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Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly
fatal infection in humans. Proper polarization and bactericidal activity of macrophages play
essential roles in defending against invading pathogens. How macrophages limit V.
vulnificus infection remains not well understood. Here we report that tuberous sclerosis
complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage
polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of
TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus
infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages
show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1
in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V.
vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity
significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant
bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V.
vulnificus infection causes cell death of macrophages, possibly contributes to defective of
bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings
highlight an essential role for the TSC1-mTOR signaling in the regulation of innate
immunity against V. vulnificus infection.

Keywords: Vibrio vulnificus, tuberous sclerosis complex 1, mammalian target of rapamycin, macrophage,
polarization, bactericidal activity
INTRODUCTION

Vibrio vulnificus (V. vulnificus) is an emerging estuarine bacterium of coastal waters worldwide,
such as the United States, Japan, China, South Korea, and Mexico (Zhao et al., 2015; Heng et al.,
2017). The bacterium can cause severe gastrointestinal disease, wound infections, and highly fatal
sepsis. The pathogenesis of virulence factors produced by V. vulnificus was well defined, however
how the host immune response to this bacterium is still unclear. Macrophages are one of the most
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prominent cell lineages of innate immunity, which play an
important role as sentinels against microbes (Ishii et al., 2008;
Diacovich and Gorvel, 2010). The receptors on the macrophage
cell surface (toll-like receptors, TLRs) or in the cytoplasm
(nucleotide-binding oligomerization domain-like receptors,
NLRs), recognize various bacterial components and infectious
agents and induce macrophage activation (Ishii et al., 2008).

The different stages of macrophage activation are described as
M1 (classical) and M2 (alternative) polarization. M1 and M2
macrophages are functionally polarized in response to bacterial
infection (Mege et al., 2011). M1 macrophages are activated by
LPS and IFN-g to elaborate proinflammatory cytokine
production and tissue inflammation to promote cell apoptosis
(Mosser and Edwards, 2008). After LPS stimulation, M1
macrophages produce proinflammatory cytokines, such as
TNF-a, IL-6, IL-12, and IL-1b (Mogensen, 2009; Patel et al.,
2017). M2 macrophages are stimulated by Th2 cytokines IL-4
and IL-13 to promote helminthic immunity, fibrosis, allergy, and
immunomodulation (Odegaard et al., 2007; Sica and Mantovani,
2012). Generally, macrophages are polarized toward an M1
response to kill the invading organisms and activate adaptive
immunity in the early stage of bacterial infection (Liu et al.,
2014). However, an excessive or prolonged M1 program is
deleterious for the host after Escherichia coli, Toxoplasma
gondii, or Pseudomonas aeruginosa infection (Benoit et al.,
2008; Kong et al., 2015; Chen et al., 2018). Additionally, during
sepsis, the accumulated M1-type cytokines in the circulatory
system are highly correlated with mortality (Bozza et al., 2007).
Rapamycin, an mammalian target of rapamycin complex 1
(mTORC1) inhibitor, was reported to inhibit M2 macrophage
polarization (Jin et al., 2018).

We previously reported that V. vulnificus-induced the
mTORC1 activation and server inflammatory responses in
macrophages (Xie et al., 2017). The serine-threonine kinase
mTOR is a critical regulator in both innate and adaptive
immune cells. In mammal cells, mTOR exists in two
complexes: mTORC1 and mTORC2, which control the specific
effector functions in the innate immune cells, including
metabolism, phagocytosis, cytokine production, and
macrophage polarization (Covarrubias et al., 2015; Weichhart
et al., 2015). Whereas the pathogenesis of V. vulnificus-induced
inflammation via mTORC1 activation in macrophages remains
mostly unknown. Tuberous sclerosis complex 1 (TSC1) and
TSC2 are tumor suppressor genes. TSC1 and TSC2 negatively
regulate mTORC1 activity. TSC1 associates with TSC2 to form
a heterodimer. TSC1 is also essential for TSC2 activity by
the maintenance of TSC2 protein stability (Pan et al., 2012;
Xie et al., 2012). Genetic loss of either TSC1 or TSC2 leads to
tumorigenesis correlated with overactivated mTORC1 signaling.
Recently studies have shown that TSC1/2-mTORC1 signaling
plays significant roles in M2 polarization responding to IL-4
(Byles et al., 2013). However, little is known regarding the role
of TSC1 mediated macrophage polarization in the regulation of
V. vulnificus infection.

In this study, we report that TSC1f/f-LyzCre+ mice show a
significantly elevated death after V. vulnificus infection by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
comparing it with C57BL/6J wild-type mice. The V. vulnificus-
infected TSC1f/f-LyzCre+ mice have a marked defect of
bactericidal activity in the spleen, lung, and liver. In wild-type
mice, V. vulnificus infection causes M1 polarization. We confirm
that TSC1 deficient macrophages are skewed towards M1
phenotypes. Besides, mTORC1 overactivation in the TSC1
deficient macrophage also results in increased cell-death after
V. vulnificus infection. However, rapamycin treatment, at least in
part, blocks V. vulnificus-induced M1 polarization in both wild-
type and TSC1 deficient macrophages. Our results indicate that
TSC1 mediated mTORC1 activity plays a crucial role in the
regulation of the macrophage viability, polarization, and
bacterial clearance, which might contribute to host defense in
V. vulnificus infection.
MATERIALS AND METHODS

Mice
We purchased the 6- to 8-wk-old C57BL/6J mice from the
Chinese Academy of Science Shanghai SLAC Laboratory
Animal Center. The Tsc1 flox mice and LysozymeCre (LyzCre)
transgenic mice were purchased from The Jackson Laboratory.
Tsc1 flox mice were bred with LysozymeCremice to induce TSC1
deletion in myeloid cells.

Bacterial Strains and Cell Culture
L-929 cells were purchased from the Cell Bank of the Chinese
Academy of Science in Shanghai and cultured in RPMI1640
containing 10% heat-inactivated fetal bovine serum (Tianhang
Bio) and penicillin-streptomycin (50 IU/ml and 50 mg/ml,
Beyotime). The China General Microbiological Culture
Collection Center provided the Vibrio vulnificus CGMCC
1.1758 strain, which was grew at 37°C in brain heart infusion
broth (BHI) or on the BHI blood agar plate. The procedures of V.
vulnificus that were used in this study were followed from the
standard biological hazards at Biosafety Level 2 and the safety
procedures of Wenzhou Medical University Laboratory
Safety Department.

Reagents and Antibodies
Anti-mF4/80-APC, anti-mCD11b-PE, PE Annexin V Apoptosis
Detection Kit I andCytofix/Cytoperm™ and perm/wash
solutions were purchased from BD Biosciences Pharmingen
(San Diego, CA, USA). Anti-miNOS-PE was purchased from
eBioscience. Anti-mCD206-APC was purchased from
BioLegend. Hamartin/TSC1 (D43E2) Rabbit mAb, phospho-S6
Ribosomal Protein (Ser235/236) (D57.2.2E) XP® Rabbit mAb,
phospho-p70 S6 Kinase (Thr389) (D5U1O) Rabbit mAb, and
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb were
purchased from Cell Signaling Technology (CST). Phosphatase
Inhibitor Cocktail (Millipore) was purchased from Sigma-
Aldrich. Mouse TNF-a Elisa kit, Mouse IL-6 Elisa kit, Mouse
IL-1b Elisa kit, LEGENDplex™ Mouse Th1/Th2 Panel (8-plex)
(San Diego, CA, USA). LIVE/DEAD Fixable Blue Dead Cell Stain
Kit (for UV excitation) was purchased from Invitrogen.
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RNA Sequencing
J774A.1 cells with 6 h V. vulnificus infection or PBS treatment
were used for RNA sequencing. Briefly, the cells were lysed in
TRIzol and subjected to Annoroad Co. for RNA extraction,
sequencing, and transcriptome profi le analysis. The
significantly differentially expressed genes were identified when
we compared the normalized reads count between V. vulnificus
and PBS groups with p < 0.05 and |Log2FoldChange| > 0.263.
The significance of the gene ontology term enrichment was
estimated using Fisher’s Exact Test (p value).

V. vulnificus Infection of Bone Marrow-
Derived Macrophages (BMMfs) In Vitro
The bone marrow cells were isolated from femurs and tibiae and
cultured them with a 10% L-929 cell culture medium, as
described previously (Pan et al., 2012). Bone marrow cells were
cultured with 1640 medium (Gibco) containing 10% (v/v) FBS
and 15% (v/v) L929 conditional medium for seven days to obtain
bone marrow-derived macrophages. A total of 1 × 106 BMMfs
from both TSC1flox/flox LysM-Cre (TSC1 KO) and C57BL/6J
(WT) were equally seeded in six-well plates or 35 mm dishes and
cultured at 37°C for overnight. We then added V. vulnificus at
the indicated multiplicity of infection (2MOI) to the cells for 2 h
and 4 h. The supernatant was collected at the indicated time
for cytokine quantification. The infected cells were used for
flow cytometry analysis, RT-qPCR analysis, and Western
blot analysis.

In Vivo Infection
We used i.p. injection to infect male C57BL/6J and TSC1flox/flox

LysM-Cre mice with V. vulnificus. For survival experiments, we
injected mice with 0.5 × 108 CFU of V. vulnificus suspended in
200 ml of PBS or PBS alone. The mice were observed every 6 h for
48 h, and the mice that survived for 48 h should have been
humanely killed. We euthanized and exsanguinated the mice 4 h
after infection for blood and tissue collection. The V. vulnificus
engulfed by phagocytes consisting of organs could be counted by
grinding the organs completely with PBS and detected with BHI
blood agar.

Quantitative PCR Analysis
The inflammatory response of macrophages was induced by
2MOI of V. vulnificus for 2 h and 4 h. Total RNA was extracted
with TRIzol (Omega Bio-Tek). The reverse transcription was
performed with PrimeScript Reverse Transcriptase (RR037A,
Takara Bio) according to the manufacturer’s instructions. Real-
time qPCR was performed as previously described (Xie et al.,
2012). The primers were shown in Supplementary Table 1. To
determine the relative induction of cytokine mRNA in response
to various stimuli, the mRNA expression was normalized with b-
actin and then was calculated using 2-DDCT method.

Western Blot Analysis
Cell lysates preparation and Western blot analysis were
performed by following the previous protocol (Xie et al., 2012).
Briefly, Macrophages were cultured in RPMI 1640 medium with
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10% FBS in six-well plates. Cells were treated with 2 MOI of V.
vulnificus for 1 or 4 h. Cells were washed twice in cold PBS, then
were lysed in RIPA buffer (Beyotime Bio) with protease and
phosphatase inhibitor cocktails (Sigma) for 15 min at 4°C.
Protein concentration was determined by Bradford assay.
Protein samples were analyzed by SDS–PAGE gel and
transferred to PVDF membrane. The membrane was blocked
with 5% non-fat dried milk in TBST (100 mM Tris–HCl pH 7.5,
150 mM NaCl, 0.05% Tween20) for 1 h, then incubated with
indicated primary antibodies overnight on a shaker at 4°C. The
appropriate HRP-coupled secondary antibody was then added
and was detected through ECL chemiluminescence (BioRad).
b-actin was used as a protein loading control.

Cytokine and Nitric Oxide Production
Assay
Cytokine concentration was determined using ELISA kits for IL-
1b, TNFa, and IL-6 (BioLegend). We purchased a nitric oxide
Test Kit from Nanjing Jiancheng Bio to measure nitric oxide
production in the supernatant. Briefly, the supernatant from
cultured-cells with indicated treatment was collected and
centrifuged at 4°C 2,000 g per 15 min, and then was analyzed
by following the manufacturer’s instruction.

Measurement of Cytokines by Multiplex
Flow Assay
The plasma inflammatory cytokines were detected by flow
cytometry with LEGENDplex™ Mouse Th1/Th2 Panel (8-plex,
Biolegend) kit by following our previous protocol (Xie et al.,
2017). Briefly, we assessed the cytokine concentrations in
serum and supernatants of cultured cells according to the
manufacturer’s instructions. We collected data using a BD
FACSAria II and analyzed them with LEGENDplex data analysis
software (Biolegend).

Intracellular and Extracellular Bacterial
Growth
Cells were infected with 2 MOI of V. vulnificus for 4 h and
washed with PBS. Supernatant was diluted and plated them on
blood BHI plates for 12 h. Then 100 mg/ml gentamicin was added
to kill extracellular bacteria. After incubation at 37°C for 30 min,
cells were washed twice with PBS and treated with 0.1% Triton-
X100. The cell lysis was plated on blood BHI plates for 12 h at
37°C for the bacterial count.

Flow Cytometry
Cells were infected with 2 MOI of V. vulnificus at 37°C for 4 h.
For the M1/M2 discrimination flow cytometry experiment, cells
were stained with CD206-APC and iNOS-PE after fixation and
permeabilization by BD Biosciences Cytofix/Cytoperm™ and
perm/wash solutions. For the cell apoptosis assay, dying cell was
identified by using the BD PE Annexin V Apoptosis Detection
Kit I according to the manufacturer’s protocol. Data were
collected by using flow cytometry.
January 2021 | Volume 10 | Article 596609
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Histological Analysis
After the spleen, l iver, and lung were fixed in 4%
paraformaldehyde, we imbedded the fixed organs in paraffin,
then cut thin sections, and following standard procedures,
stained them with hematoxylin and eosin.

Statistical Analysis
Data were presented as mean ± SEM and analyzed for statistical
differences using the Prism 6.01/GraphPad software. Statistical
significance was analyzed using the Student t-test. P-values less
than 0.05 were considered significant.
RESULTS

Macrophage Viability and Activation Are
Modulated by V. vulnificus Infection
Our first aim was to investigate host cellular function during the
interaction of macrophages with V. vulnificus. To understand
how V. vulnificus causes inflammation, cell death, and activation
in macrophages, we performed RNA-Seq and transcriptomic
analysis in J774A.1 cells before and after V. vulnificus infection.
RNA-seq analysis revealed substantial changes in the
macrophages transcriptome after 6 h of infection. The
KEGG pathway enrichment analysis demonstrated that the top
pathways involved in TNF signaling, NOD-like receptor
signaling, IL-7 signaling, and cytokine-cytokine receptor
signaling pathways were overrepresented in the upregulated
genes after 6 h of infection (Figure 1A). Next, we analyzed the
differentially expressed genes after 6 h of infection using the
hallmark gene sets from the Molecular Signatures Database
(MSigDB) and GO Term revealed a substantial upregulation of
genes involved in the process of cell death, inflammatory
response, macrophage activation, macrophage polarization, and
TOR signaling (Figures 1B–F). These results indicated that V.
vulnificus was likely to trigger macrophage inflammatory
response, especially inducing M1 polarization, which is
accompanied by activation of TOR signaling.

Constitutive mTORC1 Activity by Myeloid-
Specific TSC1 Deletion Impairs the
Survival of Mice and Host Bactericidal
Activity After V. vulnificus Infection
In the previous studies, we reported that V. vulnificus-infection
could cause mTORC1 activation in the macrophage in vivo and
in vitro. Whereas the consequence of V. vulnificus-induced
mTORC1 activation in macrophages to the host remains
unknown. We determined the mTOR signaling in the WT and
TSC1 deficient BMMfs with V. vulnificus infection. V. vulnificus-
infected WT BMMfs exhibited elevated S6K1 and S6
phosphorylation (Figures 2A, B). These results are consistent
with our previous studies (Xie et al. , 2017). While
phosphorylation of S6K1 and S6 were also constitutive higher
in both PBS-treated and V. vulnificus-infected TSC1 deficient
BMMfs (Figures 2A, B). Moreover, the phosphorylation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
S6K1 and S6 in both WT and TSC1 deficient BMMfs could be
inhibited by rapamycin. In addition to this, we observed that the
protein level of TSC1 was decreased in V. vulnificus-infected
BMMfs after rapamycin treatment, which could be possibly
caused by the reduction of mTORC1-dependent protein
synthesis. Because mTORC1 signal plays an important role in
the regulation of numerous protein synthesis. We also observed
that the protein level of TSC1 was deceased after rapamycin
treatment, which possibly caused by the reduction of mTORC1-
dependent protein synthesis. These results confirmed that V.
vulnificus could induce mTOR activation in the murine
macrophages. We also tested the role of TSC1-mTOR signaling
in the myeloid cells in vivo during V. vulnificus infection. It was
found that TSC1f/f-LyzCre+ mice had a shorter survival time
than the WT mice (Figure 2C). Furthermore, TSC1f/f-LyzCre+

mice had a significantly higher bacterial burden in the liver,
spleen, and lung compared to WT mice (Figure 2D). To
understander the reason that causes the early death in V.
vulnificus-infected TSC1 KO mice, we performed H&E staining
for the liver, lung, and spleen from wildtype and TSC1 KO mice
with or without V. vulnificus infection. In both V. vulnificus-
infected wildtype and TSC1 CKO mice, liver damage was mainly
located near vessels (Figure 2E). Moreover, V. vulnificus-infected
TSC1 KO liver tissue revealed more severe focal inflammation
and portal inflammation as compare with wildtype mice (Figure
2E). Similar with the pathology of liver, the lung and spleen from
V. vulnificus-infected TSC1 KO mice also showed enhanced
inflammatory cells infiltration (Figure 2E). Together, these
results suggested that TSC1 in the macrophages contributed
negatively to the susceptibility of mice to V. vulnificus. It
possibly due to the enhanced-inflammatory damage in the
organs, reduction of bactericidal activity, and dysfunction
of macrophages.

TSC1 Impairs M1 Polarization but
Enhances M2 Polarization Induced
by V. vulnificus
The function of macrophages depends on proper activation and
polarization into distinct subtypes with individual effector
functions, such as the M1 and M2 macrophage subsets
(Weichhart et al., 2015). M1 macrophages contribute to the
clearance of invading organisms against bacterial infection
(Benoit et al., 2008). The V. vulnificus-infected WT mice
exhibited upregulation of IFN-g, TNF-a, IL-6, and IL-5
production in the serum (Figure 3A). Notably, in contrast
with the WT mice, the V. vulnificus-infected TSC1f/f-LyzCre+

mice produced enhanced IFN-g, TNF-a, IL-6, and IL-5
production in the serum (Figure 3A). These results indicated
that the absence of TSC1 in the myeloid cells might promote the
Th1 and M1 response by V. vulnificus. V. vulnificus infection also
caused elevated TNF-a, IL-6, and IL-1b in both mRNA and
protein levels (Figures 3B, C). Moreover, macrophages with
TSC1 deletion expressed a higher level of TNF-a, IL-6, and IL-1b
compared with WT cells after V. vulnificus infection (Figures
3B, C). However, the mRNA transcription of M2 macrophage
biomarker Arg-1 and Cd206 was significantly decreased in TSC1
January 2021 | Volume 10 | Article 596609
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KO BMMfs (Figure 3C). Additionally, V. vulnificus infection
significantly increased the NO production in the macrophages
both in WT and TSC1 KO macrophages (Figure 3D). The
change in NO production by V. vulnificus both in WT and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
TSC1 KO macrophages was correlated with similar changes in
inducible nitric oxide synthase (iNOS) mRNA expression,
suggesting that increased NO production by V. vulnificus
was due to the expression of iNOS. Additionally, as shown in
A

C D E F

B

FIGURE 1 | V. vulnificus induces multiple cellular biological events and pathways in macrophages. (A) KEGG pathway analysis of genes 6 h after two MOI of V.
vulnificus infection. Genes are categorized into the most represented pathways in which the gene products are involved (P < 0.05). (B–F) Transcriptional profiles of
J774A.1 cells left uninfected (PBS treatment) or infected with V. vulnificus (Vv) for 4 h (PBS: n = 2; Vv: n = 3). The expression of genes is presented as centered and
scaled log2 fluorescence intensity (blue and red keys) grouped by product functions, including cell death (B), inflammatory responses (C), macrophage activation (D),
upregulated genes distinguishing between M1 and M2 macrophages (E), and response to TOR signaling (F).
January 2021 | Volume 10 | Article 596609
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Figure S1A and S1B, V. vulnificus infection induced
upregulation of the numbers of iNOS+ M1 macrophages and
CD206+ M2 macrophages in WT BMMfs. Whereas, in contrast
to WT BMMfs, TSC1 KO BMMfs shown increased M1
macrophages but a reduction of M2 macrophages after V.
vulnificus infection. Thus, these results indicated that TSC1
possibly drives V. vulnificus-induced M2 polarization and
suppresses M1 polarization. Overall, these results demonstrated
that TSC1 negatively regulated V. vulnificus-infected
macrophages preferred polarization to M1 instead of M2.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
V. vulnificus-Induced M1 Polarization
and Apoptosis in a mTORC1-
Dependent Manner
Recently studies have shown that TSC1 attenuated M1
polarization in an mTOR-independent manner fashion but
increased M2 polarization via inhibition of mTORC1 activity
(Byles et al., 2013; Zhu et al., 2014). To investigate whether
TSC1-mTOR signaling is essential for V. vulnificus-induced M1
polarization, we infected theWT and TSC1 KO BMMfs with two
multiplicity of infection (MOI) of V. vulnificus pretreated with or
A B

C D

E

FIGURE 2 | Mice with a myeloid-specific TSC1 deficiency are hypersensitive to V. vulnificus infection (A) Western blots determined the levels of TSC1, p-S6K, p-S6,
and b-actin in V. vulnificus-infected WT and TSC1 KO macrophages. (B) Quantification of relative intensity of western blot bands. (C) Kaplan–Meier plots of WT and
TSC1 CKO mice survival after V. vulnificus injection were shown. P values were determined using Log-rank tests. (D) Quantification of bacterial burden in the liver,
lung, and spleen from V. vulnificus-infected WT and TSC1 CKO mice. (E) Histopathologic analysis (H&E) of liver, lung, and spleen tissue from V. vulnificus-infected
and -uninfected wildtype and TSC1 CKO mice. Data shown are representative of at least three experiments. *P < 0.05; **P < 0.01; ***P < 0.001 was determined by
Student t-test.
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A

B

C

D

FIGURE 3 | The absence of TSC1 in macrophages have defective of M2 phenotype and enhance M1 polarization by V. vulnificus. (A) Inflammatory cytokine
production in the serum from WT and TSC1KO mice after V. vulnificus infection for 4 hours. (B) The production of TNF-a, IL-6, and IL-1b in the supernatant from
TSC1 KO and WT BMMfs after 2MOI of V. vulnificus infection for 2 and 4 h. (C) RT-PCR determined the mRNA expression of indicated-genes from WT and
BMMfs 4 h after V. vulnificus infection. (D) The bar figure shows the nitric oxide level of WT and BMMfs after V. vulnificus infection. Data shown are representative
of at least three experiments. *P < 0.05; **P < 0.01; ***P < 0.001 was determined by Student t-test.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org January 2021 | Volume 10 | Article 5966097
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without rapamycin. We observed that the upregulation of both
protein and mRNA expression of TNF-a, IL-6, and IL-1b in the
V. vulnificus-infected WT and TSC1 KO macrophages were
significantly inhibited by rapamycin (Figures 4A, B).
Moreover, V. vulnificus-induced mRNA levels of Arg-1 and
Cd206 in both WT and TSC1 KO macrophages were also
could be partially blocked by rapamycin treatment (Figure
4B). We further tested the iNOS and CD206 expression in
BMMfs after V. vulnificus infection. TSC1 KO BMMfs
increased iNOS expression and impaired the CD206 expression
by comparing with WT BMMfs after V. vulnificus infection
(Figures 4C–F). However, the enhanced iNOS expression in V.
vulnificus-infected TSC1 KO macrophages can be overcome by
rapamycin treatment (Figures 4C, D). Thus, these results
indicated that V. vulnificus-induced M1 and M2 polarization
were both dependent on mTORC1 activity.

Next, we further determined whether mTORC1 activity
affected the bactericidal activity to clearance the invaded V.
vulnificus in the macrophages. Interestingly, although the TSC1
KO BMMfs showed enhanced M1 polarization by V. vulnificus
infection (Figure 4), TSC1 KO macrophages exhibited more
viable of intracellular V. vulnificus in the cells compared with
WT cells (Figure 5A), which could be significantly blocked by
abolishing the mTORC1 activity with rapamycin treatment.
However, there was no significant difference in the
extracellular bacterial burden from the supernatant between V.
vulnificus-infected WT and TSC1 KO BMMfs (Figure S2).
These results suggested that the bactericidal activity to
clearance the invaded V. vulnificus was negatively regulated by
mTORC1 activity and the sustained activation of mTORC1 in
TSC1 deficient macrophages possibly promote the intracellular
bacterial survival. A previous study revealed that V. vulnificus
could cause apoptosis in the macrophages (Kashimoto et al.,
2003). We hypothesize that V. vulnificus triggered mTORC1
activation may positively regulate the V. vulnificus-induced
apoptosis in the macrophages. To examine this, we analyzed
the apoptosis of V. vulnificus-infected WT and TSC1 KO
macrophages with or without rapamycin treatment. As shown
in Figures 5B, C, the absence of TSC1 caused higher apoptosis in
V. vulnificus-infected macrophages compared with WT cells.
Rapamycin treatment could partially rescue the cell apoptosis
from V. vulnificus in both WT and TSC1 KO macrophages
(Figures 5B, C). Additionally, TSC1 KO macrophages increased
the expression of cleaved-Caspase3 after V. vulnificus infection
by comparing with WT macrophages (Figure 5D). This
observation confirmed that constitutively active mTORC1
could induce Caspase 3 cleavage, which promote V. vulnificus-
induced apoptosis in macrophages. It possibly impaired the
bactericidal activity of macrophages.
DISCUSSION

Vibrio vulnificus is a Gram-negative bacterium that causes a
rapidly progressive fatal septicemia and necrotizing wound
infection resulting in extensive tissue damage (Chen et al.,
2017). Mortality was up to 50% in septic patients, with most of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
them dying within 48 h with a fulminating course after infection
(Chiang and Chuang, 2003; Horseman and Surani, 2011).
Macrophages are one of the frontline cells of host defense
against pathogenic microorganisms or pathogen invasion.
Macrophages polarize to M1 response to kill the invading
pathogens (such as Salmonella typhi, Salmonella typhimurium,
and Mycobacterium tuberculosis, etc.) by the production of
various proinflammatory cytokines including TNF-a, IL-6, and
IL-1b in the early stage of bacterial infection (Sica and
Mantovani, 2012; Liu et al., 2014). Subsequently, to neutralize
excessive inflammatory response, macrophages polarized to M2
response to protect the host from excessive injury, which can be
seen in the recovery period in patients with typhoid fever
(Thompson et al., 2009).

Previous studies have shown that TSC1 can restrain M1
polarization response to LPS but enhanced M2 polarization
response to IL-4 (Byles et al., 2013; Zhu et al., 2014).
Converging the result that macrophages polarized to both M1
and M2 after Vibrio vulnificus infection, we hypothesize that
TSC1 is critical for regulation of macrophage polarization by
Vibrio vulnificus. In our study, we observed enhanced M1
macrophages with decreased M2 macrophages in TSC1 KO
macrophages infected with V. vulnificus. To figure out whether
and how TSC1-mediated macrophage polarization impacts the
resistance of macrophages to Vibrio vulnificus. We analyzed the
viability and bactericidal capacity of macrophages after Vibrio
vulnificus infection. The results proved that TSC1KO
macrophages exhibited lower viability and worse bactericidal
capacity after Vibrio vulnificus infection compared to WT cells.
These results support that TSC1 inhibits M1 polarization but
promotes M2 polarization after Vibrio vulnificus infection and
benefits for macrophages to kill the intracellular bacteria by
suppression of the V. vulnificus-triggered cell-death. Previously,
the relationship between macrophage polarization and V.
vulnificus infection is unclear. In this study, we also found V.
vulnificus infection could cause both M1 and M2 polarization in
a mTORC1 dependent manner.

The current reports have shown that sustained activation of
mTORC1 in TSC1KO macrophages attenuates IL-4 induced M2
polarization, but TSC1 controls M1 polarization independent of
the mTOR pathway. To figure out whether TSC1 regulates V.
vulnificus-infected macrophages polarization is dependent on the
mTOR pathway. We used rapamycin in TSC1 KO macrophages
before incubated with V. vulnificus. The results proved that TSC1
mostly inhibited M1 polarization and partially enhanced M2
polarization via inhibition of mTORC1 activity by V. vulnificus.
We also found TSC1 was critical for the promotion of the
bactericidal capacity of macrophages against V. vulnificus.
Thus, TSC1 inhibits V. vulnificus-infected M1 polarization and
contributes to terminate the Vibrio vulnificus via mTORC1
pathway. Previous studies revealed that V. vulnificus infection
resulted in apoptosis and autophagy in the macrophages
(Kashimoto et al., 2003; Song et al., 2016). NLRP3 and mTOR
signaling also is required for phagolysosome formation in the
macrophages after V. vulnificus infection (Huang et al., 2020).
Our data suggested that overactivation of mTORC1 in the
macrophages promoted the caspase 3 cleavage and apoptosis.
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FIGURE 4 | The M1 polarization in TSC1 KO macrophages by V. vulnificus are dependent on mTORC1 activity. (A) The production of TNF-a, IL-6, and IL-1b in V.
vulnificus-infected (200 nM, 1-h pretreatment). (B) Expression of indicated genes in V. vulnificus-infected WT and TSC1 KO macrophages in the presence or
absence of rapamycin pretreatment. PBS was used as control. (C–F) Representative histograms showing iNOS (C) and CD206 (E) expression gated from CD11b
and F4/80 double-positive BMMfs after V. vulnificus infection. Bar graphs show the MFI of iNOS (D) and CD206 (F) in the CD11b+F4/80+ live BMMfs with
indicated-treatments. Data shown are representative of at least three experiments. *P < 0.05; **P < 0.01; ***P < 0.001 was determined by Student t-test.
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However, the important issue of whether autophagy is involved
in V. vulnificus-infected TSC1 KO macrophages is still needed to
be investigated in the future.

NO is crucial for macrophages to kill the pathogens. Although
V. vulnificus is vulnerable to the exposure of NO produced by
murine macrophage (Kim et al., 2019). We have observed
elevated inos transcription and NO production in V. vulnificus-
infected TSC1 KO BMMfs by comparing with WT controls.
However, the defects of TSC1 in the BMMfs still could not
restore the intracellular clearance of V. vulnificus and rescue the
mice from V. vulnificus infection. Previous studies also revealed
that V. vulnificus infection could induce macrophage apoptosis
(Kashimoto et al., 2003). Thus, the impaired bactericidal activity
partially due to V. vulnificus infection could cause more cell
death in TSC1 deficient BMMfs. Therefore, we have further
tested the apoptosis of WT and TSC1 KO BMMfs after V.
vulnificus infection. V. vulnificus induces more apoptotic cells in
TSC1 deficient BMMfs, which could be partially blocked by
rapamycin. Together, we believe that the enhanced apoptosis in
V. vulnificus-infected TSC1 KO BMMfs might contribute to
impair iNOS and NO mediated bactericidal activity.

In Salmonella typhimurium infection, the M1 macrophages
usually play as a safeguard to induce M1 polarization and control
the infection (Benoit et al., 2008). M1 polarization also can prevent
Mycobacterium tuberculosis escape from the phagosomes (Chacon-
Salinas et al., 2005). Whereas, the excessive M1 program is also
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
deleterious to the host (Mehta et al., 2004). In Streptococcus
pneumoniae-infected mice, the mortality associates with lung
inflammation and the presence of M1 macrophages (Smith et al.,
2007). Our results showed that a higher level of bacterial burden in
different organs and server inflammatory responses, which
correlated with the increased mortality in the TSC1flox/flox LysM-
Cre+ mice upon V. vulnificus infection. Taken together, TSC1 KO
mice exhibit more susceptibility of mice to V. vulnificus.

Overall, our results indicated that V. vulnificus-infected TSC1
KO macrophages lead to excessive M1 polarization, a higher level
of cell death, and imperfect bactericidal activity, which might be
resulted in more susceptibility of mice against V. vulnificus. Thus,
the TSC1-mTORC1 signaling pathway negatively regulates the
host against the V. vulnificus infection, which could be a potential
target for the treatment of V. vulnificus infection.
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