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Tropical extreme droughts drive long-term increase
in atmospheric CO2 growth rate variability
Xiangzhong Luo 1,2,3✉ & Trevor F. Keenan 1,2✉

The terrestrial carbon sink slows the accumulation of carbon dioxide (CO2) in the atmo-

sphere by absorbing roughly 30% of anthropogenic CO2 emissions, but varies greatly from

year to year. The resulting variations in the atmospheric CO2 growth rate (CGR) have been

related to tropical temperature and water availability. The apparent sensitivity of CGR to

tropical temperature (γTCGR) has changed markedly over the past six decades, however, the

drivers of the observation to date remains unidentified. Here, we use atmospheric obser-

vations, multiple global vegetation models and machine learning products to analyze the

cause of the sensitivity change. We found that a threefold increase in γTCGR emerged due to

the long-term changes in the magnitude of CGR variability (i.e., indicated by one standard

deviation of CGR; STDCGR), which increased 34.7% from 1960-1979 to 1985-2004 and

subsequently decreased 14.4% in 1997-2016. We found a close relationship (r2= 0.75,

p < 0.01) between STDCGR and the tropical vegetated area (23°S – 23°N) affected by extreme

droughts, which influenced 6-9% of the tropical vegetated surface. A 1% increase in the

tropical area affected by extreme droughts led to about 0.14 Pg C yr−1 increase in STDCGR.

The historical changes in STDCGR were dominated by extreme drought-affected areas in

tropical Africa and Asia, and semi-arid ecosystems. The outsized influence of extreme

droughts over a small fraction of vegetated surface amplified the interannual variability in

CGR and explained the observed long-term dynamics of γTCGR.
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Year-to-year variations in the CGR (ΔCGR; detrended
CGR) mainly reflect changes in the terrestrial carbon sink1,
with a relatively small contribution from changes in ocean

uptake and land use emissions2–4 but see 5. ΔCGR is highly vari-
able, ranging between −2.0 and 2.5 PgC yr−1 6, and the majority
of that variability is driven by changes in tropical climate6–10

through the influence of climate on the tropical terrestrial
ecosystems2,11,12, among which tropical forests1 or semi-arid
ecosystems13,14 (i.e., mostly the semi-arid ecosystems in the
tropics15) or both15 have been reported to play the primary role.
In particular, ΔCGR is sensitive to changes in temperature and
water storage over the tropical land surface1,6,8,9,16. Positive
anomalies of mean annual temperature over tropical land
(ΔMAT) have been associated with a higher CGR, potentially
due to the suppression of tropical photosynthesis17,18 and/or
enhanced respiration17,19,20, as have drier years9,16. Notably, the
apparent temperature sensitivity of CGR (γTCGR, see Methods) has
been found to exhibit long-term dynamics, and has doubled
between 1960 and the past decade8,10. In contrast to γTCGR, the
dynamics of the apparent sensitivity of CGR to water (γWCGR) are
less well understood, with conflicting reports suggesting either a
non-evident global water sensitivity at the global scale6,21 or a
strong coupling between ΔCGR and satellite-derived terrestrial
water storage9 and lagged precipitation16. Recent evidence
demonstrated that γTCGR and γWCGR are related due to the land-
atmosphere coupling by soil moisture22, suggesting a potential
change in γWCGR over time.

The underlying mechanisms for long-term changes in the cli-
mate sensitivity of CGR (i.e., γTCGR and γWCGR) remain elusive, as
process-based models demonstrate different climate sensitivities
from observations8,9. Empirical evidence suggests that γTCGR is
higher in years with greater tropical aridity8, implying a role of
tropical water availability in modulating γTCGR. Water availability
is known to influence land-atmosphere CO2 exchange at seasonal
and annual timescales through stomatal responses to atmospheric
water stress or the downregulation of plant metabolism due to
soil moisture deficits23,24. Extreme water deficits can further
induce changes in land-atmosphere CO2 exchange over longer
time scales, through lagged responses and legacy effects of ter-
restrial ecosystems (i.e. mortality25–27, fire28, recovery29,30 and
deadwood decomposition31). This hierarchy of water-related
processes can modulate CGR and manifest as the changes in
γTCGR, especially under extreme drought conditions. In fact, recent
evidence has suggested that extreme droughts over small areas in
Amazon and Australia have a disproportionally large contribu-
tion to the global carbon cycle32,33, highlighting a potential role of
tropical extreme droughts in modulating γTCGR.

Therefore, we hypothesize that the long-term changes in γTCGR
and γWCGR over the past six decades are related to changes in
extreme droughts over tropical vegetated lands (23°S–23°N) and
our objective is to test the hypothesis. However, estimates of
apparent climate sensitivities vary between methods and climate
data used6,8,9 (Supplementary Fig. 1), and this uncertainty hin-
ders attribution. We thus focus our examination on long-term
CGR variability (i.e., indicated by one standard deviation of CGR
within a time frame of decades; STDCGR), which underlies the
dynamics of derived climate sensitivities (see Methods). Specifi-
cally, we examined the long-term changes in γTCGR and γWCGR
estimated from multiple mainstream methods8,9, and related the
best estimates of γTCGR and γWCGR to STDCGR. We further examined
the relationship between STDCGR and tropical droughts, using
several key indicators of tropical water availability, an ensemble of
dynamic global vegetation models34, and the FLUXCOM
machine learning products21 based on observations from the
global FLUXNET network (see Methods).

Results
Long-term changes in CGR and its climate sensitivities. We
used nine competing methods to derive γTCGR and γWCGR from ΔCGR
for every 20-year moving window between 1959 and 2016 (Table 1;
Supplementary Fig. 1; see Methods). Predictors considered include
anomalies of tropical mean annual temperature (ΔMAT), mean
annual precipitation (ΔMAP), mean shortwave radiation(ΔRAD),
4-month lagged precipitation (ΔMAPlag), reconstructed satellite-
derived terrestrial water storage (ΔTWS) and interactions of tem-
perature and water proxies, in univariate or multivariate linear
regression models (Table 1; Supplementary Fig. 1; see Methods).
Following model selection based on minimizing predictor collinear-
ity, which can cause artificial temporal changes in the derived coef-
ficients, we quantified γTCGR and γWCGR based on a multivariate linear
regression of ΔCGR on ΔMAT, ΔMAP and ΔRAD (model M1,
Table 1, see methods). γTCGR was significant (p < 0.05) in every 20-
year window (Fig. 1a), increasing threefold between 1960 and 1999
(1960−1979: 1.83 ± 0.45 PgC yr−1 K−1 (mean ± s.d.); 1980−1999:
5.49 ± 0.53 PgC yr−1 K−1), consistent with previous reports8,10, and
decreasing by 33.6% in the most recent two decades (1997−2016:
3.64 ± 0.53 PgC yr−1 K−1) (Fig. 1a). In contrast, γWCGR was not sig-
nificant (p > 0.05) in most 20-year windows and the sensitivity of
CGR to tropical TWS (γTWS

CGR) derived from competing models (M3,
M5, M8) was also not significant (Fig. 1; Supplementary Fig. 1).

We examined the ability of 15 Dynamic Global Vegetation
Models (DGVMs)35 and 3 machine learning products from the
FLUXCOM project21 to characterize long-term changes in the

Table 1 The performance of nine competing models (M1-M9) to derive the temperature sensitivity (γTCGR) and the water
sensitivity of CGR (γWCGR).

Models Time range Adj. R2 AIC VIF Reference

M1: 4CGR ¼ γTCGR4MATþ γWCGR4MAPþ γRCGR4RAD 1959–2016 0.47 ± 0.09 46.9 ± 3.6 1.25 ± 0.08 8

M2: 4CGR ¼ γTCGR4MATþ γWCGR4MAPþ γRCGR4RADþ γiCGRð4MAT ´4MAPÞ 1959–2016 0.46 ± 0.10 47.8 ± 2.9 1.46 ± 0.16

M3: 4CGR ¼ γTCGR4MATþ γWCGR4TWSþ γRCGR4RAD 1980–2016 0.56 ± 0.04 44.6 ± 2.5 1.50 ± 0.22 9

M4: 4CGR ¼ γTCGR4MATþ γWCGR4MAPlag þ γRCGR4RAD 1960–2016 0.50 ± 0.16 45.0 ± 5.8 2.49 ± 0.46 9

M5: 4CGR ¼ γTCGR4MATþ γWCGR4TWSþ γRCGR4RADþ γiCGRð4MAT ´4TWSÞ 1980–2016 0.59 ± 0.04 44.0 ± 3.0 1.57 ± 0.29

M6: 4CGR ¼ γTCGR4MATþ γWCGR4MAPlag þ γRCGR4RADþ γiCGRð4MAT ´4MAPlagÞ 1960–2016 0.50 ± 0.18 45.4 ± 7.0 2.64 ± 0.43

M7: 4CGR ¼ γTCGR4MAT 1959–2016 0.46 ± 0.13 45.6 ± 3.1 – 8, 10

M8: 4CGR ¼ γWCGR4TWS 1959–2016 0.31 ± 0.06 51.6 ± 2.2 – 9

M9: 4CGR ¼ γWCGR4MAPlag 1980–2016 0.42 ± 0.17 46.4 ± 5.4 – 16

Akaike information criterion (AIC) indicate the parsimony of model and variance inflation factor (VIF) indicate the collinearity of predictors. The model performance is evaluated for every 20-year
window, therefore the statistical indicators (i.e., R2, AIC, and VIF) are the mean of models from every window and uncertainty is one standard deviation. The interaction terms were normalized before
used in the regression models.
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CGR climate sensitivity. We found that both DGVMs and the
machine learning products mischaracterized the temperature
sensitivity (γTNEE) of terrestrial net ecosystem exchange (NEE), the
primary driver for the variation in CGR (Fig. 1a, b). γTNEE from
DGVMs increased from 3.20 ± 0.35 PgC yr−1 K−1 in the 1970s to
3.65 ± 0.42 PgC yr−1 K−1 in the 1980s, and decreased to
2.19 ± 0.37 PgC yr−1 K−1 in the 2000s, however, the magnitude
of change was much smaller than that of observed γTCGR.
Meanwhile, γTNEE from FLUXCOM was relatively constant,
around 1.84 ± 0.58 PgC yr−1 K−1. Models such as those tested
here are frequently used to infer the influence of soil moisture on
global carbon cycle dynamics13,14,21,23. The discrepancy between
observed γTCGR and modeled γTNEE we identified implies limitations
in process-based models and machine learning methods, and calls
into question their utility for diagnosing long-term changes in
climate sensitivities.

Considering the DGVMs and FLUXCOM products we
examined were forced by a similar climate dataset (i.e., CRU
and CRU-NCEP, see Methods) that we used to obtain γTCGR and
γWCGR, the disagreement between the observed and modeled
climate sensitivities can only be attributed to the difference
between the observed variance of CGR (i.e. indicated by one
standard deviation of CGR over the 20-year window; STDCGR)
and the modeled variance of NEE (i.e. indicated by one standard
deviation of annual NEE over the 20-year window; STDNEE).
Indeed, we found that the STDCGR increased 34.7% from

0.98 PgC yr−1 in 1960-1979 to 1.32 PgC yr−1 in 1985–2004,
and then decreased slightly by 14.4% to 1.13 PgC yr−1 in
1997–2016 (Fig. 1c), and such a change in STDCGR underlies the
dynamics of γTCGR we detected (r2= 0.65; Fig. 1d). The strong
dependence of γTCGR on STDCGR was not affected by autocorrela-
tions in the time series (Supplementary Fig. 3a, c). In contrast,
STDNEE from DGVMs and FLUXCOM demonstrated no clear
variation, with STDNEE fluctuating by only −8 to 10% over time
(Fig. 1c).

Tropical extreme droughts associated with changes in STDCGR.
The long-term dynamics in STDCGR over the past 60 years were
neither explained by the changes in the variability of ocean car-
bon uptake, emissions due to land use and land cover change5,20

and emissions from fires36 (Supplementary Fig. 2), nor by the
estimates of NEE from DGVMs. Motivated by a previous study
reporting the dependence of γTCGR on multiyear average aridity
indexes for tropics8, we examined the influence of long-term
tropical water availability on STDCGR. Our result showed that 20-
year average tropical TWS, soil water content and mean annual
precipitation (TWS, SWC, MAP) were negatively and sig-
nificantly related to the changes in STDCGR (r2= 0.68, 0.68,
0.65 ± 0.09, respectively; p < 0.01; Fig. 2a), showing that CGR was
more variable in drier decades. In comparison, 20-year average
MAT (MAT) and vapor pressure deficit (VPD) explained much
less variance in STDCGR (r2= 0.30 ± 0.02, 0.21, respectively;

Fig. 1 Temporal dynamics of the climate sensitivities of the atmospheric CO2 growth rate (CGR) and net ecosystem exchange (NEE). a Temporal
dynamics of the apparent temperature sensitivity of observed CGR (γTCGR) or modeled NEE (γTNEE); b temporal dynamics of the apparent water sensitivity of
CGR (γWCGR) or modeled NEE (γWNEE). The observed climate sensitivities are calculated using multivariate regressions of ΔCGR to ΔMAT and either ΔMAP
or ΔTWS for each 20-year window from 1959 to 2016 (see Methods, model M1 and M3). A solid circle marker indicates significant (p < 0.05) sensitivities
of CGR to climate variables in that 20-year window, while open circles indicate insignificant (p > 0.05) sensitivities. Black and red shaded areas indicate one
standard error of climate sensitivities derived from 100 bootstrap estimates, considering the CGR uncertainty of 0.2 PgC yr−1 61. Other shaded areas
indicate the intermodel variations of climate sensitivity (i.e., one standard error). c The long-term dynamics of the variance of CGR (STDCGR) and NEE
(STDNEE). STDCGR and STDNEE were calculated for every 20-year window from 1959 to 2016, and normalized by their respective first value (i.e., the STDCGR

and STDNEE of 1959 to 1978). d The relationships between climate sensitivities of CGR (i.e., γTCGR and γWCGR) and STDCGR (shading: 95% confidence
interval). CGR in the years 1991–1993 are affected by the eruption of Mt Pinatubo and thus excluded.
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p < 0.01). We then removed the autocorrelations of the afore-
mentioned 20-year average time series and found only the sig-
nificant influence of TWS (p < 0.1) and MAP (p < 0.01) on
STDCGR persisted (Fig. 2a; see Methods), highlighting a role of
tropical water availability in modulating STDCGR. Note that the
removal of autocorrelation resulted in a smaller deterministic
coefficient (r2) between long-term water availability and STDCGR,
which is expected given the correction removes all the short-term
variation in time series. As MAP showed the strongest explana-
tory power after considering autocorrelations in these explanatory
time series, we used precipitation as the primary indicator for
further analysis.

The observed negative couplings between tropical TWS and
MAP and STDCGR (Fig. 2a) imply a considerable influence of
tropical drought on long-term land-atmosphere CO2 exchange.
Following the definition of meteorological drought37,38, we
analysed drought occurrence in tropical regions over the past
60 years. We used percentiles of local monthly precipitation to
classify different degrees of drought—from very extreme droughts
(i.e., bottom 1% of precipitation), to extreme droughts (i.e.,
bottom 1–10%), to mild droughts (i.e., bottom 10–25%) and up to

natural water deficits (i.e., bottom 25–50%). We quantified the
drought-affected area for each month, and calculated standar-
dized annual drought-affected area using drought durations (see
Methods). From 1959 to 2016, the tropical vegetated area affected
by very extreme droughts increased from 0 to 1.4%, and the area
affected by extreme droughts increased from 5.8% to 7.3% then
slightly decreased to 6.7% (Fig. 2b). In contrast, the tropical area
influenced by mild droughts decreased from 11.8% to 10.5% and
the area influenced by natural water deficits decreased from
24.0% to 19.1% (Fig. 2b).

We examined the relationship between STDCGR and
areas affected by different categories of drought, and found the
changes in the extreme drought-affected area explained 75% of
the variance in STDCGR (p < 0.01; Fig. 2c, d). Since the extreme
droughts influenced around 6% to 9% of the tropical vegetated
land surface, our result indicates a substantially outsized
influence of extreme droughts on STDCGR. To assess the
robustness of the results, we removed the temporal autocorrela-
tion in time series using two alternative methods and found that
our conclusions are not qualitatively impacted by autocorrelation
(Supplementary Fig. 3; see Methods). We found a 1% increase in

natural water deficits

mild droughts

extreme droughts

very extreme droughts

Fig. 2 The relationships between the changes in STDCGR and tropical water availability and drought-affected area. a The variance in STDCGR explained
by long-term water availability or temperature in the tropics, as represented by 20-year average terrestrial water storage (TWS), soil water content
(SWC), mean annual precipitation (MAP), vapor pressure deficit (VPD) and mean annual temperature (MAT). The error bars indicate the uncertainty (one
standard error) in r2 when using alternative precipitation and temperature datasets (see Methods); the hollow bars indicate the variance in STDCGR

explained by long-term tropical water availability or temperature, after accounting for autocorrelations in variables using the Cochrane-Ocrutt procedure
(see Methods). *p < 0.1, **p < 0.01; note the correlations between STDCGR and TWS, SWC and MAP are negative while the correlation between STDCGR

and VPD and MAT are positive; b the temporal dynamics of the percentage of tropical vegetated area affected by droughts of different intensities; drought
intensity is defined by the percentile of local monthly precipitation across the whole study period (1959–2016), where the bottom 1% precipitation indicates
very extreme droughts, bottom 1–10% precipitation indicates extreme droughts, 10–25% precipitation indicates mild droughts, and 25–50% precipitation
indicates natural water deficits; the y-axis is log-transformed; c The relationship between STDCGR and the tropical vegetated area affected by extreme and
very extreme droughts. The shadings indicate the 95% confidence intervals of the linear regressions. The linear regressions with and without a y intercept
were examined; d the correlation coefficient (r) between observed STDCGR or modeled (i.e., DGVMs and FLUXCOM) STDNEE and areas affected by
droughts of different intensities in the tropics. Drought intensities are defined by the bottom percentiles (e.g., 1%, 10%, 25%) of monthly precipitation.
Shaded areas indicate the intermodel variation of r (i.e., one standard error).
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extreme drought-affected area corresponded to a 0.14 Pg C yr−1

increase in STDCGR. In contrast, mild droughts had a limited
influence on STDCGR, as the addition of mild droughts reduced
the coupling between drought-affected area and STDCGR (Fig. 2d).
We repeated the analysis using STDNEE from DGVMs, and found
models was unable to characterize the outsized influence of
extreme droughts, with negative correlations between extreme
drought-affected area and STDNEE across all drought categories
(Fig. 2d; Supplementary Fig. 5b). In comparison, STDNEE

estimated by FLUXCOM was positively but weakly related to
the area affected by extreme droughts, implying that the data-
driven NEE product was able to capture the influence of extreme
droughts effect better than DGVMs, though with substantial
underestimation of the effect (Fig. 2d; Supplementary Fig. 5c).

Spatial variation in extreme drought-induced changes in
STDCGR. Extreme droughts happened unevenly over time and
space, and thus contributed differently to the variation of STDCGR.

Among the three continents, tropical Africa had more area affected
by extreme droughts (c. 3.62 ± 0.91% of tropical vegetated land
surface) in the past 60 years than tropical America (c. 2.39 ± 0.63%)
and tropical Asia (c. 1.82 ± 0.65%). The extreme drought-affected
area in the tropical America showed a positive trend over time,
while areas affected by droughts in tropical Africa and tropical Asia
increased before the 1990s and then plateaued or decreased in the
recent two decades (Fig. 3c), contributing to the recent decrease in
STDCGR. The areas most threatened by extreme droughts were
located in tropical America and Africa, however, the location of
drought hotspots demonstrated also long-term variations, as
drought-affected areas were more concentrated in the 1980s and the
1990s than the recent two decades (Fig. 3e). In parallel, extreme
droughts influenced more semi-arid ecosystems (c. 3.85 ± 0.72% of
vegetated land surface) than forests (c. 2.47 ± 0.71%), and the
drought-affected area of both ecosystems increased from the 1960s
to the 1990s and decreased in the 2000s (Fig. 3a).

To further quantify the regional contributions of extreme
droughts to STDCGR, we applied the tight global relationship
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Fig. 3 Spatial distribution of tropical extreme droughts and drought-induced changes in STDCGR over the past 60 years. a the fraction of tropical
vegetated area affected by extreme droughts for tropical (T.) forests and semi-arid regions. The solid line presents the mean fraction of tropical vegetated
area affected by extreme droughts in every 20 years window from 1959 to 2016, with the x axis indicating the center of each window. The shaded area
indicates the variability of the fraction (e.g., one standard deviation) in each 20-year window; c the fraction of tropical vegetated area affected by extreme
droughts for tropical America, tropical Africa, and tropical Asia; e the changes of the extreme drought hotspots in three 20 years periods. Hotspots are
defined as regions that are under extreme droughts for more than 10% of time; b, d, f The impacts of tropical extreme droughts on global net ecosystem
exchange variability (STDNEE) in three independent 20-year periods. The extreme drought-induced STDNEE was estimated using the relationship between
drought-affected area and STDCGR (shown in Fig. 2c) in combination with a spatial weight based on FLUXCOM NEE (see Methods). The average impact
from each region is indicated by the numbers in the figure, while the error bars indicate the variability of extreme drought-induced STDNEE in each 20-year
window propagated from the variability in the fraction of area affected by extreme droughts shown in (a) and (c). The impact of droughts estimated by
DGVMs and FLUXCOM are included as reference, where the error bars indicate the intermodel variations. Fire emissions are obtained from Global Fire
Emissions Database (GFED4s).
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between extreme drought-affected area and STDCGR (Fig. 2c) and
a spatial weight based on average FLUXCOM NEE to partition the
changes in STDCGR into the regional STDNEE of each continent
(i.e., tropical America, Africa, and Asia) and biome (i.e., tropical
semi-arid and tropical forests), assuming the temporal relationship
holds in the spatial dimension (see Methods). Over the three
independent 20-year periods, the extreme droughts in tropical
semi-arid ecosystem contributed more to STDNEE than droughts
in tropical forests. Among the three continents, droughts in
tropical America incurred larger STDNEE than those in tropical
Africa and Asia (Fig. 3b, d, f), however, the dynamics of overall
STDNEE change were controlled by tropical Africa and Asia.
The increase of STDNEE from 1960 to 1979 to 1980 to 1999 was
about 0.27 Pg C yr−1, and tropical Asia and Africa contributed
0.14 Pg C yr−1 and 0.10 Pg C yr−1, respectively. From 1980-1999
to 1997–2016, the decrease of STDNEE was about 0.06 Pg C yr−1,
which was a net balance of decreasing extreme droughts
and STDNEE in tropical Africa and Asia—a total deduction of
0.17 Pg C yr−1 and increasing extreme droughts and STDNEE in
tropical America—a total increase of 0.11 Pg C yr−1 in STDNEE. In
comparison, DGVMs showed limited influence of extreme
droughts on STDNEE compared to STDCGR but FLUXCOM
detected a decrease in STDNEE from 1980 to 1999 to 1997 to 2016.

Discussion
In this study, we find there were long-term changes in CGR
variability (i.e., STDCGR), which increased then decreased in the
past six decades. The changes in STDCGR were positively asso-
ciated with changes in tropical extreme droughts and underlay
previously unexplained dynamics of γTCGR

8,10. We find that
extreme drought-affected area, which accounted for only 6–9% of
the tropical vegetated surface, explained 75% of the variance in
STDCGR. The historical increase and the recent decrease in
STDCGR were dominated by drought area changes in tropical
Africa and Asia, while tropical America showed monotonically
increased drought area. In terms of biome contribution, tropical
semi-arid ecosystems and forests contributed equally to the
increase of STDCGR in the 1980s and the 1990s but semi-arid
ecosystems dominated the decrease in STDCGR in the recent two
decades. This study highlights the outsized role of tropical
extreme droughts in influencing the long-term dynamics of CGR
and amplifying γTCGR, and has manifold implications for our
current understanding of climate-carbon interactions.

Extreme events are known to influence the terrestrial carbon
cycle39, and drought is the most critical one40. Several studies
have suggested that a few extreme events explained a significant
amount of the variance in land-atmosphere carbon exchange, at
seasonal or interannual time scales41,42. Here, our results show
that extreme droughts influence CGR at the bi-decadal scale by
amplifying STDCGR and γTCGR. Extreme droughts induce various
concurrent and lagged effects on ecosystems43, which include
processes of either carbon emissions or carbon uptake. Though
we find a tight correlation between extreme drought-affected area
and STDCGR (Fig. 2c), we acknowledge that the affected area is an
integrated indicator of drought effects, which does not distinguish
the various induced processes and their respective functioning
time scales. Among the drought-induced effects, fire is unlikely to
be the sole reason for the changes in STDCGR as our analysis does
not show a change in the long-term variability in fire emissions
(Supplementary Fig. 2), meaning the role of other process needs
further investigations. We suggest that extreme droughts in semi-
arid ecosystems and tropical Africa and Asia deserve more
attention for understanding long-term dynamics of the terrestrial
carbon cycle.

In this study, we use nine competing linear models to derive
γTCGR and γWCGR (Supplementary Fig. 1). The values of γTCGR and

γWCGR and their long-term dynamics are highly influenced by the
types of linear models and climate data used. Statistically, our
result shows that γWCGR is insignificant as long as the models
include tropical temperature as a predictor. However, when using
univariate linear models we note γWCGR is significant (Supple-
mentary Fig. 1h), caused by the strong correlation between
ΔMAT and ΔTWS15 or tropical lagged precipitation44. Previous
studies have reported nonlinear responses of the tropical terres-
trial carbon fluxes to temperature45, VPD46, precipitation47, and
soil moisture23, which question the common practices of using
linear models to derive γTCGR and γWCGR

6,8,9, though nonlinear
models may not be statistically stronger than linear models with
less degrees of freedom for fitting. To avoid the uncertainties in
climate sensitivities incurred by the type of models and data used,
we use STDCGR, which is calculated from perhaps the least
uncertain term in the global carbon cycle (i.e., CGR), as a proxy
for γTCGR to examine the long-term dynamics.

Tropical extreme droughts developed preferentially during El
Niño events48,49. Therefore, the drought-STDCGR correlation can
also be interpreted as an El Niño Southern Oscillation (ENSO)-
STDCGR correlation. We use the Multivariate ENSO Index (MEI)
to represent the frequency and strength of El Niño, and find MEI
is positively related with ΔCGR, STDCGR and the extreme
drought-affected area (p < 0.01; Supplementary Fig. 4). The test
shows ENSO not only modulates CGR at the interannual time
scale7, but also enhances the magnitude of CGR variability in
periods with more frequent and stronger El Niño event by
increasing extreme drought frequency. It is worth noting that
MEI (r2= 0.68, Supplementary Fig. 4b) does not explain as much
long-term variability in CGR as the extreme drought area
(r2= 0.75, Fig. 2c).

DGVMs are unable to reproduce the tight positive relationship
between STDCGR and tropical extreme drought-affected area
(Fig. 2d; Supplementary Fig. 5), indicating questionable repre-
sentation of extreme drought in models. Most DGVMs show a
negative correlation between extreme drought-affected area and
STDNEE (Fig. 2d, Supplementary Fig. 5b), which means extreme
droughts cause limited land-atmosphere CO2 exchange. This
explains previously reported spatial asynchrony between carbon
extremes and climate extremes in DGVMs50, as carbon extremes
in DGVMs are more likely driven by favorable climate than
unfavorable climate extremes51. Missing components of
drought–vegetation feedbacks (e.g., lagged effects) are potentially
responsible for the biased estimates of NEE in DGVMs under
extreme droughts. Previous studies have shown that in DGVMs
droughts induce the largest impact during the climate extreme
with little lagged influence52, which is substantially shorter than
observed drought effects lasting for several years25,53. With a
focus only on transient stomatal control and soil moisture
downregulattion23, models generally lack enough mechanistic
consideration of drought-induced legacy effects27. Moreover,
ecosystems acclimate to temperature54, CO2

55, and extended
droughts56 to cope with water stress and adjust carbon uptake.
Considering the increase in CO2, temperature and drought fre-
quency under future scenarios38, these long-term trends indicate
further biases in modeled STDNEE.

FLUXCOM – a data-driven machine learning NEE product—
was also unable to fully capture the dynamics in γTCGR and
STDCGR (Fig. 1a, b). The underrepresentation of extreme
droughts in the relatively short eddy covariance measurements
(i.e., limited sites have more than 10 years of records)57 and the
lack of sites in the tropics58 could lead to structural and long-term
changes being undetected, and consequently to the under-
estimation of tropical NEE variability and CGR climate sensi-
tivities. Other than the impact of extreme droughts, we
acknowledge that the muted interannual variability of
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FLUXCOM product may be also caused by the incapability of
machine learning algorithms to capture low-frequency variations
at the interannual time scale and the use of average remote
sensing forcing58. However, unlike DGVMs, FLUXCOM identi-
fied a weak yet positive relationship between extreme drought-
affected area and STDNEE (Fig. 2d), showing that it has a better
representation of extreme drought effects than DGVMs. It is
worth noting that NEE of tropical extreme drought-affected
regions from FLUXCOM shows a sensitivity of STDNEE to the
drought that is close to the sensitivity of STDCGR to drought
(Supplementary Fig. 5). To further improve the prediction of
machine learning algorithms of CGR variability, one potential
path is to use algorithms such as Long Short-Term Memory
(LSTM) to incorporate the lagged effects of climate extremes into
the simulation of terrestrial carbon fluxes59.

Water is elemental to the function of terrestrial ecosystems,
and is known to influence the terrestrial carbon cycle through
processes at multiple temporal and spatial scales. Our analysis
shows that extreme drought-affected area in the tropics is posi-
tively associated with the changes in STDCGR, which explains the
pronounced variations in γTCGR, as CGR is more variable in dec-
ades when there are more extreme droughts. Our findings provide
a quantitative basis to examine the drought-STDCGR relationship,
and provide a new perspective to understand carbon-water
interactions over long periods.

Methods
Atmospheric CO2 growth rate (CGR). We used CGR retrieved from the global
average atmospheric CO2 concentration reported by the US National Oceanic and
Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL)60

and collated by the Global Carbon Project61, for the period between 1959 and 2016.
NOAA/ESRL has measured CO2 for several decades at a globally distributed net-
work of air sampling sites, including 4 baseline observatories (i.e., Barrow, Mauna
Loa, Samoa and South Pole) and 8 tall towers, air samples collected by volunteers at
more than 50 sites, and air samples collected regularly from small aircraft mostly in
North America (https://www.esrl.noaa.gov/gmd/ccgg/about.html). For the period
before 1980, the annual global CO2 concentration is constructed on the mea-
surements of two long-term baseline sites (Mauna Loa and South Pole) reported by
Scripps Institute of Oceanography62. After 1980, the annual global CO2 con-
centration is constructed by averaging half-hourly latitudinal CO2 concentrations
interpolated from the measurements of all NOAA/ESRL sites where samples are
predominantly of well-mixed marine boundary layer60. CGR was then calculated
by multiplying a factor of 2.124 GtC ppm−1 to the changes in atmospheric CO2

concentration (ppm yr−1)63.

Gridded Climate data. Global monthly gridded air temperature, precipitation and
solar radiation data at 0.5° were provided by the Climate Research Unit (CRU) at
University of East Anglia64. We used the CRU TS 4.01 climate dataset which ranges
from 1959 to 2016. Monthly vapor pressure deficit was calculated as the difference
between saturated vapor pressure calculated based on monthly air temperature and
actual vapor pressure provided by CRU. Monthly soil water content at 0.5° was
calculated from CRU climate data using the simple process-led algorithms for
simulating habitats (SPLASH)65. SPLASH models soil water content as the residual
of precipitation, runoff and evapotranspiration, with evapotranspiration calculated
using a Priestly-Taylor scheme66. From the resulting monthly gridded climate
dataset, we calculated mean annual tropical temperature (MAT), precipitation
(MAP), solar radiation (RAD) and soil water content (SWC) for vegetated land.
The correlation between the temporal dynamics of MAT and MAP is −0.15
(Pearson’s r, p= 0.27), between MAT and SWC, −0.23 (p= 0.09), between MAP
and SWC, 0.68 (p < 0.01). In addition, we used several other gridded climate
datasets produced based on global observations available from 1959 to 2016 to
examine the robustness of our results. These gridded climate datasets are Berkeley
Earth Surface Temperature (BEST)67, CRUTEM4 surface temperature68, NASA
Goddard Institute for Space Studies surface temperature (GISS)69, global tem-
perature and precipitation produced by University of Delaware (UDEL)70, global
precipitation produced by the Global Precipitation Climatology Centre (GPCC)71

and NOAA’s PRECipitation REConstruction over Land (PRECL)72.

Ancillary remote sensing and modeled datasets. We used a reconstructed ter-
restrial water storage (TWS) derived from the GRACE satellite as one of obser-
vational proxies for tropical water availability. The reconstructed TWS ranges from
1981 to 2017 and has a global coverage at 0.5°9. We extracted TWS data over
tropical vegetated land surface for our analysis. We used the Moderate Resolution
Imaging Spectroradiometer (MODIS) MOD12 land cover product73 to delineate

biome types in the tropics—forests (i.e., evergreen broadleaf forests) and semi-arid
ecosystems (i.e., grasslands, shrublands and savanna type ecosystems). We used the
land cover type that was most prevalent during the period 2000–2013 for our study
area. Global fire carbon emissions were acquired from Global Fire Emission
Database (GFED4s)36. Two estimates of global carbon emissions due to land use
and land cover (LULC) were included in our analysis. One is an estimate based on
two bookkeeping models used in the Global Carbon Project61, the other one is an
estimate based on a process-based model that considers the influences of climate
variation and dynamic biomass density in the LULC emission5.

Estimates of net ecosystem exchange (NEE). We used annual NEE estimated
from two sources, including (1) 15 dynamic global vegetation models (DGVMs)
from TRENDY v635 participating in the Global Carbon Project61 and (2) FLUX-
COM fluxes upscaled from eddy-covariance measurements using three machine
learning methods21.

DGVMs used in this study include CABLE, CLASS-CTEM, CLM4.5(BGC),
DLEM, ISAM, JSBACH, JULES, LPJ-GUESS, LPJ, LPX-Bern, OCN, ORCHIDEE,
ORCHIDEE-MICT, SDGVM, VISIT (Supplementary Table 1). These models were
driven either by monthly CRU or 6-hourly CRU-NCEP gridded climate dataset
and dynamic atmospheric CO2 concentrations. Some models consider the effects of
CO2 fertilization, LULC, and nitrogen deposition on the carbon cycle, but carbon
emissions due to LULC were considered separately thus not included in the NEE
output. We used the DGVMs annual NEE estimates from 1959 to 2016.

FLUXCOM21 estimates global NEE by upscaling measurements from 224 eddy-
covariance flux tower sites using three different machine learning algorithms:
Random forests (RF), Artificial Neural Networks (ANN) and Multivariate Adaptive
Regression Splines (MARS). Each machine learning algorithm was trained on daily
fluxes using 11 inputs including site-level meteorological data and mean seasonal
cycle of MODIS observations. After obtaining the trained algorithm, gridded
climatic variables from CRU-NCEP and the mean seasonal cycle of MODIS data
were used to produce carbon flux estimates on 0.5°×0.5° grids and at monthly
intervals. We then summed up the monthly gridded data and got the FLUXCOM
annual NEE estimates from 1980 to 2013.

Climate sensitivity of CGR. We calculated the temperature sensitivity (γTCGR) and
the water sensitivity of CGR (γWCGR) based on univariate or multivariate linear
regressions of the anomalies of CGR (ΔCGR) on the anomalies of climate variables
over tropical land. We defined anomalies as the departure to the fitted trend line of
a time series8,20. We used nine competing models (M1 to M9) to derive γTCGR and
γWCGR for every 20-year moving window, alternatively using the anomalies of tro-
pical mean annual temperature (ΔMAT), mean annual precipitation (ΔMAP),
mean shortwave radiation(ΔRAD), 4-month lagged precipitation (ΔMAPlag),
satellite-based terrestrial water storage (ΔTWS) and the interactions of temperature
and water proxies as the predictors (Table 1; Supplementary Fig. 1). The interac-
tion term was added in some models to account for the interaction of water and
temperature variability, as suggested in a recent study15. We evaluated the per-
formance of models based on their time range covered, adjusted coefficient of
determination (Adj. R2), Akaike information criterion (AIC) and variance inflation
factor (VIF). In particular, large VIF indicates collinearity in predictors, which can
generate instability in the coefficients of linear models, leading to more uncertain
climate sensitivities. Long-term dynamics of γTCGR and γWCGR were qualitatively
similar between the different multivariate models tested (Supplementary Fig. 1).
We selected M1 (precipitation based) and M3 (TWS based) for the analyses pre-
sented in the main text, as they were less influenced by predictor collinearity --
evidenced by their lower VIF scores. CGR in the years 1991–1993 were affected by
the eruption of Mt. Pinatubo and thus excluded from the analysis.

Quantifying drought-affected area. We used the percentiles of local monthly
precipitation to detect droughts and drought-affected area. Though multiple aridity
index can be used to do so, we chose monthly precipitation because (1) the indi-
cator is directly related to IPCC definition of drought-“prolonged absence or
marked deficiency of precipitation38” (2) some known uncertainties in the esti-
mation of water demand – potential evapotranspiration – in the derivation of
aridity indexes74,75. Droughts occur when monthly precipitation is below a certain
local threshold in a reference period76. Specifically, for each pixel in the tropics, we
converted its monthly precipitation from 1959 to 2016 to a percentile distribution.
We defined the months that belong to the bottom 1% percentile of the precipitation
as experiencing very extreme drought. By changing the choice of precipitation
threshold (e.g., 1, 5, 10, 15, 20, 25, 30, 40, and 50%), we identified droughts of
different severity for the pixel—the bottom 1% precipitation is very extreme
drought, 1–10% is extreme drought, 10–25% is mild drought, and 25–50% is
natural water deficits. To get the long-term dynamics of drought-affected area, for
each 20-year span, we obtained the frequency of extreme drought (i.e., the ratio of
the number of months experiencing droughts to the total number of months in the
20-year span) at the pixel level. The frequency was then used to weigh the area of
pixels as we aggregated the drought-affected area to regional scales (e.g., tropic
forests, semi-arid, continents, pantropic).
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Quantifying the regional contributions to STDCGR. Based on the tight correlation
between extreme drought-affected area and STDCGR, we adopted a time-for-space
substitution to quantify regional (i.e., tropical America, tropical Africa, tropical
Asia, tropical semi-arid ecosystems and tropical forests) contributions to STDCGR,
using the drought-affected area detected for these regions. To consider the spatial
variation of regions in their land-atmospheric CO2 exchange capacity, we used the
multiyear average FLUXCOM NEE map as the spatial weight, as FLUXCOM NEE
represents our best estimate of the spatial variation in NEE58 and the product
shows potential in capturing the extreme drought influence on NEE (Fig. 2d;
Supplementary Fig. 5).

We note that to estimate the regional contribution of extreme droughts to
STDCGR, it is necessary to account for all transient and long-term carbon fluxes
incurred by extreme droughts. In theory, this can be simulated in process-based
DGVMs. But current DGVMs, as our results have suggested (Fig. 2d), inadequately
capture the drought impacts on STDCGR. Another option is to use remotely sensed
aboveground biomass (AGB)77 rather than data-driven NEE as the spatial weight.
However, the method would imply that extreme droughts induced carbon losses
proportionally to AGB. The assumption was questionable as drylands have less
biomass but usually comparable net carbon exchange than wet forests13,14.
Therefore, using the data-driven net flux product (i.e., FLUXCOM NEE) as a
weight would be the preferred available option to approximate the regional
contribution to STDCGR, as FLUXCOM NEE showed potential in capturing the
extreme drought influence on NEE (Fig. 2d; Supplementary Fig. 5). Importantly,
our study is designed to provide a first-order quantification of the regional
contribution to STDCGR at coarse continental and biome scales, while the fine-scale
variations at the pixel-level within each continent and biome remain to be
addressed.

Remove the influence of autocorrelation. Autocorrelation is the correlation of a
time series with a delayed copy of itself. Since we used a moving window to
calculate STDCGR, the value of STDCGR in a window is not independent from its
counterparts in adjacent windows, leading to autocorrelation in the time series of
STDCGR. In addition, since we calculated long-term variability in tropical water
availability (e.g., MAP, SWC) using the same moving window, it can also generate
some autocorrelation in these time series. To remove the influence of
autocorrelation:

1) First, we introduced the Durbin-Watson indicator (DW) to evaluate the
autocorrelation of these times series. We estimated the lag 1 autocorrelation in the
residuals (ei) from the ordinary linear regression of the variables of interest (e.g.,
STDCGR, MAP) to time, where the coefficient in the regression is ρ, as in ei= ρ
ei-1+ ri. The DW tests the null hypothesis that residuals are uncorrelated (ρ = 0),
against the alternative hypothesis that autocorrelation exists (ρ ≠ 0) (Eq. 1).

DW ¼ ∑n
i¼2ðei � ei�1Þ2

∑n
i¼1e

2
i

ð1Þ

Where n is the number of observations, ei is the ith residual of the linear regression
of a target variable to time. The Durbin-Watson indicator (DW) is a value ranging
between 0 and 4, where 0 means positive autocorrelation, 2 means no
autocorrelation and 4 means negative autocorrelation.

2) We applied the Cochrane-Ocrutt procedure to adjust the variables of
interests (yi; e.g., STDCGR, MAP, SWC, TWS, MAT, VPD) to STDCGR_adj, MAPadj,

SWCadj, TWSadj, MATadj and VPDadj where yi_adj = yi − ρyi−1. After the

procedure, we found the autocorrelations in STDCGR_adj, MAPadj, SWCadj, TWSadj
and MATadj and VPDadj were largely removed since their DW values were close to

2 − 1.6, 1.3 ± 0.1, 1.2, 1.3, 1.9 and 1.9 ± 0.03, respectively. Among them, MAPadj
and TWSadj were negatively correlated to STDCGR_adj with significance level of
p < 0.01 and p = 0.08 (Fig. 2a), respectively, meaning the negative impact of long-
term water availability on STDCGR we found is significant after considering
autocorrelation.

Furthermore, we conducted an alternative test to remove autocorrelation, in
which we divided the 58-year CGR records into twelve independent 5-year
segments (only the last segment has 2-year overlap with its previous segment), and
calculated γTCGR, γ

W
CGR, STDCGR and the drought-affected area for each 5-year

segment. Each 5-year segment is therefore independent from others since there is
no overlap between them. Based on the γTCGR, γ

W
CGR, STDCGR and the drought-

affected area from these 5-year segments, we re-examined their relationships to
support our conclusion (Supplementary Fig. 3c, d).

Data availability
All data used in this study is publicly available. The Global Carbon Project dataset is
archived at the website (https://www.icos-cp.eu/science-and-impact/global-carbon-
budget/2017). The simulations from TRENDY DGVMs are available at https://
sites.exeter.ac.uk/trendy. CRU TS4.01 can be accessed at https://crudata.uea.ac.uk/cru/
data/hrg and CRU-NCEP can be accessed at https://crudata.uea.ac.uk/cru/data/ncep/.
FLUXCOM dataset was downloaded from www.bgc-jena.mpg.de/geodb/projects/
Data.php. Global Fire Emissions Database is accessible at http://www.globalfiredata.org/.

Berkeley Earth Surface Temperature can be downloaded from http://berkeleyearth.org/
data/. Other auxiliary temperature and precipitation datasets are freely available at
https://www.esrl.noaa.gov/psd/data/. We provide a processed dataset to support the
reproduction and verification of the results at https://zenodo.org/record/5908612.

Code availability
All code that supports the finding of this study is available at https://zenodo.org/record/
5908612.
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