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Abstract: 3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its
versatility in creating different dose form geometries and drug doses to enable the personalisation of
medicines. Research in this area has been dominated by polymer-based materials; however, for poorly
water-soluble lipophilic drugs, lipid formulations present advantages in improving bioavailability.
This study progresses the area of 3D-printed solid lipid formulations by providing a 3D-printed
dissolvable polymer scaffold to compartmentalise solid lipid formulations within a single dosage
form. This allows the versatility of different drugs in different lipid formulations, loaded into different
compartments to generate wide versatility in drug release, and specific control over release geometry
to tune release rates. Application to a range of drug molecules was demonstrated by incorporating
the model lipophilic drugs; halofantrine, lumefantrine and clofazimine into the multicompartmental
scaffolded tablets. Fenofibrate was used as the model drug in the single compartment scaffolded
tablets for comparison with previous studies. The formulation-laden scaffolds were characterised
using X-ray CT and dispersion of the formulation was studied using nephelometry, while release of a
range of poorly water-soluble drugs into different gastrointestinal media was studied using HPLC.
The studies show that dispersion and drug release are predictably dependent on the exposed surface
area-to-volume ratio (SA:V) and independent of the drug. At the extremes of SA:V studied here,
within 20 min of dissolution time, formulations with an SA:V of 0.8 had dispersed to between 90
and 110%, and completely released the drug, where as an SA:V of 0 yielded 0% dispersion and drug
release. Therefore, this study presents opportunities to develop new dose forms with advantages in a
polypharmacy context.

Keywords: lipid; SMEDDS; additive manufacturing; controlled release

1. Introduction

Mass manufacturing of oral formulations fails to produce drug forms that adequately
address the complexity of an individual’s disease state, age and genetic factors [1–3].
This “one-size-fits-all” approach has led to dose-related adverse drug reactions (ADRs),
particularly for older patients using polypharmacy [4–6]. Recent investigations into the use
of three-dimensional printing (3DP) technology as an alternative additive manufacturing
method [7–12], shows great potential for delivering bespoke oral drug medications.

3DP encompasses numerous techniques based around the automated and sequential
layering of material to construct an object, based on a digitally modelled design. A
noteworthy appeal of 3DP in pharmaceutics can be attributed to the potential to generate
oral dosage forms in a rapid, reproducible and flexible manner. To date, the realm of 3DP
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in pharmaceuticals has been dominated by techniques including inkjet/binder jetting [13],
selective laser sintering (SLS) [14,15], and fused deposition modelling (FDM) [16–18].

FDM is a widely used 3DP technique across multiple disciplines that requires a solid
filament to be melted at high temperatures, for extrusion through a small orifice on a
layer-by-layer pattern and solidification to produce solid models. In medicine, and more
recently in pharmaceutics, this technique has seen use in the production of hydrolysable
and biodegradable polymer-based scaffolds [19–21]. However, it is a technique that has
been largely avoided in the 3DP of pharmaceutics due to the thermolabile nature of most
drugs at temperatures required for its extrusion. Recently, FDM has gained greater interest
with the development of new polymers that may be coextruded, with a drug, at lower
temperatures to avoid thermal degradation during the extrusion process [21,22].

The oral bioavailability of lipophilic drugs can be improved with the coadministration
of lipids in the form of food- or lipid-based formulations [23,24]. Personalising lipid-based
formulations would represent an important advance in treatments with lipophilic small
molecule drugs. However, despite the physicochemical properties of many lipids allowing
their extrusion at low temperatures, there is a lack of research into the extrusion of lipid-
based formulations in the context of 3DP [25]. Even less is understood around the interplay
between surface area-to-volume ratio, dispersion and digestion of such formulations which
will dictate release of the drug and rate of absorption for permeable lipophilic compounds.

Lipid extrusion is already recognised as a pharmaceutical manufacturing technique,
and creamy spheroids have been produced from the extrusion and pelletisation of a lipid-
based solid self-emulsifying drug delivery system (S-SEDDS) [26]. In 2019, Vithani et al.
demonstrated a novel approach to the 3DP of thermolabile and lipophilic drugs loaded
into solid lipid-based formulations [27]. Vithani employed semi-solid extrusion (SSE) to
3D print solid oral tablets from a lipid-based solid self-micro emulsifying drug delivery
system (S-SMEDDS) as the extrudate. In addition, Chatzitaki et al. also employed similar
methods to produce a solid lipid-based suppository dosage form via SSE [28]. These
methods did not require high temperatures or solvent evaporation; however, the final
dosage forms had poor printing fidelity which presents concern for the consistency of
behaviour upon ingestion.

It has also been more than a decade since research investigating ‘polypill’ formula-
tions has been conducted to combat ADR and adherence issues associated with polyphar-
macy [29,30]. Recent research using primarily polymer-based formulations suggest that it is
possible to 3DP oral dosage forms with multiple drugs and different release profiles [15,31–36].
Furthermore, Markl et al. demonstrated that a 3D-printed dissolvable polymer scaffold
could be exploited to generate dual compartmented tablets containing a liquid lipid formu-
lation [36]. However, there is a lack of research in the viability of lipid-based 3DP ‘polypills’
with tuneable drug release especially utilising solid lipid systems.

Therefore, in this study, we have evaluated the control over formulation dispersion
and drug release using 3D-printed single- and multi-compartment polymer scaffolds filled
with dispersible lipid formulations. The ‘polymer lipid hybrid’ (PLH) tablets were evalu-
ated for the effect of exposed surface area; dissolvable vs non-dissolvable printed scaffolds;
as well as multicompartment systems for asynchronous release, on the dispersion of the
lipid formulation filled into the compartments of the scaffold (Figure 1). Firstly, single-
compartment polymer scaffolds with systematically varying exposed surface area were
3D-printed and filled with an S-SMEDDS formulation loaded with fenofibrate (FEN) as
the model poorly soluble drug. The polymer scaffolds were prepared from either poly-
lactic acid (PLA, not degradable in the gut on a physiological timescale) and polyvinyl
alcohol (PVOH, dissolves on physiological timescales). Subsequently, as a proof of con-
cept, multi-compartment scaffold systems were 3D-printed with six ‘wedges’ forming the
circular scaffold (Figure 1), and the wedges were filled individually with the six different
combinations of three drugs (clofazimine, lumefantrine and halofantrine) in two different
S-SMEDDS formulations. These studies serve as a proof of concept for a PLH system
that may enable better control over the fidelity of the lipid formulation in a 3D-printable
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format and provide great versatility in release of different drugs to address the problems
with polypharmacy.

Dispersion studies of the formulations from PLA and PVOH scaffolds were conducted
within simulated gastric to intestinal media. Nephelometry and HPLC analytical tech-
niques were employed to determine the rate of dispersion and drug release, respectively.
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2. Materials and Methods

Poly-lactic acid filament (Ultimaker PLA, sourced from Imaginables, Melbourne, Aus-
tralia), poly-vinyl alcohol filament (Ultimaker PVA, sourced from Imaginables, Melbourne),
FaSSIF powder (FaSSIF/FeSSIF/FaSSGF, 58 g, 25 L size, Biorelevant.com Ltd, London,
United Kingdom), clofazimine and lumefantrine (Sigma, Burlington, VT, USA), halofantrine
HCl (SmithKline Beecham Pharmaceuticals, Mysore, India), Gelucire®44/14 and Gelu-
cire®48/16 (Gattefossé, Saint-Priest, France), Kolliphor P 188 and NaOH (Sigma Aldrich,
Burlington, USA), M4670 silicone rubber mixture (Barnes, Melbourne, Australia), sodium
dihydrogen orthophosphate (NaH2PO4, AnalaR—Merck, Kenilworth, NJ, USA), NaOH
pellets and acetonitrile gradient grade (Ajax Finechem (Univar), Scoresby, Australia).

2.1. 3D Printing PLA and PVOH Scaffolds

A fused deposition modelling (FDM)-based printer was used to generate physical 3D
scaffolds from commercial poly-lactic acid (PLA) and poly-vinyl-alcohol (PVOH) filaments.
A computer aided drawing (CAD) software tool ‘Sketchup’ was used to virtually model
and export scaffolds as stereolithography files (’.stl’ extension). The stereolithography
files were then processed (sliced) with Ultimaker Cura software (v4.6.1–‘Master’, 2020,
Ultimaker, Utrecht, Netherlands) using custom slicing profiles. The printing of the PLA
and PVOH scaffolds was with a layer height of 0.1 mm, and a print speed of 40 mm/s.
These processed models were saved as a G-Code file onto a secure digital (SD) card (‘.gcode’
extension). An Ultimaker 2 3D printer (U2) equipped with a 0.6 mm diameter nozzle was
prepared for printing with the desired filament. The U2 build plate was set to 60 ◦C for
5 min before extruding a small amount of filament from the nozzle at ~215 ◦C to ensure
smooth and featureless filament extrusion. The G-Code file was then manually selected
from the inserted SD card in an Ultimaker 2 3D printer and once printing had begun the
printing speed was manually set to 80%.

Tables 1–3 below present the geometric properties for the 3D-printed scaffolds used
in this study. The images show the virtual models designed for PLA-based scaffolds,
with properties of the PVOH-based scaffolds underneath. Each of the multicompartment
scaffolds (MCTs) and scaffold containers A, B and C (when covered) possess the same
target internal volume of ~393 µL. The printing times have been calculated by multiplying
the Ultimaker Cura printing time prediction by the print speed dilation (1.25 at 80%).

Table 1. Geometry of virtual PLA and PVOH-based scaffold containers used to print physical scaffold
containers. Measurements for PVOH–based scaffolds have been underlined. A, B, C refer to different
exposed surface area scaffolds with equal internal volume.

Scheme

A
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Table 2. Geometry of virtual PLA and PVOH-based scaffold covers used to print physical scaffold
covers. Measurements for PVOH–based scaffolds have been underlined. A and B refers to the two
different (open or closed) lids.

Scaffold Cover

A
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Single Compartment Systems 
SMEDDS A Component (% w/w) 

Foot diameter (mm) 12.4

Wedge depth (mm) 5

Height (mm) 5.6

Wall thickness (mm) 0.6

Printing time (min) 6.25

2.2. Preparing Lipid Filled 3DP Scaffolds
2.2.1. Preparation of Drug-Loaded SMEDDS

The polymer–lipid hybrid tablets contained a drug-loaded SMEDDS formulation,
which was manually injected as molten liquid into the 3DP scaffold. The dispersion
properties of the SMEDDS have been previously reported by Vithani et al. [27]. Drug-loaded
SMEDDS were prepared following a previously reported process and formulation [27]
(Tables 4 and 5), where FEN was used as the model drug. In this study, FEN was used
for the single compartment PLHs in SMEDDS A, while clofazimine (CLO), lumefantrine
(LUM) and halofantrine (HAL) were used for the multicompartment systems, where each
of the six drug/SMEDDS combinations were individually prepared and loaded separately
into a ‘wedge’ in the dose form. It is important to realise that 3DP systems with FDM
and SSE heads in the one unit have been reported [37], and that the manual preparation
method is sufficient to test the concept of controlling dispersion and release from varying
geometries and from independent compartments in the multicompartment system [36].

Batches of drug-loaded SMEDDS for use in single compartment studies were pre-
pared in quantities ranging from 10 to 15 g (Table 4.), and individual drug batches for
multicompartment studies were prepared in quantities of 3 g (Table 5).
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Table 4. Compositions of the FEN-loaded SMEDDS used for the single-compartment systems.

Single Compartment Systems

SMEDDS A Component (% w/w)

Drug FEN

Drug content 7.0

Gelucire® 44/14 46.5

Gelucire® 48/16 23.3

Kolliphor P 188 23.2

Table 5. Compositions of the two different drug-loaded SMEDDS formulations used for the multi-
compartment systems.

Drug
SMEDDS A SMEDDS B

CLO LUM HAL CLO LUM HAL

Drug content 7.0 7.0 3.5 7.0 7.0 3.5

Gelucire®44/14 46.5 46.5 48.3

Gelucire®48/16 23.3 23.3 24.1 93.0 93.0 96.5

Kolliphor P 188 23.2 23.2 24.1

The process for preparing a batch of drug-loaded SMEDDS is illustrated in Figure 2.
Gelucire®44/14 (GEL 44) was weighed into a glass beaker which was then placed onto
a heated hotplate stirrer set to 80 ◦C (melting point of FEN) and stirred using a magnetic
stirrer bar. Gelucire®48/16 was deposited into the molten GEL 44. Then, Kolliphor P
188 was deposited into the mixture in a similar manner. Lastly, the drug component was
deposited into the mixture and stirred for 30 min to ensure homogeneity. The mixture was
then transferred to a 50 mL polypropylene tube and immediately sonicated for 2 min in a
sonication bath. This was done to remove any air bubbles from the molten SMEDDS.
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2.2.2. Filling 3DP Scaffolds with Molten Lipid Formulation

Five different tablet formats possessing a range of surface area-to-volume ratios (SA:V)
were constructed for the study of single-compartment systems (Table 6). Each tablet
format refers to a different scaffold (or scaffolds), printed with PLA (Figure 3A) or PVOH
(Figure 3B), that has been filled with a molten SMEDDS formulation. SA:V values were
calculated on the assumption that the theoretical cavity volume (392.6 µL) was occupied by
the SMEDDS. ‘Semi-open’ and ‘Closed’ tablet formats required scaffold covers (Table 2A,B,
respectively) in addition to a scaffold container (Table 1C), which were manually attached
after the SMEDDS had solidified.

Table 6. List of decreasing SA:V ratios for respective tablet formats, in mm2 × µL−1.

Tablet Type No-Scaffold Dual-Face Single-Face Semi-Open Closed

SA:V ratio (mm2 × µL−1) 4:5 (0.800) 2:5 (0.400) 1:5 (0.200) 4:125 (0.032) 0:1 (0.000)
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Figure 3. Tablet formats with decreasing exposed surface-area to-volume (SA:V) ratios from left to right generated from
PLA (A) and PVOH (B). Tablet formats from left to right: no-scaffold, dual-face, single-face, semi-open, closed.

A target mass of 400 mg molten drug-loaded SMEDDS was pipetted into a polymer
scaffold, whilst the scaffold remained on the weighing plate. For the filling of ‘no-scaffold’
type systems, a silicon mould made from the scaffold cavity was used instead (See supple-
mentary information Figure S1A). For the filling of ‘dual-face’ scaffolds, the scaffold was at-
tached to a cold smooth surface before filling (See supplementary information Figure S1B).

2.2.3. Filling Multicompartment Scaffolds with Molten Lipid Formulation

Multicompartment tablet systems consisted of CLO, HAL and LUM incorporated
into compositions 1 and 2 (Table 5) to uniquely fill each ‘wedge’ with a target of 66 mg
of molten drug-loaded SMEDDS, as indicated in Figure 4 below. The filled mass for each
wedge is provided in the supplementary information (Table S2).

2.2.4. Preparation of Mixed Drug and Formulation Pellets

Pellets without a scaffold were also prepared from a mixture of all the drug:lipid
compositions used in the multicompartment systems as control systems (Figure 5). The
molten mixture was deposited into a silicon mould, solidified and the pellet pressed out of
the mould to generate solid mixed drug/formulation pellets without a scaffold.
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Figure 5. ‘Control’ pellet containing drug and formulation combinations used in multicompartment
PLHs. Composed of 82.5% 1:1 SMEDDS + Gelucire® 48/16, with 7% clofazimine, 7% lumefantrine
and 3.5% halofantrine. (Scale is 1 mm per fine graduation).

2.3. Dispersion Studies in Simulated Gastric to Intestinal Media

In vitro dispersion studies in sequential gastric and intestinal media were conducted
as illustrated in Figure 1 (in vitro dispersion testing). Titration vessels (Metrohm titration
vessel with thermostat jacket 20–90 mL) were connected to a heated water pump, set to
37 ◦C (Ratek immersion heater and insulation tank), using rubber tubing. The jacketed
vessels were placed on a multipoint magnetic stirrer (Daihan Scientific, Wonju, Korea) set
to 300 rpm with one magnetic stirrer bar placed in each vessel (L. 30 mm, bar diam. 8 mm).

A 3D-printed PLA mount (see supplementary information Figures S2 and S3) was
used to attach to and submerge the scaffolds containing the formulations. The weight of the
scaffolds, formulations and drug mass for each system are detailed in the Supplementary
Information Tables S1 and S2. For the first 30 min, the formulation was submerged in
simulated gastric fluid (gastric fluid herein) followed by a 3-min transition window, then
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30 min of fasted state simulated intestinal fluid (intestinal fluid herein). Gastric fluid
(0.1 M HCl, pH 1.2) was deposited into the titration vessel 5 min prior to dispersion, to
allow for heat transfer. Aliquots (1 mL) were taken at timepoints; 1, 3, 5, 10, 15, 20, 30, 34,
26, 38, 43, 53, 63 min after immersion (t1–t14). Aliquots were immediately transferred to
1.5 mL Eppendorf tubes and stored for analysis. At the end of the gastric phase, 3.2 mL of
0.95 M NaOH was added to the vessel to neutralise the gastric fluid, followed by 6.4 mL of
‘Concentrated FaSSIF solution’ (Table 7), and finally 6.4 mL of deionised water to establish
the simulated intestinal condition.

Table 7. Components required for 100 mL of concentrated FaSSIF solution.

Component Mass Required (g)

NaH2PO4 3.438
NaOH pellets 0.420

NaCl 6.186
FaSSIF powder 2.240

The concentrated FaSSIF solution was prepared using amounts of each component at
4.5 times the amount needed for physiological relevance to allow for dilution.

2.4. Dispersion Kinetics of SMEDDS Studied Using Nephelometry

Samples retrieved at the timepoints indicated in Section 3.3 were vortexed for ~5 s
before aliquoting 350 µL of the dispersion into the well of a 96-well UV-transparent mi-
croplate. Turbidity was determined using a Nephelostar Plus nephelometer (BMG Labtech)
set to 37 ◦C, with a laser beam focus of 2.5 mm and laser intensity of 80%. A settling and
interval time of 1 s each was allowed between measurements. Furthermore, the sample
plate was agitated using the double orbital shaking option for 1 s at 400 rpm, prior to
each measurement. The total formulation dispersed (%) in gastric or intestinal fluid was
determined by extrapolation from a dispersed FEN:SMEDDS calibration curve.

2.5. Quantification of Drug in Dispersion Media—UPLC

Drug concentrations in dispersion media were quantified by UPLC for the four differ-
ent drugs used in this study. The details for methods and equipment are detailed in the
Supplementary Information (Supplementary Material S1).

2.6. Solid State Characterisation - X-ray Diffractometer (XRD)

A Shimadzu X-ray Diffractometer (XRD-7000L) was used to measure the changes in
diffracted X-ray intensities of solid samples, at a rotation angle range of 10–90◦. Samples
were deposited and smeared into the sample tray such that the sample was flush with the
sample tray height. The X-ray diffraction system was set to a horizontal gonio type and
data were processed using XRD-6100/7000 software (XRD-series system, version 7.0.1.1,
2014, Shimadzu, Rydalmere, Australia).

2.7. X-ray CT Imaging Analysis

X-ray computed tomography (CT) was conducted using a Zeiss Xradia 520 Versa and
image files were post-processed using Dragonfly Pro software (version 2021.1.0.997, 2021,
Object Research Systems (ORS) Inc., Montreal, QC, Canada) [38].

2.8. Cryo-TEM Imaging Analysis

Cryogenic transmission electron microscopy (Cryo-TEM) was used to analyse ~400 mg
of a blank SMEDDS dispersed in 20 mL of deionised water. A total of 3.5 µL of the
dispersion was spotted onto a TEM grid (EM Lacey Formvar Cu 300 mesh, 50 µm) followed
by vitrification on a FEI Vitrobot Mark IV (blot force = -4 and blot time = 3). Images were
collected on a 120 keV FEI Tecnai Spirit G2 TEM at a low-dose mode. Dispersion samples
for cryo-TEM analysis were prepared and imaged on the same day.
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3. Results
3.1. Characterisation of SMEDDS

The X-ray diffraction patterns in the Supporting Information (Figure S4) illustrate
the crystalline nature of the lipids in the solid SMEDDS formulation, as the same peaks
are apparent in the diffractograms for both the drug-free and drug-loaded SMEDDS.
There were very minor diffraction peaks apparent for the SMEDDS where drug has been
previously dissolved upon heating (‘Mixed’) at the positions of the major peaks in the
corresponding reference crystalline drug (top profile). A physical mixture of the blank
SMEDDS with the reference material showed lipid peaks at similar height to the ‘dissolved’
SMEDDS, and also had more prominent peaks corresponding to the drug, indicating that
at least a proportion of the drug was present in a crystalline form. The representative cryo-
TEM image shown in Supporting Information Figure S5 displays the colloidal structures
present in the media after dispersion of a blank SMEDDS formulation. The blank SMEDDS
dispersed in water to form a colloidal dispersion with droplet size of ~ 5–10 nm.

3.2. Characterisation of Filling of the Single Compartment Scaffolds Using X-ray CT

X-ray CT images were processed to isolate a region of interest (ROI) that defines the
apparent void area between the lipid filling and PLA wall of a FEN-loaded PLA PLH
tablet (Figure 6). Analysis of the PLA scaffolding and SMEDDS formulation alone was also
conducted (Supplementary information Figure S6).
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Figure 6. Horizontal cross-section images acquired via X-ray CT imaging of a FEN-loaded PLA PLH, with void area ROI
highlighted in green. (A) Full scale cross-section image at slice 505, (B) single quadrant cross-section image at slice 505.
(C) Area analysis (mm2) of ROI with increasing slice height (µm) of a FEN-loaded PLA-based PLH.

Figure 6C displays the increase in void area at the PLA–SMEDDS interface, over a
~5 mm height range between slices at 219 and 723 µm. This slice range aims to capture the
void area from the floor of the inner compartment to the underside of its lid. Moreover, the
interfacial gap at the interface between the lipid filling and PLA wall increases with tablet
height, demonstrating the immiscibility of the two materials.

3.3. Dispersion of Drug-Loaded SMEDDS Formulations from Single Compartment Scaffolds
Using Turbidity

The dispersion kinetics of SMEDDS formulations contained within the PLA and
PVOH scaffolds when dispersed in gastric to intestinal in vitro conditions are illustrated
in Figure 7, Figure 8, Figure 9, Figure 10. The percentages reported are calculated relative
to the turbidity achieved using a completely dispersed non-scaffolded SMEDDS of the
same mass.
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Figure 7. Turbidity of dispersion media resulting from dispersion of fenofibrate-loaded SMEDDS
from different single-compartment PLA-based scaffolds (error bars—AVG ± SD, whereby n = 7 for
no-scaffold, n = 4 for dual-face and semi-open, n = 3 single-face and closed-type tablets). The dashed
red line indicates the transition from gastric to intestinal conditions. The 100% level was determined
by full dispersion of a blank SMEDDS. Pellet without any polymer scaffold.
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Figure 8. Turbidity of dispersion media resulting from dispersion of fenofibrate-loaded SMEDDS
from different single-compartment PLA-based scaffolds (error bars—AVG ± SD, whereby n = 7 for
no-scaffold, n = 4 for dual-face, semi-open and single-face, and n = 3 for closed type tablets). The
dashed red line indicates the transition from gastric to intestinal conditions. The 100% level was
determined by full dispersion of a blank SMEDDS. Pellet without any polymer scaffold.
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Figure 9. Effect of exposed surface area on release of FEN from different single-compartment PLA-
based scaffolds containing fenofibrate-loaded SMEDDS measured by HPLC (error bars = AVG ± SD,
n = 3, with exception of no-scaffold series whereby n=6). The dashed red line indicates the dispersant
transition period.
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Figure 10. Drug release from different single-compartment PVOH-based scaffolds containing
fenofibrate-loaded SMEDDS measured by HPLC. (Error = AVG ± STD, n = 4 for closed and single
face series, n = 3 for semi-open and dual-face series, n = 6 for no-scaffold series). The dashed red line
indicates the dispersant transition period.
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Non-dissolving PLA scaffolds: The SMEDDS without a scaffold, with the highest SA:V
of 0.8, reached a peak turbidity of 98% dispersed within 10 min (essentially complete). The
semi-open tablets reached a level of dispersion approximately 78% of the fully dispersed
control SMEDDS within 30 min. Closed type PLA-based tablets displayed essentially no
release and appeared to remain closed throughout the dispersion. During the intestinal
phase of the dispersion, the no-scaffold and single-face types plateaued at ~100% dispersed,
while the dual-face types plateaued at ~110%. The semi-open type tablets plateaued at
~90% (albeit with large error bars due to variation apparent for individual units). The order
of dispersion rate ranked as expected as: no-scaffold > dual-face > single-face > semi-open,
closed did not disperse.

Dissolvable PVOH scaffolds: The dispersion of SMEDDS from dissolvable PVOH
scaffold tablets is shown in Figure 8. The no-scaffold tablet data from Figure 7 are identical
to Figure 8. A maximum of ~77% was released within 30 min for the semi-open type
scaffolds. The closed-type PVOH-based tablets displayed significant release between 20
and 30 min (because of the dissolution of the polymer compared to PLA), at which point the
lids had visually come open during dispersion. During the intestinal half of the dispersion,
all tablet types plateaued at ~100% dispersion, including the closed type. The rank order of
dispersion rate from highest to lowest for the PVOH scaffolds therefore was the same as
the PLA tablets; however, the erosion of the closed PVOH system enabled release that did
not occur for the non-eroding PLA (at least on the current timescale).

3.4. Release of Drug (FEN) from Single Compartment Tablets

The effect of tablet format on the release kinetics of FEN from the PLA-based scaffolds,
determined using HPLC, is demonstrated in Figure 8. FEN was released almost completely
from the no-scaffold-type tablets (SA:V = 0.8) within 10 min. The semi-open type formula-
tions released 30% of the FEN within 30 min, while practically no FEN was released from
the closed-type PLA-based tablets which as mentioned in the turbidity studies remained
closed throughout the entire dispersion. During the intestinal phase of the dispersion,
the drug release from the no-scaffold-type tablets plateaued at ~105% while the dual-face
and single-face scaffolds increased to between 85% and 105% of FEN. The semi-open-type
tablets demonstrated variable but continual release of FEN throughout gastric and intesti-
nal phases. The order of release of FEN from the scaffolds logically followed the order of
dispersion of the SMEDDS.

Similar behaviour was again observed for drug release when PVOH was used for the
scaffold where release from the fully closed scaffold took around 20 min to commence but
was complete in the intestinal phase (Figure 10).

3.5. Release of Drugs from Multi-Compartment Tablets

The release kinetics of model drugs HAL, LUM and CLO released from multicompart-
ment tablets (Figure 4) and mixed drug pellet tablets (Figure 5, where all compartments
of the multicompartment tablet have effectively been mixed into one) are displayed in
Figure 11. Drug release from the mixed drug pellet was faster than release from the multi-
compartment system. The drug release from multicompartment tablets was approximately
linear and directly proportional to time spent in dispersion media. The release of LUM
from multicompartment tablets was slower than the other drugs, while all drugs from the
mixed drug pellets appear to release at a similar rate and plateau after 20 min. By 20 min,
the release of HAL, CLO and LUM reached 90%, 80% and 75% of total mass, respectively. In
contrast, the release of HAL, CLO and LUM from the multicompartment systems reached
60%, 75% and 40% of total mass, respectively, at 30 min. Complete dispersion of the pellet
could not be determined visually due to the high opacity of the dispersion media.
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4. Discussion

The developments in three-dimensional (3DP) printing within the realm of pharma-
ceutics to generate orally administered dosage forms has, to date, been dominated by
polymer-based formulations. Lipid-based systems have been proven to boost the bioavail-
ability of lipophilic drugs, yet research into the use of lipid-based formulations in 3D
printing is in its infancy. Vithani et al. developed a proof of concept for a semi-solid
lipid-based formulation with self-micro emulsifying properties that could be 3D-printed
via soft material extrusion [27]. However, the printing fidelity was not sufficiently high
to translate to viable printed medicines and this system required further optimisation to
better control its dispersion kinetics under gastric and intestinal conditions.

To address this shortcoming, the potential of 3D-printed polymer scaffolds containing
the lipid-based SMEDDS formulation to control print fidelity and exposed surface area
was explored. Different polymer scaffolds (Table 1, Table 2, Table 3) were printed using
a fused deposition modelling 3D printer with PVOH and PLA as separate extrudates,
using a process that resembles previous reports of building PVOH capsules from 3DP core
shell design [39]. This approach allowed much higher fidelity dosage units without the
‘slumping’ apparent when printing SMEDDS systems without a scaffold [27].

The single-compartment scaffolds were filled with FEN-loaded SMEDDS to generate
a range of 3D-printed PLH-based tablets with increasing SA:V ratios by modifying the
exposed surface area (Figures 3 and 4). For this study, the SMEDDS was manually filled
into the scaffolds, which while not practical in a manufacturing context enabled the proof-
of-concept study and determination of the relationships between exposed surface area,
volume, and polymer dissolution to be investigated. There are reports in the literature of
combined FDM and semi-solid extrusion printers with the two different print heads in the
printer [2,19]. Hence, it would be possible to manufacture the PLH tablets in one operation
to achieve this capability.

The dispersion rate of the solid SMEDDS into gastric media was directly proportional
to the SA:V ratio when considering the amount of formulation dispersed at 20 min for each
tablet (Figure 12A). Interestingly, there was no difference between the dispersion rates for
the PLA and PVOH scaffolds, indicating that dissolution of the PVOH scaffold occurred
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more slowly than dispersion of the formulation. Note that the closed PVOH scaffold had
not released formulation at the 20 min mark but was clearly differentiated from the PLA
scaffold at later timepoints (Figure 10).
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Fenofibrate is a poorly water-soluble drug, hence release of drug into the dissolution
media would be expected to follow the kinetics of dispersion. The relationship between
SA:V and drug release kinetics from solid dosage forms has been studied for 3D-printed
polymer-based tablets [17,40]. In this study, a general increase in drug release as the
amount of formulation dispersed increased was observed at 20 min (Figure 12B). However,
the amount of drug released was slightly lower than what would be expected for a 1:1
correlation with formulation dispersion.

Scalability of printed dose forms to suit the patient is a major advantage of 3D-
printed dose forms. Of course, the large scaffolds printed here would be too large for a
patient—this was merely an arbitrary size selected for easy manual handling when assem-
bling dispersion and dissolution experiments.

The additive manufacturing approach offers an interesting opportunity to provide
tailored release behaviour of multiple drugs from the one dose unit. The concept of
a polypill was first coined in 2003 by Wald et al. as a combined therapy daily pill to
treat cardiovascular disease [29] and has been used to describe orally administered dose
forms containing multiple active ingredients. The use of polypill approaches has been
shown to increase adherence rates, improve cost effectiveness of therapies and increase
the safety of medicines [41]. There have been reports of 3DP polypills with defined release
profiles [15,32], and 3DP dual-compartment lipid-based tablets with sequential release
kinetics of two drugs [36]. However, to our knowledge there has not been any reports
of 3DP solid lipid-based polypills. Pereira et al. published a novel multicompartment
3D-printed system that shows promise for testing and delivery of fillable formulations
with defined release rates [34].

Conceptually, printing one drug as a single compartment is as challenging as printing
multiple drugs when they are printed as multiple isolated compartments. It is believed,
with the advent of 3D-printed products, these challenges are perhaps less of an issue than
might initially be considered compared to combination dose forms where the drugs are
mixed together.

The release behaviour from the polypills was different to the single-compartment
systems—release of drug was approximately linear with time. This is suggestive that the
formulation is gradually dispersed into the media based on the available surface area of the
formulation, which is essentially dictated by the wedge shape exposed to the dispersion
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media. Steady erosion of the formulation from within the wedge-shaped holes then is
expected to be faster than the erosion of the PVOH scaffold. This was confirmed by retrieval
of multicompartment systems at different timepoints as seen in the photos in Figure 13.
SMEDDS A (composed of Gelucire 48/16 combined with other surfactants) and B (only
composed of Gelucire 48/16) were used in the study, but it was not possible to discriminate
release from either SMEDDS because total amount of each drug simultaneously from the
two formulations was quantified together. Thus, it is possible that the ‘linear’ profiles
result from a fast and slow contribution from the different SMEDDS, however the erosion
evident in the photos in Figure 13 would suggest that SMEDDS A and B dispersed at a
similar rate.
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X-ray CT analysis of the void area, or the gap, between the PLA scaffold and SMEDDS
formulation increased with height through the tablet. This suggests that these two materials
are not miscible. In addition, the increase in void area with height may be attributed
to shrinking of the SMEDDS as it cools within the scaffold. Furthermore, the porosity
of the PLA scaffolding is not uniform, and a particularly large difference in porosity
may be observed between the foot and walls of the scaffolding (Figure 6A). It is unclear
whether porosity has influenced the dispersion and subsequent release of the SMEDDS
from PLA formulations; however, it is believed to have a negligible effect considering
the rapid dispersion time and hydrophobicity of PLA. This demonstrates the need for
more research into miscible 3DP PLA-SMEDDS core shell designs, and to optimising the
printing resolution to eliminate porosity, that may be achievable with PLH-type filament
and continuous printing methods [42].

The model drugs for the multicompartment combination study were selected based
on lipophilicity, not direct application of the combination. Clofazimine, halofantrine and
lumefantrine each possess high logP values of 5.2, 7.6, 8.6 and 8.6, respectively (Pubchem).
In a clinical setting, all three are anti-infective drugs, with clofazimine being used for
leprosy [43], and lumefantrine and halofantrine to treat malaria [44,45] Multidrug combi-
nations for anti-infective treatments are common and the demonstration of incorporating
relevant combinations of drugs in the one dose form, potentially in different formulations
to control dispersion and release opens new opportunities for convenient treatment of such
conditions in clinically challenging settings.

The drugs appear to be partly crystalline in the solid SMEDDS at room tempera-
ture, and the X-ray diffraction data at least for fenofibrate support this assertion. Our
experience with these compounds is that digestion of lipid formulations favours drug
solubilisation [46,47]. Here, the focus was on control of dispersion of the formulation and
drug and less on its solid state upon dispersion, so the effects of digestion were not studied
specifically in this study. There is, however, sufficient literature evidence that digestion will
stimulate solubilisation of already crystalline drug, not precipitation as might be expected
for a liquid SMEDDS formulation where the drug is fully dissolved prior to dispersion [48].

The translation of this concept into a product will require the development of processes
at sufficient speed so that it becomes viable to print such systems. It should be noted that
3D printers have been reported that have an FDM and semisolid extrusion nozzle in the
one printer [49], meaning it is technically possible to prepare these types of combination
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dose forms without manually filling the scaffold. Furthermore, it is difficult to predict
the output speed of a dosage form based on the complexity of its design alone, as the
speed and resolution of deposited materials is highly dependent on the material itself
and the printing method used. Therefore, the current application of such a formulation is
more likely to serve a niche requirement for bespoke dose forms generated in a hospital
or doctor’s surgery, rather than in large scale additive manufacturing. Nevertheless, it is
possible that the continual development of 3D printing technology will realise larger scale
additive manufacturing of bespoke drug forms over time.

5. Conclusions

This study demonstrates that the gastric-to-intestinal dispersion rate of solid lipid-
based formulations may be controlled using 3D-printed scaffolding. Furthermore, it
demonstrates that an entirely 3D-printed biodegradable PLH tablet, using poly-vinyl alco-
hol and SMEDDS, may be modified to deliver bespoke and combined therapies in a single
multi-compartment tablet. The versatility of these 3D-printed PLH tablets has the poten-
tial to circumvent challenges associated with the adherence and safety of polypharmacy,
together with the 3D printing of lipophilic drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13122107/s1, Figure S1: (A) Silicon mould used in generating ‘no-scaffold’
type systems (B) PLA scaffold attached to a steel plate via rubber band used for filling ‘dual-face’
type systems, Figure S2: PLA mount variations used for the suspension of tablets in dissolution
studies: (A) Needle tipped mount; for suspending ‘no-scaffold’ type tablets (B) C-hook tipped mount;
for all scaffolded tablets, Figure S3: Photograph of a ‘semi-open’ type scaffolded tablet submerged
during dissolution, Figure S4: Effect of loading SMEDDS with FEN on the X-ray diffraction profiles
of SMEDDS. ‘Dissolved’ indicates the formulation where the drug was pre-dissolved in the molten
SMEDDS, whereas ‘Mixed’ indicates a physical mixture of powdered solid SMEDDS formulation
with the equivalent proportion of crystalline FEN, Figure S5: Cryo-TEM image of blank SMEDDS
dispersed in water, Figure S6: X-ray CT images of a ‘semi-open’ type tablet, with the void area
highlighted for; (A) PLA Scaffold (B) Interfacial gap between PLA Scaffold and Lipid formulation
(C) Lipid formulation. Vertical (i) and horizontal (ii) slices from the centre of the tablet are displayed,
Table S1: Masses of drug and polymer for scaffold formulations, Table S2: Masses of drug and lipid
in each compartment of multicompartment systems, Supplementary Material S1: Methods used in
the quantification of drug in dispersion media.
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