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Abstract: Significant research effort has gone towards the development of powered lower limb
prostheses that control power during gait. These devices use forward prediction based on
electromyography (EMG), kinetics and kinematics to command the prosthesis which locomotion
activity is desired. Unfortunately these predictions can have substantial errors, which can potentially
lead to trips or falls. It is hypothesized that one reason for the significant prediction errors in the
current control systems for powered lower-limb prostheses is due to the inter- and intra-subject
variability of the data sources used for prediction. Environmental data, recorded from a depth
sensor worn on a belt, should have less variability across trials and subjects as compared to kinetics,
kinematics and EMG data, and thus its addition is proposed. The variability of each data source
was analyzed, once normalized, to determine the intra-activity and intra-subject variability for each
sensor modality. Then measures of separability, repeatability, clustering and overall desirability
were computed. Results showed that combining Vision, EMG, IMU (inertial measurement unit),
and Goniometer features yielded the best separability, repeatability, clustering and desirability across
subjects and activities. This will likely be useful for future application in a forward predictor, which
will incorporate Vision-based environmental data into a forward predictor for powered lower-limb
prosthesis and exoskeletons.

Keywords: assistive robotics; prosthetics; sensor fusion; intention detection; computer vision;
environmental sensing

1. Introduction

State-of-the-art control systems for powered lower-limb prostheses use hierarchical control
systems and are often grouped into high-, mid- and low-level control categories [1]. Low-level
control approaches use conventional engineering principles to compute current, position, or torque
signals. Mid-level controllers generate reference trajectories that correspond to joint kinematics
or kinetics and are typically implemented using state machines, where each state corresponds
to a locomotion activity-specific controller [2] although generalized controllers have also shown
promise [3–5]. High-level control often uses machine learning to predict the upcoming activity
that the user is intending to perform [6]. Signal sources that are useful for predicting intent
include—electromyographic (EMG) signals from within the prosthetic socket [7], or signals from
sensors embedded into the construction of the prosthesis, often referred to as mechanical sensors [8].
These overall control approaches have allowed for real-time ambulation across a variety of terrains for
several amputees [9].
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While this approach is promising, misclassification errors still occur and can have negative
consequences (e.g., falls). We hypothesize that one cause of prediction errors is the inter- and
intra-subject variability of the data sources used for prediction. Subjects may walk with slightly
different gait patterns from step to step or day to day and between subjects there may also be substantial
differences in gait patterns, all of which will lead to inherent variability in the sensor signals used
for forward prediction. To this end we have proposed the development of a sensor fusion-based
forward predictor that incorporates environmental data, recorded from a wearable vision-based sensor,
in addition to subject-based EMG and mechanical sensors. We hypothesize that this data should have
lower variability across trials and subjects as compared to kinetic, kinematic and EMG data.

Computer vision has been successfully applied in several applications in recent years from
self-driving cars to robotic vacuum cleaners. Computer vision has also been proposed for improving
the control of both upper and lower-limb powered prostheses [10,11]. Our group has also presented a
stair ascent recognition system, which was developed as an attempt to eliminate high-level control
errors due to misclassification of stair ascent, which have been shown to be critical and lead to major
perturbations to the user [12]. We built on past work to develop a novel segmentation algorithm that
locates stairs in the environment and produces a series of secondary features that could be used to
estimate user intent. Preliminary testing of our algorithm was promising, with a step accuracy of
100% during an online walking test recorded at 5.15 fps [13]. We have since expanded the developed
algorithm to include ramps and stair descent [14]. Additionally, we presented work to use depth
sensing for gait segmentation, in addition to inertial sensors, to improve timing of steps, which
ultimately should improve forward prediction as well [15]. Recently, several other research groups
have presented preliminary results for the development of other predictive systems for powered
prostheses or exoskeletons that use environmental sensors, including [11,16–25]. These works are
important and show the utility of using environmental based sensors for improving high-level control
of assistive devices.

However, to our knowledge, there has yet to be a study that seeks to understand the underlying
differences between environmental and subject-based sensor modalities. We aimed to consider the
data separately from the specific algorithm or wearable device being used. Therefore, in this work we
present a device-agnostic, feature-driven approach and analysis of the variability within and between
subjects and activities for each sensor modality. Though the work presented herein is not dependent
on a specific control system, in our future work we aim to extend this towards the development of
robust sensor-fusion based forward predictor that functions accurately across trials, days, subjects
and potentially even wearable devices, which would help enable the translation of wearable assistive
devices out of the lab.

2. Methods

2.1. Data Collection

The data analyzed in this paper was previously described in Reference [26] (and made freely
accessible in Reference [27]), with the exception of the data, setup and processing of the sensors in
the Vision/IMU belt, thus only a short summary of the data collection procedure is included here.
The Northwestern University Institutional Review Board approved this study and written consent
was obtained from 10 able-bodied subjects (7 male, 3 female; 23–29 years, 160–193 cm, 54–95 kg) who
completed the experiment. Subjects were instrumented bilaterally with bilateral 14 EMG sensors,
4 Goniometers, 4 IMUs, plus a Depth/IMU belt, all of which were tethered to our data acquisition
system. Figure 1 shows an illustration of the complete sensorization.

During the experiment, subjects completed 25 circuits consisting of level ground walking (LW),
ascending/descending a ramp with a 10◦ slope (RA/RD) and ascending/descending a four-step
staircase (SA/SD) step-over-step. Subjects walked at their own pace and the experimenter then labeled
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the true locomotor intent of the subject using a custom GUI. Heel contact and toe off gait events for
each leg were later identified based on shank velocity.

In addition to the EMG, IMUs and goniometers that were described in [26], subjects wore a belt
containing a single time-of-flight (ToF) vision sensor (Camboard Pico Flexx [28]) and a 6 axis IMU
aligned and oriented at a slight downward angle. This sensor was synchronized with the other sensors
using a custom Matlab script that was triggered by our proprietary data acquisition system. In this
experiment the vision sensor was operated at a frame rate of 5 fps, with a max exposure time of 2000 µs
and a general range of 1–4 m, though it was possible to see objects closer than 1 m due to the angle
and positioning of the sensor. This setting was selected experimentally, as this was appropriate for
the range required for recognizing environmental changes. Additionally, this setting was selected as
our preliminary testing has shown it to be sufficient for use with a powered knee-ankle prosthesis
without causing latency that would result in trips, stumbles, or falls. The IMU was used to re-orient the
vision-based point clouds from a camera-reference frame to a global-reference frame. This was done
using a standard Euler-angle approach. A complementary filter was used to reduce drift and improve
the orientation estimate for the waist sensor. This IMU was disconnected during the experimental
session for 2 subjects, thus the depth features were not able to automatically be reoriented and thus
these subjects were excluded from the analysis, thus ultimately the analysis only includes data from
8 subjects. Additionally, prior to feature extraction the vision-based point clouds were denoised using
a simple nearest neighbor approach that eliminates outliers.

Figure 1. Experiment Setup. Subjects had bilateral thigh and shank IMUs, knee and ankle goniometers
and EMG sensors on 7 leg muscles ( tibialis anterior (TA), medial gastrocnemius (MG), soleus (SOL),
vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF) and semitendinosus (ST)) and a belt
containing a vision sensor (Camboard Pico Flexx [28]) and a 6 axis IMU.

2.2. Feature Extraction

To quantify the variability of the different sensor modalities we considered a feature-driven
approach. In this method we selected features to represent the data, normalized the features
(as described in Section 2.3 and then compared the variability of each feature set for each subject
and between subjects. These features could later also be used for building a machine learning-based
intent recognition system, though the variability analysis itself is classifier agnostic and will instead
provide insight into the underlying structure of the data. The subset of features with the lowest inter
and intra-subject variability were identified and will eventually be used for development of a robust
forward predictor.
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2.2.1. EMG, IMU and Goniometer Features

Immediately prior to each heel contact or toe off gait event identified within each trial, a 300 ms
analysis window was segmented from all data channels (one window/event). Each window of data
was then used to extract features from the EMG, Goniometer and IMU sensors. The features that were
selected for extraction were those that have been used previously in the literature for intent recognition
for powered knee-ankle prostheses. For each IMU and goniometer channel, six features were extracted
per window including the mean, standard deviation, maximum, minimum, initial and final values [29].
The EMG features meanwhile included the mean absolute value (MAV), waveform length, number of
zero crossings and slope sign changes and the coefficients of a sixth-order autoregressive model [30,31].
Bilaterally there were 14 EMG sensors (one channel per sensor), 4 goniometers (1 channel per sensor)
and 5 IMUs (6 channels per sensor). Thus there were a total of 140 EMG features, 24 Goniometer
features and 180 IMU features per gait event.

2.2.2. Vision-Based Features

Vision-based point clouds were acquired at every frame, with dimensionality of 171 × 224 × 3,
representing the x, y and z dimension of each pixel. The frame just prior to each gait event was used to
extract features for variability comparison. The features chosen were intended to be representative of
the general content of the point cloud and these were inspired by features that have been previously
used in literature. Once features were extracted they were vectorized to aide comparison with the
other sensor modalities. From each point cloud the series of features extracted for comparison was
as follows:

1. Depth and Normal ROI features: Each frame was segmented into a 20 × 20 grid of regions of
interest (ROIs) and all points within each ROI were then fit with a RANSAC [32] planar model
(see Figure 2(1a–c)). Three features were then defined for each of these ROIs:

(a) Depth: The mean distance from the origin of the sensor to the plane in the x-, y-
and z-dimension were defined as Depth features (Figure 2(1d) shows the z-feature).
These features essentially provided the projection of the depth in the frontal and sagittal
planes and these were selected to provide average depth context for field of view.

(b) Normal: The normal vector of the plane provides orientation context for each ROI.
In particular, the magnitude of the y- and z-components of the normal vector of the plane
were computed and defined as the Normal features (Figure 2(1e) shows the z- feature).
These features were selected to help provide orientation context that might be missing from
the depth features alone.

(c) Norm x Depth: The Depth and Normal features for each ROI were then combined, using a
simple scalar multiplication, into a single Norm x Depth feature (Figure 2(1f)). This feature
was chosen as an attempt to represent the depth and orientation content efficiently in a
single feature.

2. Optical Flow features: Motion across frames was computed both as the simple difference between
frames and using a dense Farneback optical flow method [33]. In particular, the frontal plane
projection of the depth was used for the optical flow estimation. The optical flow components
in the x- and y- directions were each averaged within each ROI of a 20 × 20 grid and defined as
the Optical features (Figure 2(2c)). These features were selected as a means of providing context
about the motion of the environment relative to the subject.

3. Sagittal Projection features: The point cloud was filtered so that only the central two-thirds were
considered, to help minimize the effect of occlusions and random objects within the field of view.
Then all points were projected into the sagittal plane and the mean height of each position along
the z-axis was then defined as the Sagittal feature (Figure 2(3c)). This feature was selected as a
means of encoding context about the overall shape of the environment (particularly the height
which was less integrated into other features).
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The best performing Vision-based features were compared to the IMU, Goniometer, EMG features
and merely referred to as the “Vision” feature set throughout the remainder of the analysis.

Figure 2. Vision-Based Features. Features were extracted from point cloud frames just prior to gait
events. For each frame (1a) a series of features was extracted for comparison as follows—(1) The field
of view was segmented into a 20 × 20 ROI grid (1b) and the points within each region of interest
(ROI) were fit with a RANSAC (RAndom SAmpling Consensus [32]) planar model. The mean distance
from the sensor to the plane in the z dimension was defined as the Depth feature (1c). The y and
z components of the normal vector were defined as the Normal features (1d). These two features
were multiplied together to combine depth and orientation information into a single Normal × Depth
feature (1f). (2) Two consecutive frames (2a) were projected onto a 2D plane (2b) and motion across
frames was computed a dense Farneback optical flow method [33], with the optical flow component in
the x- and y- directions averaged within each ROI and defined as the Optical features (2c). (3) The outer
third of each frame was filtered out to help minimize effects of occlusions and objects within the field
of view (3a) and then all points were projected into the sagittal plane (3c), with the mean height of each
position in the z-direction being defined as the Sagittal feature (3c).
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2.3. Normalization

The goal of this work was to compare sensor modalities with differing units and ranges, thus it
was important to normalize features to allow for direct comparisons. As the ultimate comparisons
would be highly dependent on the normalization procedure used we very carefully considered how
best to normalize our data to ensure that the results were meaningful. Features from all subjects and
activities were combined prior to normalization, which allowed for an overall understanding of how
variability differs within and between activities and subjects for each sensor modality. We considered
the variability for heel contact (HC) and toe off (TO) gait events separately. For each gait event samples
for all subjects and modes were combined (Figure 3a) and then each feature was normalized to have
a mean of 0 and a standard deviation of 1 (see Figure 3b,c). The mean and standard deviation of all
features during events of each mode were then computed. Thus, we able to obtain the intra-mode
variability, σm, for each locomotion mode, m (Figure 3d). Similarly we can acquire the intra-subject
variability, σn, for each subject, n, (Figure 3e). The average intra-mode and intra-subject variabilities,
σmt and σnt respectively, can then be compared across sensor modalities.

Figure 3. Normalization procedure for each sensor modality. This example shows 3 subjects and
activities, simply for ease of illustration, but in reality all subjects and activities are included in the
normalization. For each feature in the sensor feature set all subjects and activities are combined, as in (a).
Then each feature is normalized (b). All features are then combined into the overall distribution (c)
and the distributions for each activity (d) and each subject (e) are then extracted. From here the overall
average intra-activity and intra-subject variabilities can be computed using a simple averaging.

However, as there is a dimensionality mismatch between feature sets it may be necessary to
consider more extensive analysis with scaling-invariant metrics to more conclusively determine the
within activity and subject variability.
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2.4. Dimensionality Reduction

In addition to the differences between scales for the feature sets there was also concern that the
different number of features would affect the variability analysis. Therefore, once normalization was
completed, dimensionality reduction was performed so that comparisons between data sets with
different dimensions could be made. In particular a Linear discriminant analysis (LDA) dimensionality
reduction procedure was performed so as to maintain class separability in the reduced features.
The four output LDA components were then used to analyze each sensor modality. Scatter plots
and density estimations are shown for the LDA components that were analyzed are shown in the
Dimensionality Reduction results section.

2.5. Sensor Modality Analysis

In [34], Bunderson and Kuiken proposed three measures for characterizing an EMG feature
set across classes and trials. These measures are designed to provide scale-independent metrics for
analysis across feature types and classes. In our analysis we treat each subject as an independent
“trial” and each activity as a separate “class” and use the proposed metrics to compare between sensor
modalities. Each metric was computed five times and the average value of each metric for each feature
set was reported.

2.5.1. Repeatability Index

The Repeatability Index (RI) provides an idea of how a single individual represents the data from
one “trial” to the next, or in our case subject. RI provides an estimate of how much similarity there is
between k subjects across j activities, with lower RI values signifying greater repeatability or overlap
between subjects. RI is calculated for each subject using Equation (1), where Sj is the data covariance
for activity class j:

RI =
1
m

m

∑
j=1

(
1
n

n

∑
k=1

1
2

√
(µj − µk)TS−1

j (µj − µk)

)
(1)

The RI is then averaged across all n subjects to allow for comparison between sensor modalities.
Computed RI results are discussed in Section 3.3.1.

2.5.2. Separability Index

The Separability Index (SI) measures interclass distance. In particular, 1/2 the distance from a
given activity class j to the nearest class i is computed and this value is averaged across all m classes.
Higher SI values are preferred as they signify greater distance between classes. Equation (2) is used to
compute the SI:

SI =
1
m

m

∑
j=1

(
min

i=1,...m

1
2

√
(µj − µi)TS−1

j (µj − µi)

)
(2)

2.5.3. Mean Semi-Principal Axes

As separability can be related both to more tightly clustered classes or to greater distance between
classes in feature space, we also considered the shape of the classes, using the third metric presented
by Bunderson and Kuiken [34] which is a measure of the hyperellipsoid size of each class. In our case
we used Principal Component Analysis (PCA) to find the principal axes for each class and measured
the geometric mean of each semi-principal axis (MSA). We have 4 principal axes, corresponding to our
feature dimensionality f of 4. The MSA is then averaged across all classes, to allow for comparisons
between sensor modalities. Lower MSA values are preferable as this is a measure of the overall
variability within each class. Equation (3) is used to compute the MSA:
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MSA =
1
m

m

∑
j=1

( 4

∏
f=1

aj f

)1/4
 (3)

2.5.4. Desirability Score

For selection of the ideal feature set or combination we combined the SI, RI and MSA to compute
a desirability score (DS) that could be compared across sensor modalities. Desirability is computed
using Equation (4), as follows:

DS =
SI

MSA ∗ RI
(4)

Since higher values of SI and lower values of both RI and MSA are preferred, higher DS values
are preferred.

3. Results

A consistent color scheme is used throughout the results figures to help keep track of the
specific sensor modality being shown, with colors representing feature sets as follows: green =
IMU, blue = Goniometer, cyan = EMG, purple = Vision. Light shades are used for sensor-specific
feature sets and dark shades are used for combination feature sets. Additionally, for all figures the HC
results are shown and discussed for simplicity, however TO results are comparable.

3.1. Normalization

Figure 4a,b show average intra-activity and intra-subject variability results, respectively. In both
cases lower values are preferable, as this signifies greater consistency between trials for a given subject
or activity. The feature sets that include Vision have slightly lower intra-activity variability than those
that do not include Vision and all feature sets have negligible differences in intra-subject variability.

Figure 4. Normalization Results. (a) Intra-activity and (b) intra-subject variability computed from
Normalized feature sets. Lower variability is preferrable, with all feature sets that include vision having
lower variability than those that do not include vision. These results may be affected by the differences
in dimensionality between feature sets, however.

3.2. Dimensionality Reduction

Results from the dimensionality reduction are shown in Figure 5. Each sensor modality is
represented by a 4 × 4 series of subplots. Smoothed distributions of the LDA components for each
activity are shown along the diagonal subplots. On the non-diagonal subplots each LDA component is
plotted against the other LDA components. Varying shades are used to represent different activities
for each sensor modality. Based on visual inspection alone it appears that the plot with all features
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combined has the most clearly separable distributions, while simultaneously having the largest LDA
components relative to any of the sensor-specific plots. Thus it is expected that the SI and MSA will
both be highest for all features combined. It is difficult to say based on this plot alone whether the RI is
anticipated to be higher or lower than the individual sensors alone.

Figure 5. Dimensionality Reduction results for each sensor modality. LDA components 1-4 for (a) IMU
features, (b) Goniometer features, (c) EMG features, (d) Vision features, (e)IMU, Goniometer and EMG
features combined and (f) All features combined. For each sensor modality, subplots along the diagonal
show estimated density functions for each activity and LDA component. Non-diagonal subplots show
the projection of the feature space onto any two LDA components.



Sensors 2019, 19, 4887 10 of 18

3.3. Sensor Modality Analysis

3.3.1. Repeatability Index

The RI for each subject and sensor modality is shown as a heatmap in Figure 6. Lower (or brighter)
values are more desirable and higher (or darker) values are less desirable. The inter-subject differences
in repeatability can be evaluated to understand how each sensor modality varies between subjects.
For instance, AB7 had the lowest RI for the “All” feature set, indicating that this subject’s combined
features represented the space well for other subjects.

Figure 6. Repeatability Index for each subject and sensor modality. Inter-subject differences can be
indentified using this heatmap. For instance, AB4 has the highest RI for the EMG+Vision feature set.
This indicates that this subject was least repeatable, particularly in these sensor modalities.

The RI for each sensor modality, averaged across all subjects, is shown in Figure 7. The lowest
RI was produced by all features combined, though the Gonio+Vision and IMU+Gonio+EMG indices
were similarly low. This indicates that these combined feature sets represent the space across subjects
better than the other sensor modalities and feature sets.

Figure 7. Repeatability Index averaged across all subjects. Lower values indicate greater repeatability
from one subject to the others. Of the sensor-specific feature sets, Vision was most repeatable and
Goniometer was least repeatable.
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3.3.2. Separability Index

The SI for each locomotion activity and sensor modality is presented in a heatmap in Figure 8.
From here it is possible to evaluate the locomotion activities that are most separable and which sensor
modality is best able to separate a given locomotion activity within the LDA feature space.

Figure 8. Separability Index for Each Activity. Higher (brighter) values are preferable, indicating
greater separability for a given activity and feature set. The greatest separability was found for ramp
ascent, RA, when combining all sensor modalities. Using this heatmap it is possible to identify the
specific sensor modality that is most separable for a given locomotion activity, such as noting that EMG
feature sets had highest LW separability, while the IMU had highest SI for RD, SA and SD. Similarly,
the most separable combinations of sensors for a given activity can be identified using this heatmap.

The average SI for each sensor modality is shown in Figure 9 and higher values of SI are preferable.
Of the individual sensors the best separability was produced by the IMU features and the worst
separability was produced by the Goniometer features. Adding Vision features to the IMU, Goniometer,
or EMG feature sets resulted in improved separability.

Figure 9. Average Separability Index for All Sensor Modalities. Higher values indicate greater
separability of locomotion activities using a given sensor set. The sensor-specific feature sets had lower
SI than the combined feature sets, with all features combined having a significantly higher SI than any
other feature set.
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3.3.3. Mean Semi-Principal Axis

The MSA results for each activity class and sensor modality are shown in Figure 10. These results
show that SD was the least tightly clustered activity, with highest values in general. RA meanwhile
had lowest MSA in general and this was also the case when all feature sets were combined.

Figure 10. Mean Semi-Principal Axis for Each Activity. Lower (brighter) values are preferable, as this
signifies tighter clustering within a given activity class. This heatmap can provide context for how well
clustered features are for a given activity class. For instance, generally SD had the highest (and poorest)
MSA, while RA had the lowest (and best) MSA values.

The average MSA for each feature set is shown in Figure 11. MSA represents the size of the
activity-specific clusters, so lower values are better. The worst MSA result for the sensor-specific
features was produced by the IMU feature set and the overall worst MSA performance was produced by
all features combined. In general, the combination feature sets performed worse than the sensor-specific
feature sets. However, the feature set with all sensors combined performed only marginally worse
than the IMU+Gonio+EMG sensor set.

Figure 11. Average Mean Semi-Principal Axis Results. Low values of MSA are better. All features
combined performed only slightly worse than the IMU+Gonio+EMG sensor-specific feature sets.
The largest MSA was produced by all features combined.
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3.3.4. Desirability Score

The DS was computed for each feature set, with results shown in Figure 12, and in general the
combined feature sets performed better than the sensor-specific feature sets, with the best performance
produced by combining all features.

Figure 12. Desirability Score for each sensor modality. Higher values of DS are preferred, with
all features combined performing substantially better than any of the sensor-specific or combined
feature sets.

4. Discussion

Data was collected for able-bodied subjects across 5 locomotion activities, wearing a number of
wearable sensors, as described in [27] and the Data Collection section of this manuscript. Features were
extracted from worn IMUs, goniometers, EMGs and a wearable Vision/IMU sensor belt. These features
were then normalized and analyzed to provide an understanding of the variability of each sensor
modality across activities and subjects. Results were considered to determine the feature set that
performed best in these specific ambulation tasks.

4.1. Result Implications

All feature sets that included the Vision features had lower intra-activity variabilities than those
that only included IMU, Gonio or EMG features, based on the normalization results, see Figure 4.
To correct for differences in dimensionality between sensor modalities it was necessary to perform
dimensionality reduction. The results in Figure 5 demonstrate that the LDA dimensionality reduction
was able to preserve clustering between activities for each sensor modality with only four components.
Additionally, visual inspection of these results showed that the feature set with all sensor modalities
combined had greatest separability, which was confirmed by the SI results.

Average RI was found to be lowest for all features combined and highest for the EMG+Vision
feature set(see Figure 7). However, for the IMU and Goniometers the RI improved with the addition
of Vision. Importantly this measure provides an estimate of the generalizability of a given feature
set across subjects and thus all features combined was quite repeatable across subjects (see Figure 6).
Importantly, adding Vision to the IMU and Goniometer features improved their repeatability. Thus we
anticipate that incorporating Vision-based features into a forward predictor can make the development
of a general, non subject-specific, forward predictor more feasible and stable.

The average SI results are shown in Figure 9 and the best separability by a large margin was
produced by combining all feature modalities. Despite Vision features being second to IMU features in
terms of highest SI, adding the Vision feature set increased the SI for IMU, Goniometer and EMG feature
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sets. This implies that though the Vision features themselves do not have the highest separability,
they are able to increase overall separability when combined with other sensor features. In particular,
the activity-specific SI results were shown in Figure 8 and the Vision features did not yield particularly
high SI values for any activity. However, the highest SI values (excluding all features combined which
was highest for all activities) for each activity were produced using a combination of the Vision features
with other sensor modalities.

Meanwhile, the SI results show that the best individual sensor modality for differentiating stair
ascent and descent and ramp descent was IMU, while EMG alone was best at differentiating level
walking. A potential explanation for why EMG (and to some extent the Gonio features) performed
well for level ground but not stair or ramp activities is that the muscle patterns for stair ascent likely
are somewhat similar to those of ramp ascent and the muscle patterns of stair descent are likely
not that different from those of ramp descent and level walking is the most distinct in terms of
the general kinematics. While it is somewhat surprising that the Gonio features are not better at
discriminating between stair and ramp activities, it is not surprising that the IMU performed well,
given the differences between motion on stairs, ramps and level ground. Meanwhile, Vision produced
fairly similar separability across activities, indicating that it is less sensitive to the specifics of the
activity than to the general structure of the environment, which is intuitive. However, the addition of
vision generally increased separability across the board and relative to the IMU+Gonio+EMG feature
set adding vision yielded higher separability for all classes, though surprisingly the smallest change
between these two conditions was for SA. Presumably by incorporating environmental data ambiguity
between locomotion activities (when considering kinematics and kinetics alone) is resolved.

MSA results are shown in Figure 11. Lower MSA values signify tighter clustering and therefore
are more desirable. This measure can be thought of as the intraclass variability. Combining all feature
sets produces the lowest average MSA, relative to any other feature set combinations. Meanwhile,
the IMU features had the highest sensor-specific average MSA value, implying that IMU features are
less tightly clustered than EMG, Goniometer or Vision features across subjects. Additionally, if the
activity-specific MSA results are considered (see Figure 10) it becomes clear that the activity that is
clustered most poorly is SD, and the activity that is most tightly clustered is RA. The MSA primarily
shows that features are most repeatable across subjects within a given activity for ramp ascent and
level walking and less repeatable for the remaining activities. Potentially this is due to the challenges
of controlling power dissipation or the precision needed for controlled, reciprocal stair ambulation or
ramp descent.

Finally, the DS was computed for each feature set and the overall best performance is obtained
when combining all feature sets. In particular, the Gonio+Vision feature set was the only feature
set that even remotely approached the DS obtained by combining all features. This implies that
a fusion of all four sensor modalities would be ideal for inclusion in a forward prediction system,
to provide the best separability, repeatability, and clustering within and between activities. However,
if reduced sensorization is required, the best performing combination were the Goniometers and Vision
sensor. Surprisingly the IMU features did not perform as well as expected, often being outperformed
by the Goniometers and even EMG features. Part of this effect may be due to the fact that only
raw velocity and acceleration IMU signals were used for feature extraction, without orientation or
angle computations implemented. Presumably if a device does not include a goniometer, a different
sensor providing angular measurements would perform similarly, such as a potentiometer or encoder
measurement at the joint, or potentially even an IMU estimating the orientation change of each
joint. Any of these sensors ought to perform similarly to the goniometers, and would require less
sensorization than the full combined sensor set. Therefore, we believe that the performance of these
features is a good sign for the eventual implementation of this approach on a powered lower limb
prosthesis or other wearable robotic device.

Robustness of each sensor modality across days and environmental conditions is another factor
that is important for consideration in future to ensure that selected sensors are best suited for
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implementation in a wearable assistive device. In this case the sensor selected for use was a small
ToF-based sensor, which was chosen to be complementary to the approaches used in our previous
works [13,14] and to provide contextual data that could ultimately be implemented for not only
accurate forward prediction, but also gait trajectory predictions, early planning of desired activities,
and even potentially for simultaneous localization and mapping (SLAM) of select environments
(though in this work the use of this sensor for forward prediction is primarily considered). However,
there are a number of potential environmental sensors that could have been selected for use in this
work, and a more extensive analysis of the best sensors and configurations for wearable assistive
robotics is presented in our upcoming Review paper [35].

Further investigation of how to combining feature sets may help inform the design of a forward
prediction system that has good separability between all desired activities. Though the sample size
included herein is smaller than ideal, for this proof-of-concept study we used a previously published
dataset to allow for validation and comparison with the results presented in that work. Additionally,
the extensive sensorization time and experimenter demands were limiting factors in collecting a larger
population size, and ultimately the goal of future work will be to validate these results with amputee
subjects walking on an actual prosthesis which would have several sensors embedded, thus reducing
the sensorization needs.

4.2. Future Work

The work presented herein presents the intra-activity and intra-subject variability for different
sensor modalities, in particular Vision, EMG, IMUs and Goniometers. Additionally, the Separability
Index, Reliability Index, Mean Semi-Principal Axis, and Desirability Scores were computed for each
sensor modality. In general we found that Depth sensors had low variability, and by combining
them with other sensors we obtained improved separability, repeatability, clustering, and overall
performance relative to using any of the sensor modalities on their own or a combination of EMG and
mechanical sensors alone. Additionally, though our analysis may have greater impact due to it being
classifier and device agnostic, a specific prediction or control architecture may affect the performance
based on each of these sensor modalities. In the future we aim to further consider the interaction
between these sensory modalities, and develop an ideal system for combining features and sensors to
yield reliable, consistent performance, and ultimately a generalizable forward predictor for use with a
prosthetic leg or exoskeleton.

To ensure that our predictive system is robust we also plan to consider the effect of timing on our
performance. In particular we will determine how the ability of depth to sense environmental changes
substantially earlier than other sensor modalities can be incorporated with positive impacts on forward
prediction. On a related note we will consider different approaches to sensor fusion that may capitalize
on the specifics of our sensor modalities and. For instance, we can use a simple approach in which
we combine all features prior to classification. Alternatively, it may be possible to use a weighted
approach based on our understanding of the variability of each sensor modality developed in this
work, and utilize a voting or Kalman filtering approach.

Once we integrate our online sensor-fusion based forward predictor into the prosthesis control
system we will validate its performance with amputee subjects walking on a prosthesis, first in an
offline control system, and later in an online controller. We will continue our testing with amputee
subjects, over multiple days to determine the robustness of our prediction to different conditions.
Importantly, we eventually aim to test our predictor outside of the laboratory environment, which will
require wireless communication with the leg/controller, as well as validation that our system works
comparably in different lighting conditions and environmental conditions. We will also consider the
possibility of scanning a given environment (such as a home or office area, where someone may spend
significant time) and using mapping to build an environment-specific forward predictor.

Finally, we think there are several exciting extensions to explore in future work. One of these
is to incorporate environmental sensing into the mid/low level control of our device by modulating
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the specific trajectories or dynamics of the controller of the prosthetic leg, such as changing the toe
clearance due to stair height, or increasing power to assist with steeper ramps. Additionally, since we
have previously shown the ability to identify anticipated gait transitions several meters in advance [13],
it may be possible to use this information to send feedback to user, or even to develop an augmented
reality system to guide subjects during difficult transitions/gait events.

5. Conclusions

We collected able-bodied walking data to test how variability between subjects and activities
differs across sensory modalities, in particular IMUs, EMG, goniometers and Vision-based sensing.
Several Vision-based features were considered across ROIs of the field of view, including standard
depth features, sagittal plane projections, optical flow features, normal features in the z-direction,
and the normal-depth product. These feature sets were normalized to analyze intra-activity and
intra-subject variability, and measures of separability, repeatability, clustering, and desirability between
activities and subjects were also evaluated for each sensor modality. Ultimately, by combining the
Vision features with EMG, IMU, and Goniometer feature sets we obtained the best performance across
all metrics we computed. In the future we aim to utilize these feature sets in our development of a
sensory-fusion driven forward prediction system for powered lower limb prostheses and exoskeletons.
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The following abbreviations are used in this manuscript:

EMG Electromyography
IMU Inertial Measurement Unit
LW Level Ground Walking
RA Ramp Ascent
RD Ramp Descent
SA Stair Ascent
SD Stair Descent
RANSAC RANdom SAmpling Consensus
ROI Region of Interest
RI Repeatability Index
SI Separability Index
MSA Mean Semi-Principal Axis
DS Desirability Score
HC Heel Contact
TO Toe Off
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
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