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Identification of new genetic pathways or molecular targets that sensitize

cancer cells to chemotherapeutic drugs may improve the efficacy of current

chemotherapy. Here, we report that downmodulation of UHRF1 (ubiquitin-

like with PHD and RING finger domains 1) in retinoblastoma (RB) cells

increases the sensitivity to histone deacetylase (HDAC) inhibitors, augment-

ing apoptotic cell death. We found that UHRF1 depletion downregulates

two redox-responsive genes GSTA4 (glutathione S-transferase a4) and

TXN2 (thioredoxin-2) in RB cells, and increases the basal level of intracellu-

lar oxidative stress. Antioxidant treatment significantly reduced both basal

and HDAC inhibitor-induced DNA damage and apoptosis in UHRF1-de-

pleted cells. Knockdown of GSTA4 or TXN2 sensitized RB cells to HDAC

inhibitors, demonstrating that GSTA4 and TXN2 play key roles in redox

homeostasis in RB cells and the susceptibility to HDAC inhibitor treatment

upon UHRF1 depletion. In human primary RB, GSTA4 and TXN2 proteins

were found to be mostly elevated along with high UHRF1 expression. In

addition to augmentation of apoptosis in UHRF1-depleted RB cells, we also

show that UHRF1 downmodulation derepresses the expression of photore-

ceptor-specific genes in RB cells in cooperation with a HDAC inhibitor MS-

275 and promotes neuron-like differentiation. However, further investigation

revealed that the enhanced growth-inhibitory effects of MS-275 in UHRF1-

depleted cells were still mainly due to robust apoptosis induction rather than

differentiation-mediated growth arrest. Consistent with our findings,

UHRF1 depletion in RB cells increased the therapeutic efficacy of MS-275 in

murine orthotopic xenografts. These results provide a novel basis for poten-

tial benefits of UHRF1 targeting for RB treatment.

1. Introduction

Retinoblastoma (RB) is a major intraocular cancer

occurring in children and is initiated by inactivation of

the RB1 tumor suppressor gene in the developing

retina (Dimaras and Corson, 2019). As a standard

treatment option, chemotherapy has been widely used

in combination with various types of adjuvant focal

therapy to save the eye and reduce the long-term risks

of developing secondary tumors (Chan et al., 2005;

Wyse et al., 2016). However, the current chemotherapy

for RB has limitations such as drug resistance and
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adverse side effects due to toxicity of the drugs as the

common chemotherapy regimens include several geno-

toxic drugs such as DNA topoisomerase II inhibitors

and DNA crosslinking agents (Gombos et al., 2007;

Mulvihill et al., 2003). Therefore, other small molecule

inhibitors have been searched and tested for RB treat-

ment in preclinical studies (Pritchard et al., 2016). One

class of such inhibitors is histone deacetylase (HDAC)

inhibitors, which have been under continued develop-

ment for treating many diseases including cancers and

neurological disorders since their excellent therapeutic

efficacy was proven for treating cutaneous T cell lym-

phoma (Duvic et al., 2007; Falkenberg and Johnstone,

2014; Zagni et al., 2017). HDAC inhibitors are known

to exert diverse anticancer effects including apoptosis,

cell cycle arrest, and differentiation although the

detailed mechanisms of action may be highly varied

depending on the types of the inhibitors and cancer

cells tested (Falkenberg and Johnstone, 2014). As can-

cer cells with elevated E2F1 activity have been shown

to be sensitive to HDAC inhibitor-induced cell death

(Zhao et al., 2005) and RB1 inactivation in RB results

in deregulated E2F1 activity, several studies have

investigated the effects of HDAC inhibitors on RB cell

death (Dalgard et al., 2008; Karasawa and Okisaka,

2004; Poulaki et al., 2009). Butyrate and trichostatin A

induced morphological changes and apoptosis of Y79

RB cells preceded by the increase in histone H3 acety-

lation (Karasawa and Okisaka, 2004). Similar growth-

inhibitory effects were observed by the treatment of

suberoylanilide hydroxamic acid (SAHA) and MS-275

in several RB cell lines, and MS-275 was found to be

efficacious for reducing tumor burden in two preclini-

cal animal models of RB (Dalgard et al., 2008).

Considering the importance of chemotherapy for

RB treatment and continuous effort for development

of new drugs, identification of novel genetic pathways

or molecular targets that may sensitize RB cells to cur-

rently available chemotherapeutic drugs may provide

an alternative strategy to improve the efficacy and

applicability of the chemotherapy. Previously, we

demonstrated that downmodulation of UHRF1 (ubiq-

uitin-like with PHD and RING finger domains 1) in

RB cells enhances the sensitivity to standard

chemotherapeutic drugs such as etoposide by impair-

ing DNA repair and consequently resulting in more

robust apoptotic cell death (He et al., 2018). The

UHRF1 is highly expressed in RB without detectable

expression in normal retina and has been proposed to

mediate epigenetic deregulation of the genes critical

for RB tumorigenesis (Benavente et al., 2014).

Although our comprehensive DNA methylome analy-

ses revealed that the tumor-promoting functions of

UHRF1 in RB are largely independent of its role in

DNA methylation (Kan et al., 2017), UHRF1 may

exert other functions as an epigenetic regulator in RB

as it is known to interact with modified/unmodified

histones and several chromatin modifiers to regulate

gene expression (Bronner et al., 2013; Unoki, 2011). In

fact, a previous study reported that UHRF1 forms a

complex with HDAC1 and binds to methylated pro-

moters of tumor suppressor genes such as CDKN2A,

suggesting that UHRF1 mediates the tumor suppressor

repression in cooperation with HDAC1 (Unoki et al.,

2004). Investigating the roles for UHRF1 in RB cells

in response to HDAC inhibitors may provide a novel

insight into the eligibility of UHRF1 as a potential

target whose downmodulation can sensitize the cells to

HDAC inhibitors as is the case with conventional

chemotherapeutic drugs. Therefore, we examined the

effects of UHRF1 depletion on the sensitivity to

HDAC inhibitors in RB cells and the molecular mech-

anisms underlying the changes in drug sensitivity. Fur-

thermore, we evaluated the therapeutic efficacy of MS-

275 treatment upon UHRF1 downmodulation in a

murine orthotopic xenograft model of RB.

2. Materials and methods

2.1. Cell culture and reagents

Y79 and Weri-Rb1 were obtained from American Type

Culture Collection (ATCC, Manassas, VA, USA), and

SO-Rb50 was established at the Zhongshan Ophthalmic

Center (ZOC) (Yi and Jie, 1990). All RB cell lines were

maintained in RPMI-1640 containing 10% FBS and

penicillin-streptomycin (Gibco, Waltham, MA, USA).

SAHA and MS-275 were purchased from Selleck and

dissolved in dimethyl sulfoxide (DMSO) at a concentra-

tion of 10 mM. Sodium butyrate (NaBu; Selleck, Hous-

ton, TX, USA) was prepared in sterile water (200 mM),

and all-trans retinoic acid (RA; Selleck) was dissolved in

DMSO (200 mM). The oxidative stress indicator CM-

H2DCFDA (Invitrogen, Waltham, MA, USA) was

reconstituted as a 2 mM stock in DMSO, and N-acetyl-

cysteine (NAC; Sigma, St. Louis, MO, USA) was dis-

solved in sterile water (500 mM). Cells were treated with

drugs to final concentrations in culture media with vehi-

cle controls set up in parallel. Stable (long-term)

UHRF1-knockdown cells were used for most studies

unless indicated otherwise, and freshly generated at each

time of experiments by lentiviral shRNA transduction

mostly using the shUHRF1-1 clone and subsequent

selection on puromycin for 7–9 days beyond the short-

term knockdown (4 days post-lentiviral infection) as
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described previously (Kan et al., 2017). Lentiviral

knockdown in this study was performed using the

following shRNA clones from Dharmacon (Lafayette,

CO, USA):

shUHRF1-1: AAGAAGGAACGAATCAAAGGC

shUHRF1-2: AAAGCAGTTGAGAGCCAGCGC

shGSTA4 #654: ATAAGGAGAGCAGAAAGAC-

GC

shGSTA4 #839: TATGGCCTAAAGATGTTGTAG

shTXN2 #200: TTAAAGGTTGTCAAGGAGATC

shTXN2 #202: AATATCCACCTTGGCCATCAC

shRXRG: TAGTTCATGTTTCCAATCCCG

2.2. Human retinoblastoma tissues

Human primary RB tissues were obtained from the ocu-

lar tumor division and department of pathology at the

ZOC. The study with human clinical samples conformed

to the standards set by the Declaration of Helsinki and

was approved by the ZOC institutional review board.

All human specimens used for this study were de-identi-

fied, and written informed consent forms were obtained.

2.3. Cell viability and apoptosis assays

Y79 cells were plated at a density of 5 9 106 cells/

dish in duplicate per treatment group at each experi-

ment. After cells were treated with drugs at indicated

concentrations, cell viability was determined by direct

live cell counting based on trypan blue exclusion.

For apoptosis assays, cells were harvested by taking

all suspension cells in the medium and apoptotic cell

populations were detected by flow cytometry using

the Annexin V-FITC Apoptosis Kit (Roche, Basel,

Switzerland) according to the manufacturer’s instruc-

tion.

2.4. Western blot

Cleared lysates (25–30 µg) were subjected to 12.5%

SDS/PAGE. Antibodies for western blots are as fol-

lows: UHRF1 (sc-166898; Santa Cruz, Santa Cruz,

CA, USA); cH2AX (9718), cleaved PARP (9541),

TXN (2429), TXN2 (14907), p38 (8690), phospho-p38

(Thr180/Tyr182) (4511), acetyl-histone H3 (Lys9)

(9649), total histone H3 (9715), HDAC1 (34589), and

HDAC2 (57156) from Cell Signaling Technology

(Danvers, MA, USA); acetyl-histone H3 (06-599) and

acetyl-histone H4 (06-866) from Millipore (Burlington,

MA, USA); actin (A1978; Sigma), GSTA4 (ab134919;

abcam, Cambridge, MA, USA), and caspase-3 (40924;

Active Motif, Carlsbad, CA, USA).

2.5. Intracellular reactive oxygen species

detection

Cells were plated in poly-D-lysine (PDL)-coated vessels

and incubated with 10 µM CM-H2DCFDA (redox-sen-

sitive probe) in complete media at 37 °C for 30 min in

dark, and then washed with PBS twice to remove free

probe. Reactive oxygen species (ROS) fluorescence was

detected by fluorescence microscopy (Leica DMi8,

Wetzlar, Germany).

2.6. Differentiation assay

The differentiation potential of the stable Y79 control

and UHRF1-knockdown cells was examined by plating

the cells on PDL-coated flasks in the regular culture

medium for 24 h, followed by switching to serum-free

neurobasal medium containing G-5 supplement (Gibco)

with or without 1 µM MS-275 for an additional 24 h.

2.7. ChIP and quantitative RT-PCR

ChIP was performed by using SimpleChIP Enzymatic

Chromatin IP kit (Cell Signaling Technology) according

to the manufacturer’s instructions. The antibodies used

for ChIP are as follows: UHRF1 (612264; BD Bio-

sciences, Franklin Lakes, NJ, USA); total histone H3

(4620), HDAC1 (34589), and HDAC2 (57156) from Cell

Signaling Technology; acetyl-histone H3 (06-599) and

acetyl-histone H4 (06-866) from Millipore. ChIP DNA

was analyzed by PCR along with input DNA and quan-

tified as % input for each target before calculation of

fold changes or ratios of the signals among different

experimental groups. The qRT-PCR was performed by

analyzing samples in triplicate using at least three inde-

pendent sets of cDNA. The results were normalized by

the expression level of actin as an internal control. The

primer sequences used for the qRT-PCR and ChIP

assays are listed in supplementary data (Table S1).

2.8. RNA-sequencing analysis

Total RNA was isolated from stable Y79 shCTL and

shUHRF1 cells using RNeasy Plus Mini kit (Qiagen,

Germantown, MD, USA). RNA-seq libraries were pre-

pared using the standard Illumina protocols and sub-

jected to 50 bp single-end sequencing on an Illumina

HiSeq 2500 platform by BerryGenomics (Beijing,

China). The differentially expressed genes between con-

trol and UHRF1-knockdown cells were detected by

edgeR package, based on the analysis criteria of

≥ twofold change in expression and a FDR (false discov-

ery rate) threshold of 0.05. For the heat map analysis for
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a subgroup of the differentially expressed genes, relevant

genes represented by at least > 1 FPKM (fragments per

kilobase per million mapped fragments) in shUHRF1

cells were selected from the total differentially expressed

genes, based on the Gene Ontology (GO) annotations

and partial literature search. The GO analysis for differ-

entially expressed genes was performed by topGO pack-

age using the GO database downloaded from

geneontology.org with a P-value < 0.05. For the gene set

enrichment analysis, R package clusterProfiler was used

with gene sets downloaded from Molecular Signatures

Database (MSigDB). Enrichment scores were calculated

based on the log2 fold change in shUHRF1 cells over

control groups by walking down the whole transcrip-

tomic profile with an increasing running-sum statistic

when a gene is present in the gene set while decreasing

the statistic when the gene is not in that gene set. The

RNA-seq data in this study were deposited in the NCBI

Gene Expression Omnibus (GEO) database under the

accession number GSE135424.

2.9. Therapeutic study on orthotopic xenografts

Orthotopic xenografts of RB were established by inject-

ing control or UHRF1-knockdown Y79 cells (2 9 105 in

2 µL volume) into the vitreous of the right eye while leav-

ing the left eye uninjected as a control, using 6- to 7-

week-old BALB/c female nude mice (Model Animal

Research Center, Nanjing University). The intravitreal

transplantation was performed for 12 mice per round to

ensure the quality of the injected cells by following the

procedure described previously (Tschulakow et al., 2016).

On day 13 post-transplantation, tumor formation was

examined by in vivo retinal imaging with a Micron IV

retinal microscope (Phoenix Research Lab, Pleasanton,

CA, USA) after sedation of animals. Only the mice with

detectable tumors were subjected to the treatment with

MS-275 (10 mg�kg�1) by intraperitoneal injection every

other day for 2 weeks after grouping the mice with a

similar tumor burden between control and UHRF1-

knockdown xenografts based on the retinal imaging

results. The next day after the 2 weeks’ treatment, tumor-

burdened eyes were analyzed for the average tumor area

per eye by modifying the procedure described previously

(Dalgard et al., 2008). Briefly, nine to ten representative

sections spanning the whole eye globe were used for

hematoxylin and eosin (H&E) staining per eye by taking

every 50th section (4-µm-thick each) from one end of the

eyeball to the other end. The image of each section was

used for tumor area quantification in pixels with IMAGEJ

software (NIH, Bethesda, MD, USA), and tumor burden

per mouse was calculated by taking the average tumor

area per section from the nine to ten sections representing

different levels of the whole eyeball. Some of the serial

sections were subjected to immunostaining with anti-

UHRF1 antibody (sc-373750; Santa Cruz), following the

procedure described previously (Kan et al., 2017). All

animal studies were conducted with the approval of the

Sun Yat-sen University Institutional Animal Care and

Use Committee.

2.10. Statistical analyses

Statistical significance was determined from at least

three independent experiments by two-tailed unpaired

student’s t-test using GRAPHPAD PRISM (GraphPad Soft-

ware, La Jolla, CA, USA) unless indicated otherwise

in the legend.

3. Results

3.1. UHRF1 depletion sensitizes retinoblastoma

cells to HDAC inhibitors

We examined the relative viability of control and

UHRF1-knockdown Y79 RB cells in response to sev-

eral HDAC inhibitors (Fig. 1A–C). UHRF1-depleted

Fig. 1. UHRF1 depletion sensitizes RB cells to HDAC inhibitors. (A–C) Relative cell viability determined by live cell counting after treatment

with HDAC inhibitors. Stable control-knockdown (shCTL) and UHRF1-knockdown (shUHRF1) Y79 cells were treated with 1 µM SAHA (A),

1 µM MS-275 (B), and 1 mM NaBu (C) for the indicated time. The results are shown as the mean � standard deviation (SD) of % fold

changes from three independent experiments, relative to the cell viability in shCTL cells treated with vehicle (DMSO). *P < 0.05,

**P < 0.01, ***P < 0.001: unpaired Student’s t-test (two-tailed). (D) Immunoblots for indicated proteins in Y79 shCTL and shUHRF1 cells

after exposure to 1 µM SAHA, 1 µM MS-275, and 1 mM NaBu for the indicated time. Cells treated with 10 µM etoposide (Etopo) for 24 h are

shown as common positive controls for apoptosis in parallel. (E) Percentages of sub-G1 population determined by flow cytometry in shCTL

and shUHRF1 Y79 cells treated with HDAC inhibitors as in (D) for 24 h. The results are shown as the mean � SD from triplicate

experiments. (F) Annexin V+ apoptotic cell populations detected by flow cytometry after treatment with 1 mM NaBu or 1 µM MS-275 for

48 h. The percentage of population in each quadrant is shown. (G) Percentages of annexin V+ cells determined in (F). The results are shown

as the mean � SD from three independent experiments. *P < 0.05, **P < 0.01: unpaired Student’s t-test (two-tailed). (H) Immunoblots in

Weri-Rb1 shCTL and shUHRF1 cells treated with 1 µM MS-275 or 1 mM NaBu for 20 h. (I) Immunoblots in SO-Rb50 shCTL and shUHRF1

cells after exposure to 1 µM SAHA, 1 µM MS-275, and 1 mM NaBu for 28 h.
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cells showed a consistent increase in sensitivity to all

tested HDAC inhibitors. As HDAC inhibitors can

affect cell viability and proliferation by several

different mechanisms (Falkenberg and Johnstone,

2014), we first investigated whether enhanced apopto-

sis contributes to the higher sensitivity observed in
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UHRF1-depleted Y79 cells. HDAC inhibitors were

found to induce higher apoptotic responses in the

UHRF1-knowndown cells as demonstrated by elevated

levels of cleaved caspase-3 and poly(ADP-ribose) poly-

merase (PARP) (Fig. 1D). The increased sub-G1 and

annexin V+ apoptotic populations in UHRF1-knock-

down cells further supported the finding that UHRF1

depletion renders RB cells sensitized to HDAC inhibi-

tors (Fig. 1E–G). The higher sensitivity to HDAC

inhibitors following UHRF1 depletion was also

observed in other RB cells such as Weri-Rb1 and SO-

Rb50 (Fig. 1H,I), and could be detected by acute

UHRF1 knockdown as well in Y79 and Weri-Rb1

cells (Fig. S1A,B). When we examined the sensitization

to HDAC inhibitors using another shRNA clone tar-

geting UHRF1 (shUHRF1-2) in Y79 cells, we

observed higher basal apoptosis than shUHRF1-1

clone, which appeared to make the HDAC inhibitor

sensitivity with shUHRF1-2 clone much less clear

(Fig. S1C). However, we have consistently detected the

modest increase in DNA damage signal and cleaved

PARP in response to HDAC inhibitors upon

shUHRF1-2 clone-mediated knockdown at each time

of experiments. This observation raises a possibility

that the discrepancy in basal apoptosis between the

two shRNA clones may reflect certain levels of off-tar-

get effects. As the reduced cell viability determined by

live cell counts relative to control may be attributed to

cell cycle arrest as well, we have examined cell cycle

profiles for both control and UHRF1-knockdown cells

upon HDAC inhibitor treatment; however, we have

not observed any clear cell cycle arrest in UHRF1-de-

pleted cells in the presence and absence of HDAC

inhibitors (Fig. S2).

3.2. UHRF1 depletion deregulates redox-

responsive genes in retinoblastoma cells

To understand how UHRF1 depletion enhances apopto-

sis in RB cells in response to HDAC inhibitors, we per-

formed RNA-sequencing to identify differentially

expressed genes upon stable UHRF1 knockdown in Y79

cells. The gene expression analysis allowed us to identify

total 829 differentially expressed genes in UHRF1-

knockdown cells (Table S2). As ROS accumulation is

implicated in HDAC inhibitor-induced apoptosis in can-

cer cells (Rosato et al., 2003; Ungerstedt et al., 2005), we

sorted redox-related genes by GO annotations from the

total 829 differentially expressed genes and found the

marked expression changes in several redox-responsive

genes (Fig. 2A and Table S2). Although a recent study

reported that TXNIP (thioredoxin interacting protein) is

epigenetically repressed by UHRF1 and has a tumor

suppressor role in renal cell carcinoma cells (Jiao et al.,

2019), our further validation in RB cells revealed that

basal TXNIP expression and biological responses to

HDAC inhibitors are inconsistent in Y79 and Weri-Rb1

cells upon UHRF1 depletion (data not shown), suggest-

ing that the role of TXNIP may be tumor-specific. How-

ever, expression of GSTA4 (glutathione S-transferase a4)
and TXN2 (thioredoxin-2) was consistently low at both

transcript and protein levels in UHRF1-depleted cells

(Fig. 2B,C). When we examined the expression changes

for these genes in response to HDAC inhibitors in

UHRF1-depleted RB cells, the basal and HDAC inhibi-

tor-induced levels of GSTA4 were substantially lower in

the UHRF1-knockdown cells than in control cells

(Fig. 2D,E). Furthermore, the mitochondrial thioredoxin

TXN2 was found to be reduced in UHRF1-knockdown

cells, while cytosolic TXN remained constant compared

to the control counterparts (Fig. 2D,E). The decreased

GSTA4 and TXN2 protein was also observed upon acute

UHRF1 knockdown and could be detected with another

shUHRF1 clone-mediated knockdown (Fig. S3A–C). Of

note, our RNA-sequencing results did not reveal any sig-

nificant expression changes in genes involved in intracel-

lular ROS generation, pointing to a possibility that

UHRF1 depletion mainly deregulates ROS-detoxifying

genes represented by GSTA4 and TXN2.

3.3. Downregulation of GSTA4 and TXN2 by

UHRF1 depletion contributes to enhanced

sensitivity to HDAC inhibitors in retinoblastoma

cells

The downregulation of GSTA4 and TXN2 upon

UHRF1 depletion suggested that these cells may

encounter increased oxidative stress due to the impaired

ROS detoxification, contributing to enhanced suscepti-

bility to ROS-mediated apoptosis driven by HDAC

inhibitors. In line with the possibility, a higher level of

intracellular ROS was detected in the UHRF1-depleted

cells (Fig. 3A,B), and treatment with an antioxidant

NAC reduced both basal and MS-275-induced DNA

damage signal and caspase-3 activation in UHRF1-

knockdown cells, while PARP cleavage was not reduced

by NAC treatment (Fig. 3C). Consistent with the

increased oxidative stress in UHRF1-depleted cells, p38

phosphorylation was significantly higher in HDAC inhi-

bitor-treated UHRF1-knockdown cells, while there

were no remarkable changes in expression of NRF2, a

regulator of antioxidant defense, in the presence and

absence of HDAC inhibitors in UHRF1-depleted cells

(Fig. S4A–C). Knockdown of GSTA4 alone in RB cells

markedly increased the DNA damage and apoptotic sig-

nals even without treatments, and HDAC inhibitors
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further augmented the apoptosis (Fig. 3D,E). Similarly,

TXN2 depletion sensitized RB cells to HDAC inhibitors

(Fig. 3F,G), indicating that impaired ROS detoxifica-

tion in UHRF1-knockdown cells may account for the

higher sensitivity to HDAC inhibitors. In human pri-

mary RB tissues, GSTA4 and TXN2 proteins were

found to be mostly elevated along with high UHRF1

expression (Fig. 3H), supporting a role for UHRF1 in

redox homeostasis mediated by GSTA4 and TXN2

although biological responses including gene expression

changes in the UHRF1-knockdown cells may not fully

reflect what occurs in tumors.

3.4. UHRF1 depletion derepresses expression of

photoreceptor genes in retinoblastoma cells

UHRF1 is known to be a transcriptional corepressor

that silences genes involved in cellular differentiation

(Enane et al., 2018). Interestingly, our RNA-sequenc-

ing analysis revealed that many photoreceptor-specific

genes were upregulated in UHRF1-depleted cells

(Fig. 4A and Fig. S5, Table S2), which is consistent

with previous reports that human RB displays pho-

toreceptor-like features (McEvoy et al., 2011; Xu

et al., 2009) and Y79 cells differentiate predominantly

into a neuronal, photoreceptor cell population by a

differentiation agent succinylated concanavalin A (Sei-

gel and Notter, 1993). When a series of photoreceptor-

specific genes was examined for expression changes fol-

lowing UHRF1 depletion for a short term (4 days

post-lentiviral infection without further selection on

puromycin) and long term (8 days’ selection on puro-

mycin in addition to the initial 4 days postinfection),

all indicated genes were induced by the UHRF1

knockdown and the induction level was significantly

higher in long-term UHRF1-knockdown cells than in
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short-term knockdown cells (Fig. 4B,C). The higher

gene induction along the duration of UHRF1 deple-

tion suggested that these genes may get epigenetically

derepressed through cell divisions. The derepression of

photoreceptor-related genes was also observed in

Weri-Rb1 cells upon stable (long-term) UHRF1

knockdown although the gene induction was not as

robust as in Y79 knockdown cells (Fig. S6). As

HDAC can be recruited to specific loci for gene silenc-

ing by UHRF1 and other corepressor complexes (For-

misano et al., 2015; Unoki et al., 2004), we tested

whether HDAC inhibitors can further derepress the

photoreceptor genes in combination with UHRF1

depletion. For this test, MS-275 was chosen as it gave

the highest and sustained accumulation of histone

acetylation (Fig. 4D), and the MS-275 treatment

resulted in further induction of photoreceptor genes in

UHRF1-knockdown cells (Fig. 4E).

3.5. Increased histone H3 acetylation at

photoreceptor gene promoters in UHRF1-

depleted retinoblastoma cells

To investigate whether the photoreceptor gene induc-

tion in UHRF1-depleted RB cells is associated with

increased histone acetylation at the gene promoters,

we performed ChIP for histone acetylation marks on a

subset of photoreceptor genes (Fig. 5A). As is the case

with a known UHRF1 target CDKN2A (Unoki et al.,

2004), acetylation on histone H3 was higher for RXRG

(retinoid X receptor c) and RCVRN (recoverin) pro-

moter in UHRF1-knockdown cells than in control

cells (Fig. 5A). The increase in histone H3 acetylation

at the promoters was not due to changes in HDAC

levels in UHRF1-depleted cells (Fig. 5B). Consistent

with the previous report that UHRF1 can recruit

HDAC1 to promoters for gene repression (Unoki

et al., 2004), UHRF1 was found to be associated with

several photoreceptor gene promoters, and HDAC

binding to the identical promoter regions was modestly

but consistently reduced in UHRF1-depleted cells

(Fig. 5C,D). The modest decrease in HDAC binding

upon UHRF1 knockdown suggested that HDAC can

be recruited to the promoters to a certain extent by

residual UHRF1 and/or by other corepressor com-

plexes in the cells. When we directly inhibited HDAC

by MS-275 treatment, higher histone H3 acetylation

was observed for a subset of photoreceptor gene pro-

moters (Fig. 5E), which correlated with increased gene

expression by MS-275 treatment (Fig. 4E). Of note,

histone H4 acetylation at the photoreceptor gene pro-

moters was not significantly different between

UHRF1-depleted cells and control cells (Fig. 5A and

Fig. S7A), implying that acetylation status on histone

H4 may not play a key role in transcriptional regula-

tion. In addition, not all promoters of photoreceptor

genes that are induced by UHRF1 depletion and MS-

275 treatment showed the accumulation of acetylated

histone H3 in UHRF1-depleted cells (Fig. S7B), sug-

gesting that the expression of such genes may be regu-

lated indirectly by other factors in the UHRF1-

knockdown cells. We reasoned that RXRG may be one

of the factors as it is a critical transcription factor for

photoreceptor development (Li et al., 2003, 2002) and

the RXRG expression is induced by UHRF1 depletion.

When we examined the expression changes for a series

of photoreceptor genes in RXRG-knockdown Y79

cells, most of the examined genes were found to be

downregulated (Fig. S8).

3.6. The growth-inhibitory effects of MS-275 in

UHRF1-depleted cells are mainly through

inducing apoptosis

As UHRF1 depletion derepresses the expression of

photoreceptor genes in RB cells, we investigated

whether UHRF1-depleted cells would have a higher

differentiation potential and whether this feature can

contribute to growth inhibition in combination with

MS-275 treatment. When we examined the differentia-

tion of UHRF1-depleted cells by exposing to a neu-

ronal differentiation medium with or without MS-275,

the UHRF1 knockdown alone caused significant mor-

phological changes featured by outgrowth of neurite-

Fig. 3. Downregulation of GSTA4 and TXN2 by UHRF1 depletion contributes to enhanced sensitivity to HDAC inhibitors in RB cells. (A)

Detection of basal intracellular ROS levels by reactivity with a fluorescent probe in Y79 shCTL and shUHRF1 cells. ROS (green fluorescence)-

positive cells are shown along with phase contrast images of the cells on the left. Scale bars: 50 µm. (B) Quantification of ROS-positive cells

shown in (A). Over 900 total cells from five randomly selected fields were evaluated for ROS positivity. The data represent the mean � SD

from two replicates. (C) Immunoblots for indicated proteins in Y79 control (�) and UHRF1-knockdown (+) cells subjected to a single or

combined treatment with 10 mM NAC and 1 µM MS-275 for 48 h. (D) Immunoblots in Y79 shGSTA4 (clones #654 and #839) cells treated

with 1 µM MS-275 for 24 h. (E) Immunoblots in Weri-Rb1 shGSTA4 cells treated with 1 µM MS-275 or 1 mM NaBu for 20 h. (F) Immunoblots

in Y79 shTXN2 (clones #200 and #202) cells treated with 1 µM MS-275 for 48 h. (G) Immunoblots in Weri-Rb1 shTXN2 cells treated as in (E).

(H) Expression of GSTA4 and TXN2 in human RB tumor lysates. Relative abundance of proteins determined by densitometry is shown below

each panel of the blots, in comparison with the first human RB sample on each panel. RPE: retinal pigment epithelium.
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like processes (Fig. 6A). MS-275 treatment only

slightly increased the percentage of cells with morpho-

logical changes in UHRF1-depleted cells while there

was a significant increase in cells with processes in con-

trol-knockdown cells upon MS-275 treatment

(Fig. 6B). Then, we investigated whether the photore-

ceptor gene induction and enhanced differentiation

potential in UHRF1-depleted cells can contribute to

the increased growth-inhibitory effects of MS-275 that

are observed in UHRF1-knockdown cells (Fig. 1B).

As the first step of the investigation, we determined

the relative level of photoreceptor gene induction in

comparison with RA, a well-known differentiation

agent which promotes neuron-like morphological

changes but does not induce significant apoptosis

below 10 µM in RB cells (Conway et al., 1997; Li

et al., 2003). As the control-knockdown cells have

photoreceptor gene repression mediated by intact
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UHRF1, we performed the comparisons only in

UHRF1-knockdown cells. The RA exerted much more

potent effects on photoreceptor gene induction than

MS-275 in UHRF1-depleted cells (Fig. 6C), however,

did not cause any significant decrease in cell numbers

in comparison with vehicle-treated control whereas

MS-275-treated cells showed a modest decrease in cell

numbers during the same treatment time (Fig. 6D).

These results suggested that the relatively lower pho-

toreceptor gene induction in MS-275-treated UHRF1-

knockdown cells may not contribute to the decreased

cell number as the RA-treated counterparts with a

higher differentiation potential based on the higher

photoreceptor gene induction do not show any dis-

cernible growth-inhibitory effects during the treatment

time. When we further examined the basis for the

modest decrease in cell counts of UHRF1-depleted

cells upon MS-275 treatment, the growth-inhibitory

effect appeared to be caused by apoptosis although we

used a lower dose of MS-275 to reduce its apoptosis-

inducing effects and yet promote the derepression of

photoreceptor genes for these assays (Fig. 6E). The

lack of RA-induced apoptosis may be one clue that

differentiation-associated changes might not contribute
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to apoptosis and more detailed understanding of dif-

ferentiation effects driven by UHRF1 knockdown

would be needed. However, as we have not observed

any significant increase in G0/G1 population in

HDAC inhibitor-treated UHRF1-knockdown cells

(Fig. S2), the photoreceptor gene induction and mor-

phological changes in the UHRF1-depleted cells also

appeared to be insufficient to promote terminal differ-

entiation for growth inhibition. Taken together, these

data suggest that the enhanced growth-inhibitory

effects of MS-275 in UHRF1-depleted cells are mainly

through inducing apoptosis, rather than promoting

terminal photoreceptor differentiation in cooperation

with UHRF1 depletion.

3.7. UHRF1 depletion enhances therapeutic

effects of HDAC inhibitor in orthotopic

xenografts of retinoblastoma

To determine the effects of UHRF1 depletion on the

therapeutic efficacy of HDAC inhibitors in vivo, we

established an orthotopic xenograft model of human

RB by transplanting either control or UHRF1-knock-

down Y79 RB cells intravitreally into the eyes of

immunocompromised mice (Fig. 7A). The xenografted

mice were examined for tumor development by retinal

imaging on day 13 post-transplantation (Fig. 7B), and

only the mice with detectable tumors were included in

the study and subjected to MS-275 treatment.

Untreated xenografts of control cells typically develop

conspicuous tumors featured by swollen eyeballs over

30–35 days post-transplantation (Fig. 7C). Systemi-

cally administered MS-275 can be delivered to the eyes

of treated mice as evidenced by the increased histone

acetylation in retinal tissues, and a low dose

(10 mg�kg�1) of MS-275 was adopted for the whole

treatments as both high and low doses of MS-275

resulted in a similar level of increase in histone acetyla-

tion in retina (Fig. 7D). Following the 2 weeks’ treat-

ment, tumor-burdened eyes were analyzed for average

tumor area to determine whether UHRF1 depletion

would affect the therapeutic efficacy of MS-275. Both

control and UHRF1 knockdown cell-injected eyes

showed intravitreal tumor growth, which was often

accompanied by tumor cell invasion into anterior

chamber and retina (Fig. 7E). UHRF1 immunostain-

ing verified that UHRF1 depletion in tumors derived

from UHRF1-knockdown Y79 cells was well main-

tained through the end of the study (Fig. 7F). Without

MS-275 treatment, UHRF1 depletion alone slightly

reduced the mean value of tumor areas compared to

the control cell-injected eyes; however, the difference

did not reach the statistical significance in our

experimental conditions (Fig. 7G). When xenografted

mice were treated with MS-275, there was a significant

reduction in tumor areas from UHRF1-knockdown

group in comparison with control-knockdown counter-

parts (Fig. 7H). These data demonstrate that UHRF1

depletion may exert a marginal inhibitory effect on

tumor growth but can clearly enhance the therapeutic

efficacy of MS-275 on tumor size reduction.

4. Discussion

Identification of novel genetic pathways or molecular

targets whose disruption sensitizes cancer cells to pre-

existing chemotherapeutics would be beneficial to

improve the efficacy of current chemotherapy. In line

with this rationale, we recently discovered that

UHRF1 downmodulation in RB cells increases the

sensitivity to conventional genotoxic drugs, which are

widely used for chemoreduction as the first-line ther-

apy for RB (He et al., 2018). We found that UHRF1

depletion impedes DNA repair in RB cells by down-

regulating XRCC4 (X-ray repair cross complementing

4) involved in nonhomologous end-joining repair,

which leads to higher apoptotic cell death in response

to DNA damages induced by the genotoxic drugs.

In this study, we further evaluated the possibility of

UHRF1 working as a target whose downmodulation

can sensitize RB cells to HDAC inhibitors. The

HDAC inhibitors are known to exert their growth-in-

hibitory effects by several different mechanisms

(Falkenberg and Johnstone, 2014). Apoptosis and cell

cycle arrest can directly affect the cell viability and

proliferation, and account for anticancer effects of

HDAC inhibitors in many cancer cells. While cell cycle

arrest was not obvious in UHRF1-depleted RB cells

upon HDAC inhibitor treatment, higher apoptosis was

clearly observed in the UHRF1-knockdown cells.

Through further investigations for the mechanisms

underlying the enhanced sensitivity to HDAC inhibi-

tors in UHRF1-depleted cells, we found that UHRF1

downmodulation significantly decreases the expression

of GSTA4 and TXN2 in RB cells. Combined effects of

each gene perturbation were sufficient to disturb the

delicate balance for redox homeostasis in UHRF1-de-

pleted RB cells and augmented the ROS-mediated

apoptosis in response to HDAC inhibitors. Notably,

GSTA4 is highly induced by HDAC inhibitor treat-

ment in RB cells, indicative of its critical role in coun-

teracting ROS accumulation driven by HDAC

inhibitor treatment. Furthermore, the GSTA4 was

reported to possess the highest glutathione peroxidase

activity among the three mitochondrial GST isoforms

purified from the mouse liver (Raza et al., 2002).
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Considering that mitochondria are the major source of

intracellular ROS (Zorov et al., 2014) and the mito-

chondrial thioredoxin TXN2 is significantly reduced in

UHRF1-depleted cells, it is plausible that even modest

perturbation in GSTA4 expression may exert substan-

tial effects on ROS detoxification in response to

HDAC inhibitors. Indeed, depletion of GSTA4 alone

was found to induce massive DNA damage and apop-

tosis in RB cells and further sensitized the cells to

HDAC inhibitors. These results suggest a possibility

that selective modulation of mitochondrial GST isoen-

zymes in UHRF1-depleted RB cells may determine the

susceptibility to ROS-mediated apoptosis. Currently,

how UHRF1 regulates the expression of GSTA4 and

TXN2 remains unclear; however, the transcriptional

regulation is likely to be indirect effects mediated by

other UHRF1 targets since UHRF1 works mostly as a

transcriptional repressor by recruiting repressive chro-

matin modifiers onto the target promoters (Kim et al.,

2009; Unoki et al., 2004). As UHRF1 downmodula-

tion can sensitize RB cells to both standard genotoxic

drugs and HDAC inhibitors, combination therapy

using these two types of drugs is expected to be effica-

cious, while doses of each drug can be reduced to

achieve similar or better therapeutic effects with

decreased cytotoxicity for noncancer cells. Alterna-

tively, UHRF1 targeting may allow for the rational

choice of either type of drugs in the course of RB

treatment as the identified mechanisms underlying the

potential therapeutic effects of UHRF1 depletion such

as defects in DNA repair and intracellular ROS detox-

ification may affect the efficacy of both types of drugs.

As UHRF1 is not expressed in normal retina (Kan

et al., 2017), local UHRF1 targeting in the eyes is

expected to result in selective therapeutic effects with

these drugs.

Another potential mechanism for HDAC inhibitors

to exert growth-inhibitory effects in cancer cells is

induction of cellular differentiation through lineage-

specific gene expression and cell cycle exit (Ceccacci

and Minucci, 2016; Falkenberg and Johnstone, 2014).

In fact, differentiation therapy has been a promising

therapeutic strategy for the treatment of acute myeloid

leukemia by inducing myeloid differentiation with epi-

genetic drugs (Bots et al., 2014; Saunthararajah et al.,

2012). We discovered that UHRF1 directly represses

the expression of photoreceptor genes in Y79 cells in

cooperation with HDACs and also indirectly by its

downstream target. This finding led us to a possibility

that UHRF1 depletion in combination with treatment

of HDAC inhibitors or other differentiation agents

may exert significant growth-inhibitory effects in Y79

cells by promoting photoreceptor-like differentiation.

Differentiation block

RXRG

Photoreceptor 
differentiationROS homeostasis

UHRF1

TF
UHRF1 HDAC

RCVRN
OPN1MW

UHRF1
TXN2
GSTA4 

Protection against intracellular ROS  
and HDAC inhibitors

Apoptosis

Fig. 8. Proposed functions of UHRF1 in RB cells identified in this

study. UHRF1 regulates ROS-responsive genes to counteract the

accumulation of intracellular ROS that RB cells may encounter due

to their high metabolic activities for robust proliferation. This new

function of UHRF1 may also contribute to protection against ROS-

generating drugs such as HDAC inhibitors to evade apoptotic cell

death. On the other hand, UHRF1 participates in repression of

photoreceptor differentiation as a corepressor in a multiprotein

complex containing HDAC and presumably transcription factor (TF)

to repress the photoreceptor-specific genes.

Fig. 7. UHRF1 depletion enhances therapeutic effects of HDAC inhibitor in orthotopic xenografts of RB. (A) Schematic of orthotopic

xenograft study. (B) Retinal imaging to monitor tumor development on day 13 post-transplantation of shCTL and shUHRF1 Y79 cells.

Xenografted eyes develop white cloud-like tumors circled by dotted lines, whereas uninjected eyes show a clear retinal view. ON, optic

nerve. (C) RB development in shCTL-xenografted eye indicated by an arrowhead, in contrast to uninjected left eye. (D) Immunoblots for

indicated proteins in retinal tissue lysates from the mice treated with either vehicle or two different doses of MS-275 by intraperitoneal

injection every other day for 2 weeks (four mice per group). (E) Representative images of tumor-burdened eyes from each indicated group

after H&E staining. AC, anterior chamber, L, lens, ON, optic nerve. (F) Immunostaining for UHRF1 on the indicated xenograft tumor

sections. T: tumor, R: retina, scale bars: 50 µm. (G, H) Plots of average tumor area quantification in shCTL and shUHRF1 Y79 xenografts

without treatments (G) or with MS-275 treatments (H). Data points on the plots represent the average tumor area per section per mouse

(n = 14–18 mice per group), and the horizontal bar of the dot plots indicates the mean value. The statistical analysis was performed by

Mann–Whitney test (two-tailed).
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Although MS-275 treatment further upregulated pho-

toreceptor gene expression in UHRF1-depleted Y79

cells and increased the frequency of morphological

changes, the growth-inhibitory effects of MS-275 were

mainly through inducing apoptosis rather than differ-

entiation-mediated growth arrest. In our experimental

conditions, prolonged treatment with HDAC inhibi-

tors beyond 2–3 days induced a substantial level of

apoptosis in UHRF1-depleted cells even at low con-

centrations (data not shown), rendering the contribu-

tion of cell differentiation to the growth-inhibitory

effects very marginal if any. An early study reported

that Y79 RB cells pretreated with retinoic acid/NaBu

in vitro did not develop tumors after subretinal trans-

plantation of the treated cells into immunosuppressed

rats, implying that tumorigenicity of Y79 cells can be

suppressed by drug-induced in vitro differentiation (del

Cerro et al., 1992). However, another study reported

that massive morphological differentiation of Y79 cells

by neurotrophic agents was not sufficient for suppress-

ing tumor formation upon subretinal transplantation

(Seigel et al., 1994). These results suggest that exten-

sive morphological differentiation in vitro may not

indicate that the cells are mitotically arrested to sup-

press tumorigenicity although specific differentiation

markers are expressed to cause the neuron-like mor-

phological changes. This appears to be the case for

our experimental settings as UHRF1-depleted Y79

cells treated with retinoic acid express much higher

levels of photoreceptor genes than those treated with

MS-275 but do not show any decrease in cell prolifera-

tion based on the live cell counts. Nevertheless, it is

worth noting that UHRF1 participates in repression

of photoreceptor differentiation in RB cells at least in

part. As poorly differentiated RB is associated with

multiple high-risk histopathologic factors to some

extent (Kashyap et al., 2012), the negative role of

UHRF1 in photoreceptor differentiation may present

a novel insight into the tumor-promoting functions of

UHRF1 in RB cells in addition to its implication in

ROS homeostasis and protective roles against HDAC

inhibitor-induced cell death (Fig. 8).

5. Conclusions

In summary, we presented experimental evidences doc-

umenting that UHRF1 downmodulation can sensitize

RB cells to HDAC inhibitors by augmenting oxidative

stress-mediated apoptosis via downregulation of

GSTA4 and TXN2, along with a newly identified role

for UHRF1 in epigenetic repression of photoreceptor

genes in RB cells. Therefore, this study provides fur-

ther mechanistic insights into how UHRF1 targeting

may be beneficial for combination therapies with other

drugs to improve the efficacy of current chemotherapy

for RB.
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