for this purpose (Fig. 1L). These putative CGIs were searched in the UCSC 
Genome Browser (https://genome.ucsc.edu/) [53], selecting the mouse genome GRCm39/m. 

3. Results 

3.1. PM2⋅5, cofactors for severe metabolically abnormal obesity 

Table 1 presents the transcriptional differences induced by a high-fat diet (HFD) and chronic exposure to PM2.5. The sum of 
transcriptional differences in the signatures associated with clusters A, B, and C did not reveal statistically significant differences, 
contrary to transcriptional differences in the control clusters in white and brown adipose tissues. These results indicate that both HFD 
and PM2⋅5 exposure affects the transcription of the same genes with similar levels of regulation in clusters A, B, and C, reflecting a 
mechanistic interaction in the development and severity of obesity. 

The metabolic conditions described by Rajagopalan et al. [33] analyzed biological processes underlying the mechanistic inter-
action. Based on metabolic biomarkers, it was observed that, on average, mice exposed to HFD developed moderately abnormal 
metabolic obesity (Fig. 2A), whereas mice exposed to PM2.5 exhibited severe abnormal metabolism without obesity. According to the 
Rothman causal model, these results indicate that PM2.5 exposure and HFD act as cofactors in developing severe metabolically 
abnormal obesity, as illustrated in Fig. 2B. 

FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN activate obesogenic biological pathways and promote abnormal metabolism. 
The confirmation of the in silico discovery of three obesogenic transcriptional signatures with abnormal metabolism induced by 

exposure to HFD and PM2.5 (Table 2) was achieved through comparison with published obesogenic genetic and transcriptional sig-
natures (see Fig. S4). The relationship between the expression changes of the new transcriptional signatures induced by exposure to 
HFD and PM2.5. In both exposures, it was observed that Ghrl, Ucp1, Apoa1, and Apoa5 were the genes with the highest expression 
change in the FAT-PM2.5-CEJUS signature; Ppara in the FAT-PM2.5-UP signature; and Prkar1a and Il6 in the FAT-PM2.5-DN signature 
(Fig. 3A and Fig. 3B). 

Table 1 
Sum of transcriptional differences of the new transcriptional signatures and control clusters.  

Transcripts Ctrl (− ) HFD Ctrl (− ) PM2⋅5 HFD (− ) PM2⋅5 

Median (TPM) of ratios method 

Signature | Cluster A − 3.589 − 4.440 0.851* 
Signature | Cluster B 0.608 0.343 0.265* 
Signature | Cluster C − 10.703 − 10.750 − 0.047* 
Control Cluster | White adipose tissue not considered in clusters A, B, or C − 1.954 0.160 − 2.114** 
Control Cluster | Brown adipose tissue not considered in clusters A, B, or C − 4.691 1.191 − 5.882** 

*p > 0⋅05. 
**p < 0⋅05. 
HFD= High-fat diet. 
Ctrl = Control. 

S. Lobato et al.                                                                                                                                                                                                         

http://epd.vital-it.ch
http://epd.vital-it.ch
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
https://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/
https://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/
https://genome.ucsc.edu/


Heliyon 10 (2024) e28936

7

The statistically significant pathways with GSEA enrichment in the FAT-PM2.5-CEJUS signature were the peroxisome proliferator- 
activated receptors (PPAR) signaling pathway, with − 1.536 normalized enrichment points, and the small molecule transport with 
− 1.328 normalized points (Fig. 4). The PPAR pathway has the entry mmu03320 in KEGG. It is a cell pathway mediated by PPAR 
receptors, which bind to fatty acids and act as TF. The signature influences this pathway through PPAR gamma receptors, reducing the 
expression of Apoa1, Apoa5, and Ucp1, limiting lipid transport and adaptive thermogenesis (Fig. 5). 

The small molecule transport, with the id R-MMU-382551 in Reactome, participates partially in transport mediated by ABC family 
proteins through the ApoA1/ABCA7-1 complex, essential for the extracellular transport of phospholipids and cholesterol. This 

Fig. 2. Two causal models by Rothman 
A, obesity model. B, severely metabolically abnormal obesity model. X, exposure to high fat diet (HFD). G, exposure to PM2.5. U1 and U2 are 
additional unknown factors to complete sufficient causes. 1, present. 0, absent. 

Table 2 
New transcriptional signatures.  

Contributed by Sagrario Lobato, with the supervision of Marcos Bucio-Pacheco, A. Lourdes Castillo-Granada, Víctor Manuel Salomón-Soto, Ramiro Álvarez- 
Valenzuela, Perla Margarita Meza-Inostroza, and Raúl Villegas-Vizcaíno | Centro de Estudios Justo Sierra. Educación Superior. Surutato, 
Badiraguato, Sinaloa, Mexico. 

Organism Mus musculus 
Standard Name FAT-PM2.5-CEJUS FAT-PM2.5-UP FAT-PM2.5-DN 
Brief Description Obesogenic transcriptomic signature with severe abnormal metabolism induced by high-fat diet (HFD) and PM2⋅5. 

The genes composing this signature exhibit a 
downregulated transcriptional profile in 
white adipose tissue following exposure to 
HFD and PM2⋅5 

The genes comprising this signature exhibit 
an upregulated transcriptional profile in 
brown adipose tissue following exposure to 
HFD and PM2⋅5 

The genes comprising this signature exhibit a 
downregulated transcriptional profile in 
brown adipose tissue following exposure to 
HFD and PM2⋅5. 

Genes NCBI (Entrez) Symbol NCBI (Entrez) 
Gene Id 

Symbol NCBI (Entrez) 
Gene Id 

Symbol 
Gene Id 
11364 Acadm 12606 Cebpa 11555 Adrb2 
11450 Adipoq 17777 Mttp 20296 Ccl2 
11806 Apoa1 19013 Ppara 15368 Hmox1 
66113 Apoa5 .. .. 16193 Il6 
11832 Aqp7 .. .. 16847 Lepr 
12606 Cebpa .. .. 19084 Prkar1a 
12683 Cidea .. .. 18787 Serpine1 
12944 Crp .. .. .. .. 
12974 Cs .. .. .. .. 
93747 Echs1 .. .. .. .. 
58991 Ghrl .. .. .. .. 
15894 Icam1 .. .. .. .. 
59027 Nampt .. .. .. .. 
103968 Plin1 .. .. .. .. 
19016 Pparg .. .. .. .. 
19084 Prkar1a .. .. .. .. 
19088 Prkar2b .. .. .. .. 
18787 Serpine1 .. .. .. .. 
20917 Suclg2 .. .. .. .. 
22227 Ucp1 .. .. .. .. 

Historical version In silico discovery with the GSE145840 series database. 
March 03, 2023  
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Fig. 3. Expression ratio induced by HFD and by PM2.5 in the new transcriptomic signatures 
A, the ratio of expression change for the three transcriptional signatures induced by high-fat diet (HFD). B, the ratio of expression change for the 
three transcriptional signatures induced by PM2.5. 
In A and B, the blue bars on the left correspond to the FAT-PM2.5-CEJUS signature, the red bars to FAT- PM2.5-UP, and the blue bars on the right to 
FAT- PM2.5-DN signature. 
Graphics designed in SRPlot (https://www.bioinformatics.com.cn/en). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 4. Biological pathways significantly enriched in the FAT-PM2.5-CEJUS, FAT- PM2.5-UP, and FAT- PM2.5-DN signatures 
Graphic design in SRPlot (https://www.bioinformatics.com.cn/en). 
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signature also participates in lipid transport by converting chylomicrons (with apolipoproteins A and C coating) to residual chylo-
microns through the action of lipoprotein lipase (LPL), co-activated by Apoa5 and Apoc, stimulating triglyceride (TG) hydrolysis to 
maintain lipid homeostasis and remodel plasma lipoproteins. 

The adipogenesis gene pathway, with the WikiPathways entry WP447, was significant in the FAT-PM2.5-UP signature with an ORA 
enrichment ratio of 42.984 (Fig. 4). This signature contributes to the upregulation of Ppara and Cebpa, which encode TFs related to 
adipogenic genes (Fig. 6). 

The pathways with ORA enrichment in the FAT-PM2.5-DN signature were the Hypoxia-Inducible Factor-1 (HIF-1) signaling 
pathway, with an enrichment ratio of 35.02, and the cytokine-cytokine receptor interaction, with an enrichment ratio of 12.909 
(Fig. 4). The HIF-1 signaling pathway has the entry mmu04066 in KEGG, is activated in response to hypoxia, and is regulated by the 
HIF-1 transcription factor. In this pathway, genes like Il-6, Hmox1, and Serpine1 participate, affecting the response to hypoxia in the 
context of exposure to a high fat diet and PM2.5 (Fig. 7). The cytokine-cytokine receptor interaction pathway has the entry mmu04060 
in KEGG and involves three genes: Ccl2 (chemokine 2), Il-6 (IL-6), and Lepr (leptin receptor), partially influencing cellular commu-
nication and the inflammatory response (Fig. 8). 

3.2. Prediction of coordinated transcription regulatory elements 

The FAT-PM2.5-CEJUS signature showed a predominance of biased expression in 50% of its genes. In contrast, FAT-PM2.5-UP 
presented three different types of expression for each of its three genes. At the same time, FAT-PM2.5-DN was mainly characterized by 

Fig. 5. KEGG network diagram of the PPAR signaling pathway 
White boxes: biological pathway maps. Green boxes: genes or genetic products. Circles: molecules. Solid line arrows: direct relationship or molecular 
interaction. Dashed line arrows: indirect relationship or unknown reaction. Green boxes + arrows + circles + arrows = gene expression relationship. 
In red are the genes participating in the FAT-PM2.5-CEJUS signature in this pathway. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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Fig. 6. WikiPathways diagram of adipogenesis genes 
In blue, the genes participating in the FAT- PM2.5-UP signature in the adipogenesis gene pathway. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. KEGG network diagram of the HIF-1 signaling pathway 
White boxes: biological pathway maps. Green boxes: genes or genetic products. Circles: molecules. Solid line arrows: direct relationship or molecular 
interaction. Dashed line arrows: indirect relationship or unknown reaction. Perpendicular lines: repression. +p: phosphorylation. +u: ubiquitina-
tion. Green boxes + arrows + circles + arrows = gene expression relationship. In red are the proteins encoded by the FAT-PM2.5-DN signature in this 
pathway. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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broad expression, encompassing 57% of its genes (Fig. 9). In the latter, according to NCBI, common tissues of expression include liver 
tissue, mammary glandular tissue, in addition to adipose tissue. 

Most of the genes composing each of the three new transcriptional signatures presented unique promoters, predominantly located 
on the coding strand of DNA. Regarding the analysis of regulatory elements in the core region of the promoters, only the initiator 

Fig. 8. KEGG network diagram of cytokine-cytokine receptor interaction 
Large white box: biological pathway map. Small green boxes: genes or genetic products. Solid, black-tipped arrows: direct relationship or molecular 
interaction. In red are the proteins encoded by the FAT- PM2.5-DN signature in this pathway. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. The main types of expression for the FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN signatures are biased and broad 
Graphic design in SRPlot (https://www.bioinformatics.com.cn/en). 
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Table 3 
Promoter regions of the genes from the FAT-PM2.5 -CEJUS, FAT-PM2.5 -UP, and FAT-PM2.5 -DN signatures. 
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element (Inr) was detected in Apoa1_1 in the case of FAT-PM2.5-CEJUS and Il6_1 in FAT-PM2.5-DN. The chromosomal distribution of 
the genes in the three signatures was heterogeneous, suggesting a transcriptional regulation in trans (Table 3). 

The promoter ID consists of two parts separated by an underscore (’_’). Generally, the first part is the gene symbol/ID associated 
with the promoter; the second part is a number indicating the hierarchy of the promoter’s usage for that gene. For genes with multiple 
promoters, "_1″ marks the promoter with the highest usage (primary promoter) and is followed by all others in decreasing order of 
usage. The core region is a short sequence segment corresponding to the − 49 to +10 region of the promoter. Transcribed and non- 
transcribed nucleotides are represented by uppercase and lowercase characters, respectively. Genomic position: a eukaryotic pro-
moter is defined as a DNA sequence around a transcription start site. The positional reference to the initiation site is, therefore, the 
central part of a promoter entry. Its assignment is based directly on experimental data. Strands are labeled as the sense strand (also 
known as the coding strand or positive strand) and the antisense strand (non-coding strand or negative strand). In strand notation, the 
symbol "+" is used for the sense strand, and the symbol "-" is used for the antisense strand. 

The relative location of the five motifs in the primary promoters of the genes composing the three new transcriptional signatures 
was distributed on both positive and negative strands (Tables 4–6). Each primary promoter of these signatures exhibited a conserved 
main motif. In FAT-PM2.5-CEJUS, one of the main motifs was Acadm_1a, with four TFBs and a width of 34 bases (Table 4); in FAT- 
PM2.5-UP, it was Cebpa_1A with five TFBs and a width of 15 bases (Table 5); and in FAT-PM2.5-DN, it was Adrb2_1A, with five TFBs and 
a width of 21 bases (Table 6). 

According to the Multiple Expectation Maximization Motif Elicitation (MEME suite) (https://meme-suite.org/meme/tools/meme), 
predictions regarding the relative location and spatial distribution of the five motifs in the primary promoters of genes in this signature 
are distributed across positive and negative strands. However, a primary motif has been identified, the most conserved in each primary 
promoter of the signature. The identified motifs are as follows: Acadm_1A, with four transcription factor binding sites (TFB) and a 
width of 34 bases; Adipoq_1A, with 5 TFB and a width of 29 bases; Aqp7_1B, with 5 TFB and a width of 50 bases; Cebpa_1A, with 5 TFB 
and a width of 15 bases; Cidea_1A, with 5 TFB and a width of 35 bases; Crp_1A, with 5 TFB and a width of 29 bases; Cs_1A, with 4 TFB 
and a width of 21 bases; Echs1_1B, with 5 TFB and a width of 20 bases; Grhl_1A, with 5 TFB and a width of 11 bases; Icam1_1B, with 5 
TFB and a width of 15 bases; Nampt_1A, with 5 TFB and a width of 41 bases; Plin1_1A, with 2 TFB and a width of 28 bases; Pparg_1A, 
with 4 TFB and a width of 48 bases; Prkar1a_1A, with 5 TFB and a width of 21 bases; Prkar2b_1A, with 5 TFB and a width of 41 bases; 
Serpine1_1A, with 5 TFB and a width of 19 bases; and finally, Suclg2_1A with 5 TFB and a width of 29 bases. 

According to the Multiple Expectation Maximization Motif Elicitation (MEME suite) (https://meme-suite.org/meme/tools/meme), 
predictions regarding the relative location and spatial distribution of the five motifs in the primary promoters of genes in this signature 
are distributed across both positive and negative strands. However, a primary motif has been recognized, being the most conserved in 
each primary promoter of the signature: Cebpa_1A, with five transcription factor binding sites (TFB) and a width of 15 bases; Mttp_1B, 
with 5 TFB and a width of 38 bases; and Ppara_1A, with 5 TFB and a width of 45 bases. 

According to the Multiple Expectation Maximization Motif Elicitation (MEME suite) (https://meme-suite.org/meme/tools/meme), 
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Table 4 
Relative positions and motif consensus in primary promoters of the FAT-PM2.5-CEJUS signature genes. 
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predictions regarding the relative location and spatial distribution of the five motifs in the primary promoters of genes in this signature 
are distributed across positive and negative strands. The main motifs are Adrb2_1A, with five transcription factor binding sites (TFB) 
and a width of 21 bases; Ccl2_1A, with 5 TFB and a width of 13 bases; Il6_1A, with 5 TFB and a width of 15 bases; Lepr_1A, with 4 TFB 
and a width of 21 bases; and Prkar1a_1A, with 5 TFB and a width of 21 bases. 

The other primary promoters of genes in the signatures showed specific characteristics regarding TFBs and width. In total, FAT- 
PM2.5-CEJUS exhibited 125 TFBs in the main motif of its primary promoters, while FAT-PM2.5-UP and FAT-PM2.5-DN revealed the 
presence of 15 and 24 TFBs, respectively. Additionally, the sequences of the main motifs showed the four conserved nucleotide bases 
across the three signatures (see Table S10). 

After the motif-motif similarity analysis of the TFBs in the three signatures, FAT-PM2.5-CEJUS revealed 132 candidates TF for its 

Table 5 
Relative positions and motif consensus in primary promoters of the FAT-PM2.5-UP signature genes. 
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125 TFBs; in FAT-PM2.5-UP, 16 candidates TF for its 15 TFBs; and in FAT-PM2.5-DN, 130 candidates TF for its main and alternative 
motifs. Common candidates TF were detected among the signatures, such as Zic1Zic2 in the primary promoters of Icam1, Nampt, 
Acadm, Aqp7, Pparg, and Prkar1a in FAT-PM2⋅5-CEJUS. Additionally, Pparg and Prkar2b share TCF4. Plin1, Cebpa, and Cidea share 
ONECUT1 and Plagl1, with the latter also associated with Adipoq. In FAT-PM2⋅5-UP, the primary promoters of Ppara and Cebpa share 
common TFs: Bcl11B, ONECUT1, and ONECUT3. Mttp has a common TF with Ppara, ZNF610. In FAT-PM2.5-DN, TFIID could bind to 
the Inr in the core region of the Il6 gene. The primary promoters of Adrb2, Prkar1a, Ccl2, and Lepr share common TFs: TCF4 and 
TFAP4ETV1 (the primary motifs of primary promoters and their associated transcription factors for signatures FAT-PM2⋅5-CEJUS, FAT- 
PM2.5-UP, and FAT-PM2.5-DN are detailed in the see Table S10. These common TFs could facilitate coordinated regulation in each 
signature. 

The presence of CGI was predicted in seven primary gene promoters in the FAT-PM2.5-CEJUS signature, two in FAT-PM2.5-UP, and 
two in FAT-PM2.5-DN (see Fig. S5). In FAT-PM2.5-CEJUS, the promoters Acadam_1, Cebpa_1, and Prkar2b_1 showed CGI covering both 
the promoter region and the gene body (appendix p 40). In FAT-PM2.5-UP, Cebpa_1 exhibited a CGI spanning both regions (appendix p 
41). FAT-PM2.5-DN showed CGI in Adrb2_1 and two in Prkar1a_1 (appendix p 42) (Table 7). The results suggest a moderate presence of 
CGI in the promoters of these signatures. 

Table 6 
Relative positions and motif consensus in primary promoters of the FAT-PM2.5-DN signature genes. 
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Table 7 
Putative CpG islands (CGI) in primary promoters of genes from the FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN signatures. 
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4. Discussion 

The Rothman causality model allowed inferring at the beginning of this research that long-term exposure to PM2.5 is not a sufficient 
cause to induce obesity but rather a contributing factor. Thus, these particles would interact with obesogenic factors, accelerating the 
development of metabolically abnormal obesity through the dysregulation of transcriptional signatures. Based on the obtained results, 
three new transcriptional signatures associated with metabolically abnormal obesity are proposed: FAT-PM2.5-CEJUS, FAT-PM2.5-UP, 
and FAT-PM2.5-DN. The similarity of the transcriptional regulation profile in adipocytes, both due to HFD intake and chronic exposure 
to PM2⋅5, indicates a potential mechanistic interaction between these factors. 

However, the effect of HFD and PM2.5 on the obese phenotype and abnormal metabolism was distinct. According to the reports by 
Rajagopalan et al. [33], it was identified that mice exposed to HFD developed moderately metabolically abnormal obesity, while mice 
exposed to ~60–120 μg/m3 of PM2.5 exhibited severe abnormal metabolism without obesity. In contrast, Si et al. [66] observed 
subcutaneous white adipose tissue hypertrophy in mice exposed to PM2⋅5 for eight weeks while being fed a normal diet. This 
discrepancy could be explained based on the origin of the studied white adipose tissue. Rajagopalan et al. [33] analyzed adipocytes 
from epididymal adipose tissue, while Si et al. [66] studied subcutaneous adipose tissue. 

In mice, epididymal adipose tissue is representative of visceral adipose tissue [67], and as known, this adipose tissue differs from 
subcutaneous adipose tissue [68]: i. Subcutaneous adipose tissue presents a heterogeneous mixture of mature unilocular adipocytes 
interspersed with small multilocular adipocytes of significantly reduced diameter, providing a higher density of adipocytes in this 
tissue compared to visceral adipose tissue [67]. ii. Subcutaneous adipose tissue contains a higher number of immune cells than visceral 
tissue [67], such as macrophages/monocytes, eosinophils, neutrophils, ILC2, T and B cells, dendritic cells, NK cells [69,70], in 
comparison to visceral adipose tissue [67]. iii. Kim et al. [71] reported that mice fed with HFD had a 98% and 166% increase in the size 
of epididymal and subcutaneous adipocytes, respectively, compared to mice fed a normal diet. 

Therefore, the results obtained by Si et al. [66] may be attributed to the high dose of PM2.5 to which the mice were exposed and the 
nature of the studied adipose tissue, which has a greater potential for hypertrophy, higher immunological response to foreign agents, 
and higher weight than visceral adipose tissue. Possibly, the subcutaneous adipose tissue, containing a higher number of immune cells, 
exhibited an innate response [72] to the elevated dose of PM2.5 to which the mice were exposed, in comparison to the exposure dose of 
the rodents studied by Rajagopalan et al. [33]. According to the findings of Okada et al. [73], observed the intracellular behavior of 
these particles in live mammalian cells in culture media; these particles gradually form aggregates starting from 5 h of exposure. The 
high doses of PM2.5 could have favored the formation of larger aggregates, which, in turn, may have induced mechanical damage to 
organelles, primarily mitochondria, affecting pathways involved in electron transport [74]. This, in turn, could promote the generation 
of reactive oxygen species (ROS), their accumulation, and oxidative stress. 

Chen et al. [75] hypothesized the link between innate immune response and oxidative stress. They suggest that while the innate 
immune system lacks the fine specificity of adaptive immunity necessary for generating immunologic memory, it can distinguish 
between self and foreign molecules through pattern recognition receptors. These receptors detect a range of molecular patterns 
associated with exogenous pathogens and endogenous pathological molecular patterns, the latter of which includes ROS. Endogenous 
patterns could trigger sterile inflammation by binding to pattern recognition receptors, promoting the recruitment of more immune 
cells to the site of injury, and amplifying the inflammatory response. This, in turn, could disrupt insulin signaling pathways, favoring 
hypertrophy of subcutaneous adipose tissue [76] as a compensatory mechanism to improve insulin sensitivity [77]. 

Now, the results obtained in this research are consistent with evidence published in recent decades. On the one hand, Yen et al. [78] 
studied 21 subjects with obesity, and all of them experienced some degree of abnormal metabolism. In contrast, the following authors 
reported different frequencies of subjects with metabolically normal obesity [79–83]. While metabolically abnormal obesity is re-
ported, there is substantial evidence regarding metabolically normal obesity. 

Contrary to the previous reports, as of June 2023, based on searches conducted on the Web of Science, there is no evidence yet that 
refers to individuals who, when directly exposed to PM2.5, maintained normal metabolism or developed obesity. In this regard, several 
authors reported biological models that, following exposure to these particles, developed abnormal metabolism and/or alteration of 
biological pathways involved in metabolism [84–89]; moreover, Du et al. [90] reported that the combined treatment of PM2.5 and HFD 
had a synergistic effect on the onset and development of fatty liver disease. Furthermore, several other authors have reported murine 
models that, following direct and exclusive exposure to PM2.5, did not develop obesity [91–95]. However, regarding indirect or 
short-term exposures to PM2.5 and their effect on the development of obesity, the evidence has been minimal and inconsistent, and the 
authors suggest further similar research to assess result reproducibility [96–99]. 

Therefore, in terms of Rothman, it is concluded that HFD is a sufficient cause for developing obesity, and PM2⋅5 is a component 
cause and functional for the severe abnormal metabolism associated with obesity. This thesis could be supported by the first law of 
thermodynamics. Living organisms require the consumption of energy for biological processes to take place. The energy derived from 
food is chemical and transforms into mechanical, thermal, and electrical energy to sustain these processes [100,101]. The balance 
between intake and caloric expenditure is known as energy balance [102,103], a concept coined from the first law of thermodynamics 
[104,105] with three types of balances: neutral when there is energy balance, negative when expenditure exceeds consumption, and 
positive when energy intake surpasses caloric expenditure [105,106]. Unused energy is stored in glycogen as an energy reserve in 
striated muscle and the liver and in triglycerides for storage in adipose tissue and other organs, based on the gradient. 

While the HFD and PM2⋅5 exhibit a mechanistic interaction by inducing similar transcriptional profiles in the signatures FAT-PM2.5- 
CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN, affecting the same biological pathways equally, PM2⋅5 are not molecules that can transform 
or transfer chemical energy, as do the nutritional components of the HFD. Therefore, PM2.5 needs to interact with an energy substrate 
to generate severe metabolically abnormal obesity. Exposure to obesogenic environments would encourage the consumption of HFD, 
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and air pollution by PM2⋅5 would exacerbate the metabolic disturbances present in obesity. Both exposures occur concurrently in space 
and time, which could favor the mechanistic interaction of these factors. 

The most relevant finding presented in this research is that one of the genes that form part of the FAT-PM2.5-CEJUS signature is 
Ucp1, and until recently, it was thought that this gene had restricted expression to brown adipocytes [107,108]. Ucp1 was identified in 
the PPAR signaling pathway, and based on the transcriptional level of the FAT-PM2⋅5-CEJUS signature, its regulation is downregulated, 
mediated by the PpargRxra complex. Consequently, the synthesis of the protein-encoding Uncoupling Protein 1 (UCP1) would also 
decrease, thus restricting adaptive thermogenesis, which involves the generation of heat by the organism in response to external 
stimuli. 

Since the early mammals relied on their ability to occupy colder niches, adaptive thermogenesis was crucial for their success during 
evolution [109–111]. Generally, adaptive thermogenesis is divided into shivering (tremor) and non-shivering forms [112,113]. The 
only form of non-shivering and facultative adaptive thermogenesis in mammals relies on UCP1 [113]. UCP1 is a channel found in the 
inner membrane of mitochondria in adipocytes, and when activated, it catalyzes the leakage of protons generated by the electron 
transport chain to produce heat [114,115], known as uncoupling of oxidative phosphorylation [116,117]. 

In 2009, several research networks confirmed that adults have deposits of brown adipose tissue in the supraclavicular and neck 
region that express UCP1 and can be induced in response to cold exposure. However, follow-up studies showed that it can also be 
expressed in white adipose tissue [118]. Currently, the ability of progenitor cells, as well as mature adipocytes, to differentiate into a 
model resembling the brown cell profile has been demonstrated, and when it occurs in white adipocytes, it is known as the browning of 
white adipose tissue [111,115,119]. 

It has been demonstrated that the PPAR signaling pathway plays a key role in activating the browning process as a strategy to 
counteract obesity [120,121]. Therefore, the uncoupling of oxidative phosphorylation that should occur in the mitochondria of white 
adipocytes through browning to dissipate excess energy in the form of heat before storing it in TG droplets may be disrupted by the 
downregulation of Ucp1 transcription with exposure to HFD and PM2.5. 

It is inferred that the three new transcriptional signatures would be integrated into a systemic biological process as a result of the 
mechanistic interaction between exposure to HFD and PM2.5, which would induce a trans-regulation transcriptionally (Fig. 10). The 
details of this process are described below. 

4.1. 1st chronic and concomitant exposure to HFD and PM2.5 

The lipids ingested from the HFD are absorbed in the small intestine, converted into micelles, and enter circulation, where they 
combine with apoproteins to form lipoproteins. In systemic circulation, they are transported to peripheral tissues. In adipose tissue, 
fatty acids are actively taken up through transporters such as fatty acid transport protein (FATP) and fatty acid-binding protein (FABP). 
They are then esterified into TG, contributing to storage in lipid droplets [122,123]. In brown adipocytes, the conversion of stored TG 
into energy is promoted through sympathetic activation of UCP-1 [124]. 

The inhaled PM2.5 from contaminated air enters the respiratory tract and reaches the alveoli, where two-thirds are eliminated, and 
one-third move to the distal alveolar region. Type I + II epithelial cells, competing with surface macrophages, capture particles through 

Fig. 10. Hypothesis of the underlying biological process for the mechanistic interaction of PM2.5 with HFD in the etiology of severe metabolically 
abnormal obesity 
Figure designed using the BioRender program (https://app.biorender.com/). 
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diffusion into the cytoplasm, enabling exocytosis. These particles then enter the systemic circulation, reaching adipocytes and entering 
through caveola-mediated endocytosis [99,125]. After 5 h, incorporated particles gradually aggregate, covered with structures 
resembling low-density intracellular white membranes, peaking at 9 h. By 24 h, aggregates decrease, suggesting these membranes may 
be autophagic structures [73]. The electric charge of PM2.5 and the cytoplasm may favor electrostatic interactions facilitating 
aggregate formation. 

4.2. 2nd initial cytotoxicity 

As lipid overload progresses in the adipocyte, it initiates hypertrophic expansion, leading to mechanical and cellular stress [126, 
127]. Additionally, adaptive thermogenesis decreases in brown adipocytes [85,128]. 

As PM2.5 aggregates, they may damage organelles, particularly the mitochondria. Mitochondria are known to generate significant 
amounts of hydrogen peroxide (H2O2) as a byproduct of cellular respiration and the respiratory chain process. Iron (Fe), the most 
abundant metal detected in the particles to which the experimental group of mice was exposed [129], would interact with H2O2 and, 
through the Fenton reaction, transform into the hydroxyl radical (OH•) by electron transfer: Fe2+ + H2O2 → Fe3+ + OH• + OH- [130, 
131]. This increase in ROS would promote a cellular oxidative stress environment. 

4.3. 3rd Subchronic cytotoxicity 

The accumulation of intramitochondrial lipids contributes to the dysfunction of this organelle [132,133], which, in turn, would 
decrease the production and activity of superoxide dismutase (SOD). Consequently, the superoxide radical O2⋅− , a byproduct of the 
cellular respiration process and respiratory chain [129], would increase its concentration [134]. This rise in ROS would favor a cellular 
oxidative stress environment. 

The continuous formation of PM2.5 aggregates leads to a sustained presence and accumulation of ROS, with corresponding cellular 
repercussions. 

4.4. 4th Chronic cytotoxicity 

The oxidative stress can lead to oxidative modification of common TFs in the FAT-PM2.5-CEJUS and FAT-PM2.5-DN signatures, 
promoting the formation of covalent cross-links between amino acid residues. For example, when oxidation occurs on a cysteine 
present in the protein structure of the common TF, it can form a covalent bond with another oxidized cysteine, creating a cross-linked 
disulfide bridge (-S-S-) between the two cysteine residues. This process is known as the formation of cross-linked disulfide bonds [135]. 
Cross-links alter the three-dimensional structure, thus affecting the interaction of common TF candidates with the subsequent TFBs and 
their respective biological repercussions. 

In FAT-PM2.5-CEJUS: Pparg_1A, downregulating the transcription of the Pparg gene and, in turn, the synthesis of the PPARG re-
ceptor, thus affecting the formation of the PpargRxra complex; consequently, the transcription of the genes Apoa 1, Apoa5, and Ucp1 
would also be downregulated. Based on the chronicity of exposures to HFD and PM2.5, a prevailing negative feedback loop effect would 
persist. This transcriptional regulation would decrease in the white adipocyte the transport of phospholipids and cholesterol outside 
the cell, the formation of residual chylomicrons, and adaptive thermogenesis. Icam1_1B, Nampt_1A, Acadm_1A, Aqp7_1B, Prkar1a_1A, 
Prkar2b_1A, Plin1_1A, Cebpa_1A, Cidea_1B, C, D, and E; Adipoq_1A, Serpine_1A, Crp_1A, Echs1_1B, Suclg2_1A, and Cs_1A; down-
regulating the transcription of the corresponding genes and the proteins they encode; thus, affecting the signaling and transport 
pathways that complement the previous ones. 

In FAT-PM2.5-DN: , the core promoter region of the Il6 gene downregulates the transcription of the Il6 gene and, consequently, the 
synthesis of the IL-6 cytokine, thus affecting the activation of the HIF-1 complex. Consequently, the transcription of the Hmox1 and 
Serpine1 genes would also be downregulated. Based on the chronicity of exposures to HFD and PM2.5, a prevailing negative feedback 
loop effect would persist. This transcriptional regulation would decrease angiogenesis in brown adipocytes and affect vascular tone 
resistance. Ccl2_1B, C, D, and E; and Lepr_1B, C, D, and E; downregulating the transcription of the Ccl2 and Lepr genes and, in turn, the 
synthesis of the C–C motif chemokine two and the leptin receptor in brown adipocytes. This promotes chronic low-intensity inflam-
mation and decreases lipid metabolism. Adrb2_B, C, D, and E; and Prkar1a_B, C, D, and E; downregulating the transcription of the 
Adrb2 and Prkar1a genes and, consequently, the synthesis of beta-2 adrenergic receptor and protein kinase A regulatory subunit alpha. 
This affects the signaling pathways involved in plasma membrane rafts. 

Oxidative stress can also impact DNA methyltransferase enzymes by oxidizing cysteine residues in their structure [136]. Cysteines 
contain a thiol group (-SH) in their side chain, which is susceptible to oxidation during oxidative stress. Oxidation of cysteines can lead 
to various forms of oxidative modification, including the formation of sulfenic cysteine (-SOH), disulfide cysteine (-S-S-), glutathione 
cysteine (-SSG), among others. These modifications can affect the catalytic activity and three-dimensional structure of enzymes [137], 
promoting hypomethylation of CGIs present in the promoters of the FAT-PM2.5-UP signature. This could lead to the upregulation of 
transcription of the Ppara and Cebpa genes in brown adipocytes, consequently increasing the synthesis of the PPARA receptor and 
CCAAT/enhancer-binding protein alpha, promoting the transcription of related lipogenic genes. It is concluded that this biological 
process could operate as a negative feedback loop as long as the interaction between HFD and PM2.5 persists. 

About the main strengths of our research, we highlight the explanatory approach we adopted to analyze the causal relationship 
between chronic exposure to PM2.5 and metabolically abnormal obesity using the Rothman causal model. This approach resulted in an 
innovative methodology, particularly in bioinformatics contexts, and to the best of our knowledge, it is the first study to employ it in 
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this manner. Another significant strength lies in the methodological rigor of our research design. In recent years, there has been an 
increase in the number of available molecular signatures; however, many of them exhibit redundancies both in composition and 
function and seldom show significance in statistical tests [138]. In this regard, the transcriptional signatures FAT- PM2.5-CEJUS, FAT- 
PM2.5-UP, and FAT- PM2.5-DN are the outcome of a rigorous methodological and statistical process, allowing us to generalize in 
bioinformatics contexts and predict similar and reliable outcomes when experimentally validated. 

In contrast, the main limitation of the study was that we were unable to conduct experimental in vitro research. In countries and 
entities with medium to low economies, there are difficulties in developing skills and accessing laboratories with the necessary 
technology for knowledge advancement [139,140]. Therefore, the availability of raw molecular data in open-access repositories [141, 
142] presents an opportunity to overcome financial limitations that could hinder the testing of original hypotheses in omics sciences 
related to public health and environmental health. Another limitation was that we did not find a transcriptomic database in mice of the 
studied species where the same study group had been exposed to both PM2.5 and HFD. In these cases, the TPM values of the tran-
scriptional deregulation of the proposed signatures in this research may not correspond to the values reported here. 

Our findings can have a significant impact on the formulation of public policies related to environmental health and obesity 
prevention. By demonstrating the link between chronic exposure to PM2.5 and the development of severe metabolic alterations 
associated with obesity, we underscore the importance of addressing air quality as a key factor in public health. By adopting a 
comprehensive and multidisciplinary approach, we can implement effective measures to protect the population’s health and enhance 
the quality of life in affected communities. Consequently, policymakers need to consider these findings when designing strategies to 
address the challenges of environmental health and the obesity pandemic. 

Ethics declarations 

Review and/or approval by an ethics committee was not needed for this study because it was a bioinformatics study based on 
annotations from public databases. Informed consent was not required for this study because our research did not involve the 
participation of human subjects. 

Data availability statement 

The data that support the findings of this study are openly available on the Open Science Framework (https://osf.io/t2657/). 

CRediT authorship contribution statement 

Sagrario Lobato: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Project 
administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. A. Lourdes 
Castillo-Granada: Visualization, Validation, Supervision, Formal analysis. Marcos Bucio-Pacheco: Visualization, Supervision, 
Methodology, Conceptualization. Víctor Manuel Salomón-Soto: Writing – review & editing, Visualization, Supervision, Project 
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