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Angiotensin-(1–7) reduces α-synuclein aggregation by 
enhancing autophagic activity in Parkinson’s disease 

Qing Gao, Rui Chen, Liang Wu, Qing Huang, Xi-Xi Wang, You-Yong Tian*, 
Ying-Dong Zhang*

Abstract  
Abnormal accumulation of α-synuclein contributes to the formation of Lewy bodies in the substantia nigra, which is considered the typical 
pathological hallmark of Parkinson’s disease. Recent research indicates that angiotensin-(1–7) plays a crucial role in several neurodegenerative 
disorders, including Parkinson’s disease, but the underlying mechanisms remain elusive. In this study, we used intraperitoneal administration 
of rotenone to male Sprague-Dawley rats for 4 weeks to establish a Parkinson’s disease model. We investigated whether angiotensin-(1–7) is 
neuroprotective in this model by continuous administration of angiotensin-(1–7) into the right substantia nigra for 4 weeks. We found that 
angiotensin-(1–7) infusion relieved characteristic parkinsonian behaviors and reduced α-synuclein aggregation in the substantia nigra. Primary 
dopaminergic neurons were extracted from newborn Sprague-Dawley rat substantia nigras and treated with rotenone, angiotensin-(1–7), 
and/or the Mas receptor blocker A-779 for 24 hours. After binding to the Mas receptor, angiotensin-(1–7) attenuated apoptosis and α-synuclein 
aggregation in rotenone-treated cells. Primary dopaminergic neurons were also treated with angiotensin-(1–7) and/or the autophagy inhibitor 
3-methyladenine for 24 hours. Angiotensin-(1–7) increased α-synuclein removal and increased the autophagy of rotenone-treated cells. We 
conclude that angiotensin-(1–7) reduces α-synuclein aggregation by alleviating autophagy dysfunction in Parkinson’s disease. Therefore, the 
angiotensin-(1–7)/Mas receptor axis plays an important role in the pathogenesis of Parkinson’s disease and angiotensin-(1–7) has potential 
therapeutic value for Parkinson’s disease. All experiments were approved by the Biological Research Ethics Committee of Nanjing First 
Hospital (approval No. DWSY-2000932) in January 2020.
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Introduction 
The renin-angiotensin system (RAS) plays a crucial role in 
regulating blood pressure and water and sodium homeostasis 
in the circulation (Perez-Lloret et al., 2017; Janatpour and 
Symes, 2020). Increasing evidence indicates that the brain 
has a local RAS independent of peripheral organs. Angiotensin 
II (Ang II) and Ang II type 1 receptor (AT1R) constitute a 
classic pathway of the RAS in the brain and are involved in 
Parkinson’s disease (PD) and other neurological diseases 
(Gao et al., 2016). Angiotensin-(1–7) [Ang-(1–7)] is a recently 
discovered bioactive peptide of RAS that is of increasing 
interest to researchers. Ang-(1–7) and its Mas receptor (MasR) 
bypass RAS, which antagonizes several physiological impacts 
of the Ang II/AT1R axis and may play a protective role in many 
neurodegenerative disorders, including PD (Kehoe et al., 2016; 
Rabie et al., 2018). However, the mechanisms by which Ang-
(1–7) participates in PD are still elusive.

PD is the second-most-prevalent neurodegenerative disease 
(Ascherio and Schwarzschild, 2016). Loss of dopaminergic cells 
and the formation of Lewy bodies (LBs) in the substantia nigra 
(SN) are typical pathological markers of PD (Gao et al., 2016). 
Recently, as the main component of LBs, α-synuclein (α-syn) 
has attracted increasing attention. Abnormal aggregation of 
α-syn results in the onset of LB formation and is linked to the 
progression of PD and other α-synucleinopathies (Flagmeier 
et al., 2016; Chiti and Dobson, 2017; Shahnawaz et al., 2020), 
but the specific mechanisms are not completely understood.

As a conserved cellular process, autophagy involves 
the segregation of cell  organelles and proteins into 
autophagosomes, followed by degradation in the lysosomes 
and reuse of macromolecules (Scrivo et al., 2018). Properly 
regulated autophagy eliminates impaired organelles 
and aggregate-prone proteins, thus maintaining cellular 
homeostasis. Therefore, autophagy has been regarded as the 
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main means of clearance of abnormally accumulated α-syn 
(Xilouri et al., 2016; Choi et al., 2020). Autophagic dysfunction 
and α-syn pathology exist in PD patients and in animal models 
of PD (Fan et al., 2019; Bellomo et al., 2020; Zou et al., 2020). 
On consideration of the above evidence, impaired clearance 
of α-syn caused by defective autophagic activity may be a 
pivotal contributing factor in the onset of PD.

Therefore, we speculated that Ang-(1–7) attenuates α-syn 
pathology by alleviating autophagic dysfunction in PD. In 
this study, we used the rotenone-induced PD rat model to 
investigate the effects of Ang-(1–7) on parkinsonian behaviors 
and α-syn pathology. Meanwhile, we explored the influence of 
Ang-(1–7)/MasR on α-syn aggregation and autophagic activity 
in a rotenone-induced PD cell model. 
  
Materials and Methods 
Animals and treatments
Sixty-eight male Sprague-Dawley (SD) rats, aged 7 weeks 
and weighing 250–280 g, were acquired from the Animal 
Core Facility of Nanjing Medical University (license No. SCXK 
(Zhe) 2019-0001). The rats were raised in an air-conditioned 
space under a 12-hour diurnal cycle and provided sufficient 
water and food. The animal experiments were conducted at 
Nanjing First Hospital under the Guide for the Care and Use 
of Laboratory Animals. All experiments were approved by the 
Biological Research Ethics Committee of Nanjing First Hospital 
in January 2020 (approval number: DWSY-2000932).

To determine whether the Ang-(1–7)/MasR axis was altered 
during PD progression, a PD rat model was generated, 
as previously described (Javed et al., 2016; Jayaraj et al., 
2020). Briefly, rats received intraperitoneal injection of 
rotenone daily for 4 weeks to establish the model. Rotenone 
(MilliporeSigma, St. Louis, MO, USA) was dissolved in dimethyl 
sulfoxide and then added to sunflower oil to achieve a 
concentration of 2.5 mg/mL. We randomly divided 17 rats into 
two groups. The control group (n = 7) received intraperitoneal 
administration of vehicle only, and the PD group (n = 10) 
received intraperitoneal administration of prepared rotenone 
(2.5 mg/kg) once a day for 4 weeks. The rat models of PD 
were successfully established according to catalepsy tests, 
in which PD models have significantly prolonged descent 
latency compared with control rats. To investigate whether 
exogenous infusion of Ang-(1–7) (MilliporeSigma) exerted 
neuroprotection in PD rats, Ang-(1–7) was continuously 
injected into the right SN for 4 weeks, in conjunction with the 
rotenone treatment described above. We randomly divided 
51 rats into three groups. Group 1 rats (control, n = 12) 
received supranigral infusion of artificial cerebrospinal fluid 
(aCSF) (0.25 μL/hour) and intraperitoneal administration of 
vehicle, group 2 rats (PD, n = 20) received supranigral infusion 
of aCSF (0.25 μL/hour) and intraperitoneal administration of 
rotenone (2.5 mg/kg), and group 3 rats (PD + Ang-(1–7), n = 
19) received supranigral infusion of Ang-(1–7) (1.1 nmol/0.25 
μL/hour) and intraperitoneal administration of rotenone (2.5 
mg/kg). The dose of Ang-(1–7) was chosen in accordance with 
our previous report (Jiang et al., 2013). 

Supranigral infusion
The right-side supranigral infusion was administered using 
an osmotic pump (model 2004, ALZET, Cupertino, CA, USA) 
connected to a cannula, as previously described (Wang et al., 
2018a). Pumps were primed with 37°C sterile saline for 40 
hours before implantation. After inhalation anesthesia with 
isoflurane (Abbott Laboratories, Shanghai, China) in medical 
O2 (5% for induction, 2% for maintenance) (Van Den Berge et 
al., 2019), rats were positioned in a stereotactic frame (David 
Kopf Instruments, Tujunga, CA, USA). The stainless-steel 
infusion cannula was placed at preset coordinates of the right 

supranigral region (anteroposterior, –5.2 mm; mediolateral, 
–2.1 mm; dorsoventral, –7.8 mm from bregma) (Bok et al., 
2018). Pumps were implanted subcutaneously on the backs of 
the rats. The supranigral infusion was continuously performed 
for 4 weeks in conjunction with the rotenone treatment.

Catalepsy tests
We assessed catalepsy using a grid test and a bar test (Tong 
et al., 2016). Tests were carried out after 4 weeks of injection 
of rotenone, Ang-(1–7), or vehicle, as described (Tong et al., 
2016). In the grid test, a gridiron with 1-cm spaces between 
wires was used. We measured the time from when all paws 
of the rat were hung on the grid until it took one paw from 
the grid (Tong et al., 2016). The time taken was defined as 
the descent latency. In the bar test, each rat was hung by 
its forepaws on a metal rod. The time taken before the rat 
fell from the bar was defined as the descent latency. The 
maximum time was set at 120 seconds. Each rat had three 
trials for each test. The mean value of the three trials for each 
rat was calculated and analyzed.

Blood pressure assessments 
Systolic blood pressure (SBP) was assessed by tail cuff (Visitech 
Systems, Apex, NC, USA) weekly in the afternoon from 
baseline (10 weeks old) until the end of treatment (14 weeks 
old), as described (Park et al., 2020). Each assessment was 
conducted three times to achieve a mean SBP.

Evaluation of Ang-(1–7) levels in the substantia nigra
To assess Ang-(1–7) levels, SN sections were separated and 
homogenized after the 4-week administration of vehicle 
or rotenone, then centrifuged at 1000 × g and 4°C for 15 
minutes to remove cellular debris. The supernatant was 
stored at −80°C until use. The Ang-(1–7) levels in the SN were 
detected by enzyme-linked immunosorbent assay (S-1330, 
BMA Biomedicals, Augst, Switzerland), as previously described 
(Tao et al., 2018).

Immunohistochemical staining
Immunohistochemical staining was carried out as previously 
described (Wang et al., 2018b). In brief, after the 4-week 
supranigral infusion, the rat brains were dissected in 4% 
paraformaldehyde. Coronal sections (from 24.5 mm to 26.2 
mm caudal to the bregma) were cut into 5-μm-thick sections 
using a sliding microtome. The SN-containing sections were 
dewaxed, hydrated, and submerged in 0.3% H2O2 for 0.5 
hours. Subsequently, samples were treated with 0.5% Triton 
X-100 for 0.5 hours, blocked for approximately 0.5 hours 
with 5% bovine serum albumin, and incubated overnight at 
4°C with a rabbit monoclonal antibody against α-syn (1:200, 
Cat# 4179, RRID: AB_1904156; Cell Signaling Technology 
Inc., Beverly, MA, USA). The slides were treated at 37°C for 1 
hour with biotinylated anti-rabbit IgG (Immunostain SP Kit, 
PV-9000; OriGene Technologies, Rockville, MD, USA). Next, 
slides were stained with diaminobenzidine and counterstained 
with hematoxylin. Finally, the sections were dehydrated, 
cover slipped, and scanned under a fluorescent microscope 
(Olympus Corporation, Tokyo, Japan). We counted cells in five 
randomly selected non-overlapping fields for each slide. Data 
from the five fields were added together, and that total was 
expressed as a percentage of the total number of cells in the 
relevant fields.

Cell culture and experimental groups
Primary rat midbrain dopaminergic neurons were prepared 
according to a previous study (Peng et al., 2018). Briefly, 
the midbrain was quickly dissected from the ventral 
mesencephalon of gestational day 14 SD rat embryos (Daehan 
Biolink, Daejeon, South Korea). Tissues were digested with 
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0.25% trypsin in Hanks’ balanced salt solution at 37°C for 10 
minutes, filtered, and centrifuged for 5 minutes. The isolated 
neurons were transferred to Dulbecco’s modified Eagle 
medium with 10% fetal bovine serum and incubated in a poly-
L-lysine-coated plate at 37°C with 5% CO2 for 4 hours. The 
medium was then changed to Neurobasal medium containing 
2% B27. The maturation to midbrain dopaminergic neurons 
took 8 days. The medium was replaced every 2 days. 

To investigate the influence of Ang-(1–7) on the rotenone-
induced cell model, the neurons were randomly divided 
into four groups. For the control group (n = 3), primary 
dopaminergic neurons were cultured with Neurobasal 
medium containing 2% B27; for the rotenone (ROT) group (n 
= 3), neurons were cultured with rotenone (100 nM) for 24 
hours; for the ROT + Ang-(1–7) group (n = 3), neurons were 
co-cultured with rotenone (100 nM) and Ang-(1–7) (100 nM) 
for 24 hours; and for the ROT + Ang-(1–7) + A-779 (a MasR 
blocker, Abbiotec Inc., Escondido, CA, USA) group (n = 3), 
neurons were co-cultured with rotenone (100 nM), Ang-(1–7) 
(100 nM), and A-779 (1 μM) for 24 hours. 

To investigate the relationship between autophagy and 
α-syn aggregation, the cells were divided into another four 
groups. For the control group (n = 3), primary dopaminergic 
neurons were cultured with Neurobasal medium containing 
2% B27; for the ROT group (n = 3), neurons were cultured 
with rotenone (100 nM) for 24 hours; for the ROT + Ang-(1–7) 
group (n = 3), neurons were co-cultured with rotenone (100 
nM) and Ang-(1–7) (100 nM) for 24 hours; and for the ROT + 
Ang-(1–7) + 3-methyladenine (3-MA, an autophagy blocker; 
MilliporeSigma) group (n = 3), neurons were co-cultured with 
rotenone (100 nM), Ang-(1–7) (100 nM), and 3-MA (5 mM) for 
24 hours. The doses of rotenone, Ang-(1–7), A-779, and 3-MA 
were selected according to previous studies (Gao et al., 2016; 
Liu et al., 2018; Zhou et al., 2018).

Western blot assay
Western blot assay samples were prepared and analyzed 
according to a previous study (Jiang et al., 2016). The same 
amount of protein from different groups was resolved by 10–
15% sodium dodecyl sulfate-polyacrylamide gels, transferred 
to polyvinylidene fluoride membranes, and blocked for 60 
minutes in 5% nonfat milk. All membranes were incubated 
overnight at 4°C in primary antibody: rabbit polyclonal 
antibody against Mas receptor (1:2000, NBP1-78444, RRID: 
AB_11039164; Novus Biologicals, Centennial, CO, USA), rabbit 
monoclonal antibody against α-syn (1:1000, Cat# 4179, RRID: 
AB_1904156; Cell Signaling Technology Inc.), rabbit polyclonal 
antibody against cleaved caspase-3 (1:1000, Cat# 9661, 
RRID: AB_2341188; Cell Signaling Technology Inc.), rabbit 
monoclonal antibody against p62 (1:10,000, ab109012, RRID: 
AB_2810880; Abcam, Cambridge, MA, USA), rabbit polyclonal 
antibody against microtubule associated protein 1 light chain 
3 (LC3) (1:1000, Cat# 2775, RRID: AB_915950; Cell Signaling 
Technology Inc.), or rabbit monoclonal antibody against β-actin 
(1:200, Cat# BM3873, Wuhan Boster Biological Technology 
Ltd., Wuhan, China). After rinsing in 1× Tris-buffered saline 
with 0.1% Tween 20, membranes were incubated with 
horseradish peroxidase-coupled anti-rabbit secondary 
antibody (1:3000, Cat# 7074, RRID:AB_2099233; Cell Signaling 
Technology Inc.) for 2 hours at room temperature. Finally, 
after washing with 1× Tris-buffered saline with 0.1% Tween 
20, protein bands were detected for 5 minutes by using a 
chemiluminescent horseradish peroxidase substrate (Thermo 
Fisher Scientific, Waltham, MA, USA) and an automated 
chemiluminescence imaging system (Tanon Science & 
Technology, Shanghai, China). The gray value of protein bands 
was assessed using ImageJ 1.44 software (NIH, Bethesda, MD, 
USA) and was normalized to β-actin.

Colorimetric assay of caspase-3 activity
After the indicated treatment for 24 hours, neurons were 
lysed in extraction buffer (Beyotime Biotechnology, Shanghai, 
China), as previously described (Gao et al., 2016). The 
caspase-3 activity was quantified using a fluorometric assay kit 
(ab252897, Abcam), in accordance with the manufacturer’s 
instructions.

Immunofluorescence analysis
Immunofluorescence analysis was conducted as previously 
described (Gao et al., 2016). After receiving 24-hour 
drug treatment, neurons were collected, fixed in 4% 
paraformaldehyde for 10 minutes, and permeabilized in 
0.5% Triton X-100. After washing in PBS and blocking for 10 
minutes, cells were incubated overnight at 4°C with primary 
antibodies: a rabbit polyclonal antibody against lysosomal-
associated membrane protein 2A (LAMP2A, 1:200, Cat# 51-
2200, RRID: AB_2533900; Thermo Fisher Scientific) and a 
mouse monoclonal antibody against α-syn (1:200, Cat# MA5-
12272, RRID: AB_10978319; Thermo Fisher Scientific). The 
neurons were rinsed in PBS, cultured with anti-rabbit Alexa 
Fluor 488–conjugated secondary antibody (green) (1:200, 
ab150077, RRID: AB_2630356; Abcam) and anti-mouse 
Alexa Fluor 594–conjugated secondary antibody (red) (1:200, 
ab150116, RRID: AB_2650601; Abcam) in the dark for 1 hour 
at 37°C. The nuclei were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI) (Vector Laboratories Inc., Burlingame, 
CA, USA) and observed by fluorescent microscopy (Olympus 
Corporation). Fluorescence intensity was measured by ImageJ 
software (NIH) and normalized to fluorescence intensity of the 
control group.

Statistical analysis
All statistical analyses were conducted using Prism 6 software 
(GraphPad, San Diego, CA, USA). Data were calculated as the 
mean ± SD. Statistical comparisons between groups were 
performed using Student’s t-test, one-way analysis of variance 
with Tukey’s post hoc test, and two-way repeated measures 
analysis of variance with Bonferroni’s multiple comparisons 
test. A level of P < 0.05 was considered statistically significant.

Results
Effects of rotenone infusion on systolic blood pressure of 
Sprague-Dawley rats
As indicated in Figure 1A  and B, PD rat models were 
established after 4-week treatment with rotenone and were 
confirmed by prolonged descent latency in comparison with 
control rats (P < 0.0001). No significant changes in SBP of rats 
were observed throughout the study (P > 0.05; Figure 1C). 

Ang-(1–7)/MasR axis is reduced in the substantia nigra of 
the PD rat model
A time point analysis was performed to investigate whether 
Ang-(1–7) and MasR are related to the pathogenesis of PD. As 
demonstrated by Figure 2A, the Ang-(1–7) level in the SN of 
14-week-old PD rats was significantly lower than that in age-
matched control rats (P < 0.0001). As shown in Figure 2B and 
C, Western blot assay revealed a noticeable decrease in MasR 
levels in the SN of 14-week-old PD rats compared with age-
matched control rats (P < 0.0001). These findings show that 
the Ang-(1–7)/MasR axis may be involved in PD. 

Exogenous Ang-(1–7) infusion relieves characteristic 
parkinsonian behaviors and reduces the aggregation of 
α-synuclein in the substantia nigra in the rotenone-induced 
PD rat model
To verify the pharmacological influence of Ang-(1–7) and 
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to investigate its potential for translation into a clinical 
application, rats were continuously injected with vehicle or 
exogenous Ang-(1–7) for 4 weeks together with rotenone 
infusion. During the study, there was no significant change 
in SBP (P > 0.05; Figure 3A). Catalepsy tests were conducted 
to investigate whether exogenous Ang-(1–7) infusion can 
alleviate the characteristic parkinsonian behaviors of PD rats. 
The grid test and bar test both revealed that the descent 
latency in the PD group was significantly reduced following 
Ang-(1–7) treatment (P < 0.0001 and P < 0.001, respectively; 
Figure 3B and C). Afterwards, as indicated in Figure 3D and 
E, the increased aggregation of α-syn in the SN of PD rats 
was reduced following Ang-(1–7) treatment (P < 0.0001). 
This result was also demonstrated by Western blot with an 
anti-α-syn antibody (Figure 3F and G). In summary, Ang-
(1–7) rescued characteristic PD symptoms and reduced α-syn 
aggregation in the SN of PD rats.

Ang-(1–7) attenuates apoptosis in the rotenone-induced cell 
model in a MasR-dependent manner 
In this study, primary dopaminergic neurons extracted from 
ventral mesencephalon were cultured with rotenone for 24 
hours. To further investigate the connection between the 
Ang-(1–7)/MasR axis and PD pathogenesis, the neurons were 
cultured with Ang-(1–7) and the MasR antagonist A-779 
for 24 hours concurrently. We detected cleaved caspase-3 
expression to investigate the influence of the Ang-(1–7)/MasR 
axis on apoptosis. As indicated in Figure 4A and B, rotenone 
increased the level of cleaved caspase-3 by approximately 
fivefold (P < 0.001). However, the increased level of cleaved 
caspase-3 was completely reversed by Ang-(1–7) (P < 0.01). 
Furthermore, co-treatment with A-779 significantly abolished 
this influence caused by Ang-(1–7) (P < 0.05), which indicates 
the process is MasR-dependent manner. This result was 
further demonstrated by assessment of the caspase-3 activity 
(Figure 4C). These observations reveal that Ang-(1–7) rescues 
apoptosis in the rotenone-induced cell model in a MasR-
dependent manner.

Ang-(1–7) attenuates α-synuclein accumulation in the 
rotenone-induced cell model in a MasR-dependent manner 
To investigate the influence of the Ang-(1–7)/MasR axis on 
the pathology of PD, we detected α-syn expression. As seen 
in Figure 5A and B, rotenone-induced pathological changes 
were reversed by Ang-(1–7), as increased α-syn in the ROT 
group was markedly downregulated when incubated with 
Ang-(1–7) (P < 0.01). However, the influence caused by Ang-
(1–7) was reversed when co-cultured with A-779, as the level 
of α-syn was distinctly higher than that of the group treated 
with Ang-(1–7) (P < 0.05). This finding was also demonstrated 
by immunofluorescence using an anti-α-syn antibody (Figure 
5C and D). These results imply that Ang-(1–7) attenuates α-syn 
accumulation in the rotenone-induced cell model in a MasR-
dependent manner.

Activation of autophagy contributes to the clearance of 
α-synuclein accumulation in the rotenone-induced cell 
model
First, we detected the expression of p62 and LC3-II to 
investigate whether Ang-(1–7) caused activation of autophagy 
in the rotenone-induced cell model. As revealed by Figure 
6A–C, the rotenone-induced cell model had significantly 
increased p62 (P < 0.001) and significantly decreased LC3-
II (P < 0.0001). However, after treatment with Ang-(1–7) 
together with rotenone, the defective autophagic activity 
in the ROT group was increased, as shown by Figure 6B (P 
< 0.01) and Figure 6C (P < 0.001). To determine the causal 

relationship between α-syn clearance and autophagy, the 
cell model was co-incubated with Ang-(1–7) and 3-MA for 
24 hours. As demonstrated by Figure 6A–C, the reduction 
of p62 levels induced by Ang-(1–7) was fully abolished by 
3-MA (P < 0.05; Figure 6B), and the increase in LC3-II levels 
induced by Ang-(1–7) was also fully abolished by 3-MA (P 
< 0.001; Figure 6C), proving the suppressive influence of 
3-MA in autophagy activation caused by Ang-(1–7). Notably, 
suppression of autophagy completely converted Ang-(1–7)-
induced α-syn clearance in the cell model, as the decrease 
in α-syn level caused by Ang-(1–7) was also dramatically 
reversed by 3-MA (P < 0.05; Figure 6D and E). This finding 
was also demonstrated by immunofluorescence analysis with 
an antibody immunoreactive to the lysosomal-associated 
membrane protein 2A (LAMP2A, an indicator of chaperone-
mediated autophagy) and an anti-α-syn antibody (Figure 
6F–H). Taken together, these findings show that autophagic 
dysfunction exists in the rotenone-induced cell model, and 
activation of autophagy contributes to the clearance of α-syn.

Discussion
The RAS is an important circulating-hormone system, 
modulating blood pressure and maintaining water and sodium 
homeostasis. Mounting evidence indicates that many tissues 
and organs, including the central nervous system, have their 
own localized RAS. The Ang II/AT1R axis is a classic axis of 
the RAS and is implicated in numerous neurodegenerative 
disorders. Interestingly, bypass of the RAS is receiving ever 
more attention. Ang-(1–7), a recently discovered bioactive 
peptide of RAS, and the Mas receptor constitute the Ang-
(1–7)/MasR axis, which regulates several physiological 
functions of the Ang II/AT1R axis. Recently, Costa-Besada 
et al. (2018) found that the Ang-(1–7)/MasR axis exists in 
dopaminergic neurons and resists the pro-oxidative activities 
of the Ang II/AT1R axis, which has been shown to aggravate 
neurodegeneration in PD models. Meanwhile, findings from 
Rabie’s laboratory show that, by binding to the MasR, Ang-
(1–7) confers neuroprotection against neurotoxicity induced 
by the Ang II/AT1R axis in a PD model (Rabie et al., 2018). 
Therefore, the Ang-(1–7)/MasR axis is potentially associated 
with PD progression. Consistent with these results, we show 
that Ang-(1–7) and MasR levels in the SN of 14-week-old PD 
rats are lower than those of age-matched controls, similar to 
results from clinical trials that detected lower plasma Ang-(1–
7) levels in PD patients than in control individuals (Rocha et al., 
2016). All these findings support the conclusion that the Ang-
(1–7)/MasR axis has a protective impact during progression of 
PD.

To further investigate the relationship between Ang-(1–7) 
and PD pathogenesis, we infused exogenous Ang-(1–7) into 
the SN of PD rat models and control rats. We found that 
Ang-(1–7) infusion not only lessened typical behaviors in 
the rotenone-induced PD rat model but also reduced the 
aggregation of α-syn in the SN. Similarly, previous studies 
have found that Ang-(1–7) is associated with the etiology of 
several neurodegenerative disorders, such as Alzheimer’s 
disease and hypertension-induced neurodegeneration, and 
plays a beneficial role in these disorders (Jiang et al., 2016; 
Ho and Nation, 2018; Cao et al., 2019). In line with this, the 
current study shows for the first time that Ang-(1–7) is also 
implicated in the pathogenesis of PD and, therefore, its use 
may be translated into a clinical application. Our findings not 
only emphasize the beneficial effect of the brain Ang-(1–7)/
MasR axis in neurological disorders but also throw light on the 
potential of Ang-(1–7) for treating PD.
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Figure 1 ｜ Effects of rotenone infusion on systolic blood pressure 
of Sprague-Dawley rats.
Rats were infused intraperitoneally with rotenone (2.5 mg/kg) or 
vehicle daily for 4 weeks. (A, B) Descent latency of control and PD 
rats in catalepsy tests was recorded. Data are the mean ± SD (n 
= 6; Student’s t-test). ####P < 0.0001, vs. control group. (C) The 
SBP of rats was tracked by means of tail cuff, and differences were 
observed in the same group at different time points. Data are mean 
± SD (n = 6; two-way repeated measures analysis of variance). No 
obvious changes in SBP of rats were seen in each group during the 
study (P > 0.05). 1 mmHg = 0.133 kPa. PD: Parkinson’s disease; SBP: 
systolic blood pressure.

Figure 2 ｜ Ang-(1–7)/MasR axis is reduced in the substantia nigra of the Parkinson’s disease rat model.
(A) The Ang-(1–7) levels in the SN were assessed by enzyme-linked immunosorbent assay. Differences were observed between PD rats and age-matched control 
rats. (B) The MasR levels in the SN were evaluated by Western blot assay. (C) Quantitative results of MasR expression. Differences were observed between PD 
rats and age-matched control rats. Data are expressed as the mean ± SD (n = 6; one-way analysis of variance followed by Tukey’s post hoc test). ####P < 0.0001, 
vs. control group. PD: Parkinson’s disease; MasR: Mas receptor; SN: substantia nigra; w: weeks.
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Figure 4 ｜ Ang-(1–7) attenuates apoptosis in the rotenone-induced cell model in a MasR-dependent manner.
(A) The cleaved caspase-3 levels of four groups were determined by Western blot assay. (B) Quantitative results of cleaved caspase-3 expression. (C) Caspase-3 
activity was determined by colorimetric assay. Data are expressed as the mean ± SD (B, C: n = 3, one-way analysis of variance followed by Tukey’s post hoc test). 
*P < 0.05, **P < 0.01, vs. ROT + Ang-(1–7) group; ###P < 0.001, vs. control group; ††P < 0.01, vs. ROT group. Ang-(1–7): Angiotensin-(1–7); MasR: Mas receptor; 
ROT: rotenone.
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To clarify how the Ang-(1–7)/MasR axis affects PD evolution, 
we established a cell model using rotenone incubation for 24 
hours and determined apoptosis levels and α-syn expression 
in different groups. We found that Ang-(1–7) rescues the 
apoptosis of dopaminergic cells in the rotenone-treated 
group, as cleaved caspase-3 was remarkably decreased after 
Ang-(1–7) treatment. However, the impact of Ang-(1–7) was 
reversed when co-treated with A-779, an antagonist of the 
Mas receptor. This was further verified by a colorimetric 
assay for caspase-3 activity, which showed corresponding 
changes in different groups. These findings were consistent 
with a previous study showing that Ang-(1–7) can attenuate 
neuronal apoptosis in brains of hypertensive rats (Jiang et al., 
2013). Meanwhile, by Western blot and immunofluorescence, 
we revealed that dramatically elevated α-syn levels in the 

rotenone-induced cell model were lowered by Ang-(1–7) 
treatment. This effect was also significantly reduced by co-
incubation with A-779. Our findings further strengthen 
the importance of the Ang-(1–7)/MasR axis in neurological 
diseases determined by previous studies (Costa-Besada et al., 
2018; Rabie et al., 2018). To our knowledge, this study is the 
first to clarify that the Ang-(1–7)/MasR axis reduces apoptosis 
and α-syn pathology of dopaminergic neurons in a rotenone-
induced cell model. 

The underlying mechanisms by which the Ang-(1–7)/MasR 
axis reduces α-syn pathology in dopaminergic neurons are 
not completely discovered. There is evidence that autophagy 
plays a pivotal role in maintaining proper quantity and quality 
of protein and organelles in cells, and autophagic dysfunction 

Figure 5 ｜ Ang-(1–7) attenuates 
α-synuclein accumulation in the 
rotenone-induced cell model in a 
MasR-dependent manner.
(A) The expression of α-syn in four 
groups was examined by Western blot 
assay. (B) Quantitative results of α-syn 
expression. (C) Cells were marked by an 
anti-α-syn antibody (red), nuclei were 
counterstained with DAPI (blue), and 
immunofluorescence was observed 
by fluorescent microscopy (original 
magnification, 630×). Expression of 
α-syn was higher in the ROT group and 
was downregulated when incubated 
with Ang-(1–7). However, the influence 
caused by Ang-(1–7) was completely 
abolished with A-779 co-treatment. 
(D) Mean α-syn fluorescence intensity 
(ratio to control) of four groups. Data are 
expressed as the mean the  ± SD (n = 3; 
one-way analysis of variance followed by 
Tukey’s post hoc test). #P < 0.05, ##P < 
0.01, vs. control group; †P < 0.05, ††P < 
0.01, vs. ROT group; *P < 0.05, **P < 0.01, 
vs. ROT + Ang-(1–7) group.  Ang-(1–7): 
Angiotensin-(1–7); DAPI: 4′,6-diamidino-
2-phenylindole; MasR: Mas receptor; 
ROT: rotenone; α-syn: α-synuclein.
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can lead to impaired α-syn degradation and abnormal α-syn 
aggregation (Xilouri et al., 2016). A recent study indicates 
that dysfunctional autophagy exists in PD models and in PD 
patients, which contributes to the pathogenesis of PD (Scrivo 
et al., 2018). In the present study, we verified the assumption 
that Ang-(1–7) reduces α-syn accumulation by reversing the 
dysfunctional autophagic activity in the rotenone-induced cell 
model. Western blot assay revealed that the level of LC3-II 
was decreased and the level of p62 was elevated in rotenone-
treated neurons, indicating the existence of autophagic 
deficiency in the rotenone-induced cell model. However, 
Ang-(1–7) distinctly increased the autophagic activity, and 
the changes in LC3-II and p62 levels were inverted in the 
neurons co-treated with rotenone and Ang-(1–7). To date, our 
study is the first to show that Ang-(1–7) enhances autophagy 
in dopaminergic neurons. Our findings are supported 
by previous studies indicating that Ang-(1–7) improves 
autophagic activities in cells from other tissues (Lin et al., 
2018; Pan et al., 2018). Proper autophagic activity removes 
accumulation-prone proteins and impaired organelles, 
while defective autophagy prevents the elimination of 
abnormally accumulated proteins and contributes to several 
neurodegenerative disorders (Xilouri et al., 2016). Similarly, 
our current study found that when the increased autophagic 
activity caused by Ang-(1–7) was antagonized by 3-MA, the 
level of α-syn was restored. This was further confirmed by 
immunofluorescence analysis, thus providing evidence that 
dysfunctional autophagy contributes to the α-syn pathology 
in a rotenone-induced PD cell model. Notably, unlimited 
autophagic activities may induce apoptosis of cells and result 
in numerous disorders. As indicated by our previous studies, 
Ang II induced unrestrained autophagy and led to apoptosis 
in a dopaminergic neuronal cell line called CATH.a, which 
was considered a contributing factor in the progression of PD 
(Gao et al., 2016). Therefore, autophagy is a double-edged 
sword in physiology and pathology, and autophagic intensity 
maybe depend on the inducer or cell type. Taken together, 
these findings uncover the mechanisms by which Ang-(1–7) 
reduces α-syn pathology in a rotenone-induced cell model 
and underline the damage from deficient autophagic activity 
in PD.

In this study, we prove for the first time that Ang-(1–7) 
improves autophagic dysfunction, thus contributing to 
the elimination of α-syn in PD models. This may reveal the 
potential mechanisms by which the Ang-(1–7)/MasR axis 
participates in PD.

Study limitations 
There are limitations to our study. First, the rotenone model 
of PD has several disadvantages. The high systemic toxicity 
of rotenone may lead to a high mortality rate of rats. In 
addition, some treated rats do not display neurodegeneration 
due to rotenone resistance (Chia et al., 2020). Therefore, 
we used a sufficient number of rats to ensure the successful 
establishment of a PD model. Second, several studies have 
observed that α-syn can propagate in a prion-like manner 
in animal models by injection of preformed fibrils, which 
contributes to the pathological formation of PD (Jan et al., 
2018; Elfarrash et al., 2019; Van Den Berge et al., 2019). In 
our current rotenone-induced PD rat model, we were not able 
to investigate the spreading manner of α-syn. In the future, 
we may investigate other mechanisms relevant to α-syn in 
PD. Third, there is extensive evidence showing that some 
phytochemicals confer neuroprotection in PD by counteracting 
the aggregation, toxicity, and prion-like spreading of α-syn 
through activation of autophagy (Limanaqi et al., 2019; 
Stacchiotti and Corsetti, 2020). Therefore, we can explore the 
potential role of Ang-(1–7) in α-syn toxicity and spreading 
in our future studies. Our research may reveal the potential 

mechanisms by which Ang-(1–7)/MasR participates in PD and 
may strengthen the evidence for application of Ang-(1–7) as 
therapy for PD.

Conclusion
Our current study shows that the Ang-(1–7)/MasR axis 
reduces α-syn pathology in a rotenone-induced cell model 
by reducing dysfunctional autophagic activity. More 
importantly, our results imply potential of Ang-(1–7) for PD 
therapy in vivo. These findings deepen our insight into the 
protective mechanisms of the Ang-(1–7)/MasR axis during 
PD progression and support the development of related 
therapeutic strategies for the treatment of PD and other 
α-synucleinopathies.
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