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Patients with heart failure often develop cardiac arrhythmias. The mechanisms and 
interrelations linking heart failure and arrhythmias are not fully understood. Historically, 
research into arrhythmias has been performed on affected individuals or in vivo (animal) 
models. The latter however is constrained by interspecies variation, demands to reduce 
animal experiments and cost. Recent developments in in vitro induced pluripotent stem 
cell technology and in silico modelling have expanded the number of models available for 
the evaluation of heart failure and arrhythmia. An agnostic approach, combining the 
modalities discussed here, has the potential to improve our understanding for appraising 
the pathology and interactions between heart failure and arrhythmia and can provide 
robust and validated outcomes in a variety of research settings. This review discusses 
the state of the art models, methodologies and techniques used in the evaluation of heart 
failure and arrhythmia and will highlight the benefits of using them in combination. Special 
consideration is paid to assessing the pivotal role calcium handling has in the development 
of heart failure and arrhythmia.

Keywords: heart failure, in vivo cardiac models, human induced pluripotent stem cells, methods, in silico 
modelling, cardiac arrhythmias

INTRODUCTION

Heart failure and cardiac arrhythmias are intrinsically linked in a complex interplay of cause 
and effect. Cardiac arrhythmias can promote left ventricular systolic dysfunction through rapid 
ventricular rates which disrupt atrial and ventricular output (Prabhu et  al., 2017). Moreover, 
heart failure is an independent risk factor for arrhythmogenesis, due to its deleterious impact 
on atrial remodelling (Heijman et  al., 2014). Heart failure and arrhythmias have shared 
physiological and genetic causes. Furthermore, many of the methods and systems used to 
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evaluate the electrophysiological changes that occur in cardiac 
arrhythmias are common to those used in heart failure research.

Advancements in medical therapies have led to the survival 
of patients with heart failure and arrhythmias for longer, 
increasing the prevalence of both conditions (Schmitt et  al., 
2009). Furthermore, in patients with inherited cardiac conditions, 
arrhythmias are common and represent a significant financial 
and clinical burden (Verheugt et  al., 2010). The number of 
people living with chronic heart failure is increasing, estimated 
to be  64.3 million worldwide in 2020 (Groenewegen et  al., 
2020). An increased prevalence of atrial fibrillation (AF; 3.29% 
in 2016) in the United  Kingdom over the past decade has 
compounded the issue, as it predisposes many to the development 
of heart failure and ischaemic stroke (Pozzoli et  al., 1998; 
Eckardt et  al., 2016; Adderley et  al., 2019).

Research into the diagnosis, aetiology, prevention and 
treatment of cardiac arrhythmias has the potential to provide 
substantive clinical benefit to a significant proportion of the 
population and is particularly pertinent to those suffering from 
heart failure. Despite recent advances in cardiology, the 
mechanisms underpinning the multitude of different types of 
cardiac arrhythmias are still not fully understood.

Historically, researchers have been heavily reliant upon 
electrophysiological data obtained from clinical cases and animal 
models. Obtaining human experimental data, such as 
electrocardiograms and echocardiograms, is relatively inexpensive, 
available and non-invasive to the patient (Davie et  al., 1996). 
However, the procurement and subsequent use of human tissue 
in cardiac arrhythmia research is often limited by stringent 
ethical approval and a lack of availability (Price, 2005).

Cardiovascular research requiring the use of animal models, 
such as mice, rabbit, goat and pig, is often highly invasive 
and consequently carries a substantial ethical burden. Moreover, 
although heart failure and cardiac arrhythmias have been 
successfully modelled in vivo, distinct interspecies differences 
in cardiac electrophysiology (e.g., heart rate of mice being 
approximately 10 times faster than in humans) limits the 
translation of these findings into the clinical setting. Recent 
developments in human-based methodologies, including induced 
pluripotent stem cells (iPSC) and computational cardiac modelling 
and simulation, present exciting prospects to supplement and 
augment experimental and clinical investigations (Rodriguez 
et  al., 2015).

In the following text, we  will outline many of the models 
and techniques most commonly used to evaluate cardiac 
arrhythmias in heart failure research. They are summarised in 
Table  1. For a broader description of the experimental models 
available for cardiac electrophysiology research, and their 
suitability for use in evaluating specific arrhythmogenic 
syndromes, the reader is directed to the excellently written 
review by Odening et  al. (2021). Heart failure can arise from 
a multitude of aetiologies, including but not limited to inherited 
genetics, environment (including chemotherapy) and age (Ziaeian 
and Fonarow, 2016). While only present in a sub-group of 
patients with heart failure, this review will often use arrhythmias 
linked to genetic variation as a prime example, as this area 
of research has made significant advances within recent years.

MODELS AND TECHNIQUES USED TO 
EVALUATE ARRHYTHMIA IN HEART 
FAILURE

In vivo/Ex vivo Model Systems
Genetically Modified Animals
Following the pioneering work by Thomas and Capecchi (1987) 
on the site directed mutagenesis of mouse embryonic derived 
stem cells, genetically modified animal models have become 
a staple method commonly used in disease modelling. A myriad 
of genetic variations can be  inserted into the embryos of 
animals to cause the overexpression, inactivation, conditional 
expression and modification of cardiac genes (Low et al., 2016). 
Modern genome editing techniques, such as clustered regularly 
interspaced short palindromic repeat (CRISPR) Cas9 editing, 
have allowed the engineering of animal genomes to be performed 
with unprecedented ease (Ran et  al., 2013; Zarei et  al., 2019). 
This has consequently led to the widespread use of genetically 
engineered animals in cardiovascular research (Ding et  al., 
2014; Carroll et  al., 2016; Tessadori et  al., 2018).

A variety of genetically modified animals have been used 
to study heart failure and arrhythmias, including but not limited 
to rabbits, pigs, dogs and rats (Clauss et  al., 2019). Figure  1 
outlines the most commonly used animals in arrhythmia and 
heart failure research, their differences in electrophysiology in 
relation to humans and the methods used in their evaluation. 
The prevalence of large animals in arrhythmia research is 
comparatively small when contrasted to that of the mouse 
and zebrafish. Genetically modified mice, containing loss of 
function variants in the gap junction protein connexin43, 
frequently develop severe ventricular arrhythmias and have 
been used to model the arrhythmogenic substrates behind 
sudden cardiac death (Gutstein et  al., 2001). Heart failure in 
in vivo models can be promoted in a variety of ways, including 
coronary artery ligation, aortic banding, chronic rapid pacing 
and isoproterenol infusion treatment (Chen et al., 2017a; Bosch 
et  al., 2020). Many of these methods are detailed in Halapas 
et al. (2008) and can be performed on animal models possessing 
arrhythmogenic variants to study the complex pathogenesis of 
arrhythmias in chronic heart failure.

Channelopathies, such as long QT syndrome, have been 
recapitulated in mice, by the targeted mutagenesis of genes 
encoding subunits of inward rectifier potassium channels and 
SCN5A (Salama and London, 2007). However distinct differences 
in the ion channels predominantly responsible for cellular 
repolarisation in adult human and mouse cardiomyocytes 
exemplify how contrasts in interspecies cardiac electrophysiology 
limits the use of data obtained from such models (Wang 
et  al., 1996).

Arrhythmogenic cardiomyopathies, often caused by genetic 
alterations, have been successfully modelled in genetically 
modified mice to assess the impact they have on the development 
of heart failure. The micropeptide phospholamban helps regulate 
intracellular calcium handling in cardiomyocytes by inhibiting 
the sarcoplasmic reticulum Ca2+-ATP-ase SERCA2 (MacLennan 
and Kranias, 2003). Pathogenic variants of the PLN gene have 
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TABLE 1 | Methods used to evaluate cardiac arrhythmia in heart failure.

Approach Method Description Invasiveness Advantages Limitations

In vivo Electrocardiogram 
(ECG)

Measuring voltage versus time 
from electrodes placed on the 
skin

Non-invasive  •  Easy to perform

 •  Can be used to detect most 
sustained arrhythmias

 •  Provides limited information 
on mechanism of arrhythmia

 •  Struggles to detect 
intermittent arrhythmias

In vivo Echocardiography Using sound waves to facilitate 
live imaging of the heart. This 
can be used to indirectly 
estimate measurements of the 
cardiac cycle

Non-invasive  •  Provides detailed structural 
information on the heart

 • Relatively easy to perform

 • Cardiac cycle is estimated

 •  High interobserver variability

Ex vivo Monophasic and 
transmembrane action 
potentials

The recording of action 
potentials from either a single or 
group of cardiomyocytes using 
intracellular and extracellular 
electrodes

Invasive/Non-
invasive

 •  Direct recoding of 
transmembrane voltage 
changes

 •  Can be recorded in freely 
beating heart/preparations

 •  Ideally suited for arrhythmia 
induction and testing

 • Low spatial resolution

 •  Direct electrode contact can 
damage tissue

 •  Hearts/tissue samples often 
require preparation, e.g., 
Langendorff perfusion

Ex vivo Voltage and calcium 
optical mapping

Using voltage and/or calcium-
sensitive dyes to analyse action 
potential propagation and 
calcium transients

Partially invasive  •  High spatial resolution allows 
visualisation of propagation 
patterns present in complex 
arrhythmias

 •  Enables the 
electrophysiological 
assessment of samples 
following electrical shocks 
which may be elicited to 
induce arrhythmogenesis or 
mimic defibrillation

 •  Hearts/tissue samples often 
require preparation, e.g., 
Langendorff perfusion

 •  Motion artefacts can occur if 
samples are uncoupled

 • High skill level required

 •  Dye toxicity and 
photobleaching

Ex vivo/In vitro Patch clamping Microelectrodes are used to 
interrogate membrane potential 
and ion current channel function 
in excitable cardiac cells and 
preparations

Invasive  •  Enables electrophysiological 
characterisation of a subset 
of individual ion channel(s) 
(voltage clamp)

 •  Enables the direct recording 
of action potentials (current 
clamp)

 •  Enables the comprehensive 
characterisation of 
electrophysiological events 
at a single-cell level under 
controlled conditions

 • High skill level required

 •  Cannot detect 
electrophysiological events 
related to re-entry

 • Low throughput

In vitro Multi-electrode arrays 
(MEA)

A surface containing embedded 
electrodes acts as a neural 
interface to assay the electrical 
activity of cultured cells

Non-invasive  •  High-throughput multiplexed 
reads

 •  Relatively unharmful to the 
cells, allowing experiments 
to be performed over a long 
period of time

 • Low spatial resolution

 •  An extracellular field potential 
is recorded rather than the 
action potential itself

In vitro Intracellular calcium 
imaging

A fluorescent calcium indicator is 
either added to the cells or 
endogenously expressed to 
visualise calcium transients

Partially invasive  •  High spatial resolution allows 
assessment of intracellular 
calcium handling

 •  Can be performed in 
conjunction with voltage-
sensitive dyes

 •  Dyes can be toxic to the cells

 •  Skill required to determine the 
appropriate indicator/dye for 
imaging

In silico Human-based 
computational models 
and simulations

Simulations using mathematical 
models of human cardiac 
pathophysiology yield high 
spatio-temporal resolution data, 
including time course of ionic 
currents, action potentials, 
calcium transients, conduction 
velocity and the ECG.

Non-invasive  •  Fast and cost-effective way 
of evaluating arrhythmias

 •  Can be used to generate 
predictions on arrhythmia 
mechanisms which would 
be imperceptible using solely 
experimental data

 •  Can be reliant on 
experimental data

 •  Computational power is 
limited requiring researchers 
to balance the complexity of 
their model against its 
performance
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been linked to the development of arrhythmogenic 
cardiomyopathies and severe heart failure and have been 
successfully modelled in mice to assess arrhythmia susceptibility 
and response to standard heart failure therapy (Fish et  al., 
2016; Eijgenraam et  al., 2020). Another example of 
cardiomyopathies being modelled in mouse models is evidenced 
in Geisterfer-Lowrance et al. (1996), where the group generated 
a Myh6 p. Arg403Gln variant in the orthologous α cardiac 
myosin heavy chain (MHC) gene to explore the pathological 
effects of the variant in familial hypertrophic cardiomyopathy.

Common single nucleotide variants, identified in genome-
wide association studies of AF and heart failure, are frequently 
found located in non-coding regions of the genome (Shah 
et  al., 2020). The association between the variant and the 
disease is often unclear and can consequently require further 
elucidation using in vivo models. Genetic variants located in 
the 4q25 region, which lies adjacent to the PITX2 gene, have 
been strongly linked to the development of AF (Gudbjartsson 
et  al., 2007). The precise mechanism by which this genomic 
region affects the expression of PITX2 and the development 
of AF remains cryptic. Genetically modified mouse models 

have proven powerful tools to validate disease association. 
The insertion of fragments of the 4q25 region attached to a 
reporter gene, into the genome of mouse embryos, has helped 
researchers explore the functional role variants in this 
cis-regulatory region have on cardiac development (Aguirre 
et  al., 2015).

The use of genetically modified mouse models in arrhythmia 
and heart failure research poses a difficult challenge. Although 
mice and humans share approximately 85% sequence homology 
in protein coding regions, fundamental differences remain in 
the sequence composition of many key genes and their relative 
expression levels (Makałowski et  al., 1996). Disparities in the 
compartment-specific expression of transient outward K+ current 
(Ito), as well as voltage-gated sodium and calcium channel 
isoform expression causes stark differences in the formation 
of the cardiac action potential (Blechschmidt et al., 2008; Niwa 
and Nerbonne, 2010; Björling et al., 2013). Consequently, results 
obtained from mice often require translation when interpreted 
for humans (Tanner and Beeton, 2018).

The generation of humanised mouse models has attempted 
to mitigate differences in sequence homology through the 

FIGURE 1 | In vivo models used in cardiac arrhythmia and heart failure research. An outline of the animals used in arrhythmia and heart failure research, their 
electrophysiological similarities and differences in relation to humans, the advantages (green) and limitations (red) of their use and the techniques most commonly 
used in their evaluation. The size of the animal represents the prevalence of their use. Created with BioRender.com
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replacement of the mouse gene with the orthologous human 
counterpart (Zhu et  al., 2019). However, the complexity of 
gene expression regulation in higher eukaryotes makes precise 
transcriptional emulation difficult. The cost and time needed 
to generate genetically modified mouse models limits their 
use in investigating rare inherited variants associated with 
cardiomyopathies, arrhythmias and heart failure. Furthermore, 
genetically modified animal models struggle to emulate the 
environmental stressors and comorbidities of individuals with 
heart failure and arrhythmia and therefore struggle to capture 
the phenotypic spectrum of either disease (Colbert et al., 1997; 
Vakrou et  al., 2018).

Ex vivo Cardiac Preparations
Pioneered by Oskar Langendorff, the retrogradely perfused 
heart allows prolonged experimental interrogation in a context 
independent of confounding non-cardiac organ function (Bell 
et  al., 2011). The Langendorff heart is a cornerstone of basic 
cardiology research. It allows precise control of physiological 
and pharmacological interventions and facilitates programmed 
stimulation for arrhythmia induction. The effect that these 
interventions as well as genetic and environmental stressors 
have on the isolated heart, can be  studied using several 
methodologies (section “Electrophysiological Study of ex vivo 
Model Systems”). The Langendorff heart is a non-working 
system which fails to fully recapitulate in vivo conditions due 
to its retrograde perfusion. The Langendorff model can 
be  modified into the orthogradely perfused working model 
developed by Neely et  al. (1967), to better characterise pump 
function. Further information on isolated heart models can 
be  derived from Olejnickova et  al. (2015).

Additional preparations of the animal heart have been 
developed from the whole heart to answer specific experimental 
questions. The innervated heart technique, originally developed 
by Ng et  al. (2001) for use in the rabbit, has been applied 
in several animal models to enable study of autonomic influences 
on cardiac electrophysiology (Winter et  al., 2018; Wang et  al., 
2019). Isolated atrial preparations enable detailed study of the 
atria and sinoatrial node without confounding ventricular 
influences, while slice and wedge preparations allow transmural 
properties of the mouse heart to be  investigated (Lang et  al., 
2015; Holmes et  al., 2016; Wen et  al., 2018; Dong et  al., 2019; 
Brennan et  al., 2020).

Electrocardiography in in vivo Model 
Systems
Fundamentals of Electrocardiography in Animal 
Models
The electrical changes that occur during the cardiac cycle can 
be  plotted in a voltage versus time graph, commonly known 
as an ECG (Geselowitz, 1989). Recognisable complexes within 
the ECG, such as the P wave, QRS complex and T wave, 
correspond to the depolarisation of the atria (P) and ventricles 
(QRS) and the repolarisation of the latter (T). Willem Einthoven 
is credited with the invention of electrocardiography and the 
contemporary ECG (Barold, 2003). Historically, the use of 

electrocardiography was integral in defining many of the 
fundamental mechanisms behind clinically important arrhythmias 
(Fye, 1994). Today the technique underpins a significant 
proportion of modern cardiovascular research and is pervasively 
used to phenotype genetically modified animal models.

Heart rate and heart rate variability are two of the most 
important metrics determined from an ECG. Researchers use 
animal heart rates to characterise cardiac function in response 
to hemodynamic, pharmacologic and environmental stressors 
(Appel et  al., 1989). Variation in heart rate, which arises from 
differential sinoatrial node stimulation, is influenced by the 
animal’s temperature, activity, stress level and sleep cycle (Thireau 
et  al., 2008). It can be  used as a measurement of how adaptive 
the animal is to cardiac stress, with a decreased variation in 
heart rate being linked to an increased risk of mortality following 
myocardial infarction (Kleiger et  al., 1987). Intervals between 
recognisable complexes within the ECG, such as the QT, PR 
and RR, can be  calculated and compared between animals 
with relative ease. Perturbation of such complexes can be  used 
to identify structural abnormalities within the heart and can 
be  prognostically important in the evaluation of heart failure 
and arrhythmia. For example, the RR interval can be  plotted 
in Poincaré plots to identify the presence of AF (Park et al., 2009).

ECGs of genetically modified animals are often used to 
assess the pathogenic impact gene variants have on 
arrhythmogenesis. This has proven particularly pertinent when 
exploring variants associated with channelopathies and 
arrhythmogenic syndromes, such as those in the calcium 
ryanodine receptors (Zhao et al., 2015). Despite the overwhelming 
prevalence of the animal in cardiovascular research, the surface 
ECG of the zebrafish has and continues to be  relatively 
underutilised. Further information on the practicalities of 
electrocardiography in zebrafish can be  found in Zhao et  al. 
(2019). The coming paragraphs will focus on electrocardiography 
in mice, due to their aforementioned common use in arrhythmia 
and heart failure research.

Experimental Methods for Electrocardiography in 
Mouse
The arrhythmias common in patients with heart failure are 
often sporadic and present inconsistently, therefore the induction 
of arrhythmias in mice is often required. Arrhythmias can 
be  induced in a variety of ways including burst/S1-S2 pacing, 
intense endurance exercise and the administration of 
pro-arrhythmic agents (Schrickel et  al., 2002; Spurney et  al., 
2011; Aschar-Sobbi et  al., 2015). Electrocardiography can 
be  performed on conscious or sedated mice, with the latter 
being disadvantageous as disruption of cardiac function can 
be  caused by many of the commonly used sedatives (Chaves 
et al., 2003).

There are three established systems for the recording of 
ECGs from mice: non-invasive, tethered and implanted telemetry 
ECG (Ho et  al., 2011). Non-invasive ECGs involve placing 
the mouse in a constraint so that three small surface electrodes 
make contact with the paws of the animal. As anaesthesia is 
not required and the technique is quick and easy to do, 
non-invasive electrocardiography facilitates “high-throughput” 
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screening of mice; however, the technique is not suitable for 
long term ECG recordings.

Tethered electrocardiography involves attaching four small 
electrodes into the back of the mouse. The electrodes are 
tethered to a swivel device to enable unrestricted movement. 
ECGs can be recorded without the need of an often stress 
inducing restraining cage and for longer periods of time. General 
anaesthesia is however required to insert the electrodes into 
the mouse and may consequently lead to abnormal cardiac 
function. Mice must be monitored during the recording of 
the ECG to prevent agitation of the tethered electrode wires, 
limiting the use of the technique in long term 
experimental studies.

Implanted telemetry electrocardiography involves inserting 
a radio transmitter connected to two electrodes into the mouse. 
Signals are received wirelessly by a nearby amplifier and computer 
system. The technique enables ECGs to be  recorded over a 
prolonged continuum, enabling heart rate variability to 
be  monitored and arrhythmia frequency to be  calculated 
(Knollmann et al., 2003). Implanted telemetry electrocardiography 
allows researchers to determine whether arrhythmic events 
were responsible for cause of death. The surgery required for 
implanted telemetry ECGs poses significant risk of mortality 
and morbidity to the mouse (Schuler et  al., 2009). A recovery 
period is required following the surgery, making the technique 
more suited to use in long term electrophysiological studies.

Utility of Electrocardiography in Mouse
Electrocardiography is often described as the “gold standard” 
technique for the electrophysiological analysis of the heart. It 
lacks the spatio-temporal resolution afforded to optical mapping 
but exceeds in its capacity for comprehensive in vivo 
characterisation. Alternative methods, such as echocardiography, 
which indirectly determines heart rate, provide limited 
information on the electrophysiology of the cardiac cycle and 
is unable to discriminate between sinus and ectopic heartbeats. 
This consequently constrains its use in the evaluation of complex 
ventricular arrhythmias associated with chronic heart failure. 
Echocardiography is extensively used in cardiovascular research 
to characterise the structural cardiac phenotype of genetically 
modified animal models; however, due to its restricted use in 
arrhythmia research, it will not be  covered in detail in this 
review. Further information on the role echocardiography has 
in basic and clinical cardiovascular research can be  obtained 
from Scherrer-Crosbie and Thibault (2008).

Comparing ECGs generated from mice to those derived 
from humans is not straightforward but is essential when 
assessing arrhythmogenesis of heart failure models. Bazett’s 
formula, which is commonly used to equate QT intervals 
measured from contrasting heart rates, fails to account for the 
differences present in mice sedated by certain anaesthetics 
(Boukens et  al., 2014). The distinct differences in the cardiac 
electrophysiology of mice and humans are evidenced by both 
the heart rate and action potential duration (Kaese and Verheule, 
2012). Further contrasts are evidenced by morphological changes 
in complexes of the ECG, such as an ambiguous ST segment 
and an additional J wave. The J wave arises in the mouse 

(and other rodents) ECG due to the lack of a plateau phase 
in the action potential, meaning early repolarisation is visible 
as a positive deflection shortly after the QRS complex (Offerhaus 
et  al., 2021). It is for this reason also that the mouse ECG 
has a less pronounced T wave.

As well as morphological changes present in the sinus rhythm 
of mice and humans, patho-anatomical changes can cause 
varying responses in the ECG of humans and mice. Acute 
myocardial ischemia is represented by the elevation of the ST 
segment in humans, while in mice it is conversely shown as 
a reduction in S wave amplitude followed by an abnormal J 
wave and inverted T wave (Janse, 1986; Gehrmann et al., 2001). 
The potential of the surface ECG in mice is largely restricted 
by the size of the animal. Although not limited to its use in 
mice, electrocardiography is still performed comparatively little 
in larger, more electrophysiologically analogous mammals, such 
as pigs and dogs. This is mainly due to the cost associated 
with the animals housing and upkeep and the more stringent 
ethical restrictions covering their use in research.

Further to surface ECG recording, methods have been 
developed to directly record electrical activity of the in vivo 
mouse heart at the epicardial surface (via an open torso 
approach) and intracardially (via transvenous catheters; Berul 
et  al., 1996; VanderBrink et  al., 1999). Such approaches are 
advantageous over the surface ECG as they enable recording 
of an ECG to be  taken under programmed stimulation elicited 
to unearth arrhythmia in animal models with altered myocardial 
structure (Maguire et  al., 2000; Saba et  al., 2000; Sawaya et  al., 
2007). However, they are limited by the relatively low spatio-
temporal resolution associated with indirect extracellular 
ECG recordings.

Electrophysiological Study of ex vivo 
Model Systems
Monophasic and Transmembrane Action Potential 
Recordings
Electrode-based methods allow the recording of action potentials 
from the isolated heart and other ex vivo cardiac preparations. 
Intracellular microelectrodes can be  used to record 
transmembrane action potentials from a single cell within the 
intact preparation or indeed from isolated cardiomyocytes 
(section “Cellular Systems: Primary Cells”). By using one 
electrode in the intracellular space and another extracellular 
electrode, the difference between the two signals facilitates the 
recording of the transmembrane action potential (Holmes 
et  al., 2016).

Larger electrodes (>.1 mm diameter), positioned firmly against 
cardiac tissue, can be  used to record extracellular activity 
originating from several cells (Kirchhof et  al., 1998; Fabritz 
et al., 2003; Iravanian et al., 2020). These recordings are known 
as monophasic action potentials (MAPs) and are routinely 
recorded from Langendorff perfused animal hearts to directly 
assess cardiac electrophysiology. Freundt et  al. (2019) recorded 
MAPs from rabbits following treatment with the histone 
deacetylase inhibitor, entinostat, to demonstrate that the drug 
could prevent heart failure associated early after depolarisations 
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(EADs) and structural remodelling. The setup required to record 
these signals consist of a proximal and distal electrode, neither 
of which crosses the cellular membrane. The exact mechanisms 
behind the origin of monophasic action potential recordings 
are not fully understood; however, they are thought to rely 
on proximal inactivation of one part of the tissue (Franz, 1991; 
Tse et  al., 2016).

Ex vivo Optical Mapping
Overview
Electrode techniques inherently have low spatial resolution due 
to the physical constraint of electrode placement. Cardiac 
excitation however involves the coordinated (or uncoordinated 
in the case of some arrythmias) propagation of action potentials 
across the tissue. Furthermore, tissue heterogeneities, such as 
activation or repolarisation dispersion and areas of ectopic 
activity, are often fundamental mechanisms for arrythmia 
induction in patients with heart failure. Therefore, higher spatial 
resolution mapping techniques are required for mechanistic 
research of cardiac preparations. These include multielectrode 
array techniques (section “Multi Electrode Arrays”) and 
optical mapping.

Cardiac optical mapping is a method used to investigate 
the electrical properties of cardiac tissue preparations through 
the excitation of fluorescent dyes (Zhang et  al., 2016; O’Shea 
et  al., 2020). Staining with voltage-sensitive indicators, such 
as potentiometric Di-4-ANEPPs, enables adjustments in 
membrane potential to be  monitored with greater spatial 
resolution than electrode-based methods. Calcium-sensitive 
indicators are utilised to visualise intracellular calcium handling. 
Furthermore, co-staining with voltage and calcium-sensitive 
indicators allows concurrent mapping of both calcium transients 
and action potential propagation (O’Shea et  al., 2019b). The 
information in the following section pertains to the optical 
imaging of ex vivo heart samples, although much of it remains 
highly relevant to the optical imaging of in vitro models, 
discussed in section “Calcium Imaging in in vitro Model Systems.”

Optical mapping was first developed to study the membrane 
potentials of neuronal cells by Salzberg et  al. (1973). The 
extension of its use to cardiac research by Salama and Morad 
(1976), enabled the electrophysiological characterisation of cell 
samples which were previously awkward to assay by traditional 
microelectrode-based methods. The further development of 
optical mapping techniques enabled the imaging of retrogradely 
perfused animal hearts and other ex vivo preparations (Salama 
and Choi, 2000).

Optical mapping has become a routinely performed 
experimental technique used to evaluate arrhythmogenesis in 
isolated perfused hearts and ex vivo cardiac preparations. The 
basic setup for the optical mapping of an ex vivo cardiac 
tissue preparation consists of three main parts: a sample to 
image, equipment designed to elicit fluorescent excitation and 
a detector for the recording of spectral emission. Optical 
mapping of cardiac tissue samples facilitates the visualisation 
and recording of action potential propagation and duration. 
The significantly greater spatial resolution afforded to optical 
mapping has enabled the visualisation of complex propagation 

patterns present during cardiac arrhythmia and has helped to 
identify both the macro- and micromechanisms behind them 
(Girouard et al., 1996). Optical mapping has proven particularly 
pertinent in the research of re-entrant arrhythmias enriched 
in patients with chronic heart failure, such as atrial and 
ventricular fibrillation, where it has enabled the visualisation 
of spiral waves in isolated epicardial muscle (Pertsov et  al., 
1993; Masarone et  al., 2017).

Optical mapping has been used to investigate mechanisms 
behind atrial fibrillation in age-related heart failure with preserved 
ejection fraction (Mesquita et  al., 2020). The group used ex 
vivo preparations derived from aged rats prone to heart failure 
with preserved ejection fraction to demonstrate slowed 
conduction velocities and perturbed β-adrenergic response. In 
contrast to microelectrode-based monitoring, the output of 
cardiac optical mapping remains broadly unaffected by high-
voltage shocks. This allows the electrophysiological response 
of samples to be determined following the elicitation of electrical 
shocks designed to mimic defibrillation or induce 
arrhythmogenesis (Chattipakorn et  al., 2001; Fast and 
Cheek, 2002).

Limitations of Optical Mapping
Optical mapping however has its limitations. Contractile 
movements from the cardiac sample can distort pixel imaging 
and create artefacts in the measured signal. Motion suppression 
can be  achieved using uncoupling agents, such as blebbistatin. 
However, although useful, uncoupling agents can cause significant 
disruption to the electrophysiology of the cells and can shroud 
important interactions that occur due to mechano-electrical 
feedback. Significant prolongation of the action potential and 
an increase in ventricular fibrillation have been reported following 
the treatment of rabbit hearts with blebbistatin, demonstrating 
possible limitations with its use (Brack et  al., 2013; Kappadan 
et  al., 2020). Other reports however have suggested that 
blebbistatin exerts little direct influence on cardiac 
electrophysiology (Fedorov et  al., 2007).

Methods have therefore been developed to image mechanically 
coupled cardiac preparations. Ratiometric optical mapping 
involves recording signals using two different excitation or 
emission wavelengths. In this approach, two signals are recorded 
which are differentially altered by calcium concentration or 
voltage, but similarly corrupted by motion. Therefore, the ratio 
between the signals can be  used to mitigate the impact of 
motion artefacts (Knisley et  al., 2000; Bachtel et  al., 2011). 
Sophisticated motion tracking algorithms, developed to reduce 
noise in mechanically coupled hearts, can be  used effectively 
in conjunction with ratiometric optical mapping to further 
reduce motion artefacts (Rodriguez and Nygren, 2014; Garrott 
et  al., 2017; Christoph and Luther, 2018). Analysis of optical 
mapping data requires highly specialised algorithms. This 
originally restricted use to laboratories that could develop these 
in-house. Recently however the emergence of open-source, 
versatile and high-throughput software by several different 
laboratories has meant that this is no longer a significant 
limitation (Gloschat et  al., 2018; O’Shea et  al., 2019a; Tomek 
et  al., 2021).
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In vitro Model Systems
Cellular Systems: Primary Cells
In vitro models consisting of excitable, functional primary 
cardiomyocytes can be  derived from enzymatically treated 
cardiac tissue using Langendorff perfusion, the newly developed 
Langendorff-free method and the so-called “chunk method”, 
which is commonly used on isolated human heart tissue (Yue 
et  al., 1996; Workman et  al., 2001; Louch et  al., 2011; Holmes 
et  al., 2021). Cell culture models consisting of primary 
cardiomyocytes offer an easily manipulated and physiologically 
relevant model for heart failure and arrhythmia research. The 
cells used are often derived from the explanted hearts of patients 
with end-stage heart disease (Zhang et  al., 2021). Such models 
have proven particularly useful in investigating the fundamental 
cellular mechanisms behind arrhythmia due to physiological 
ion channel expression within the cells. Pérez-Hernández et  al. 
(2016) were able to demonstrate that increased expression of 
PITX2c, which is commonly seen in the atrial appendages 
derived from patients with AF, could alter the densities of the 
slow delayed rectifier potassium channel (IKs) and L-type calcium 
channel (ICaL) in human atrial myocytes (Gudbjartsson 
et  al., 2007).

The inaccessibility of healthy human reference tissue and 
the limited proliferation potential of the cells derived in culture 
have however impeded the widespread use of primary human 
cardiac cells in heart failure research (Ikenishi et  al., 2012). 
Primary cardiac preparations derived from small laboratory 
animals, such as mice and rats, are comparatively abundant 
and consequently their use in arrhythmia and heart failure 
research is common. Non-human primary cardiomyocytes were 
first used to study the effects that inotropic agents had on 
the membrane potential of single cells (Iijima et  al., 1985). 
Patch clamping, a technique used to record the membrane 
voltage and ion channel activity in isolated cells or tissue 
sections, was often utilised in such experiments (section “Patch 
Clamp”). Advancements in the optical imaging of calcium- and 
voltage-sensitive dyes (section “Calcium Imaging in in vitro 
Model Systems”) expanded the utility of primary non-human 
cardiomyocyte models in arrhythmia research and enabled, 
for the first time, the visualisation of spontaneous re-entrant 
waves in myocyte monolayers (Bub et  al., 1998).

The development of 3D engineered heart tissue models from 
primary neonatal rat cardiomyocytes has allowed greater 
phenotypic maturation and the generation of a system particularly 
well suited to cardiotoxicity drug screening (Krause et  al., 
2018). Significant electrophysiological differences in action 
potential duration and intracellular calcium handling in human 
and rodent species however continues to limit the validity of 
results obtained using animal cardiomyocytes (Figure  2).

Cardiovascular research using human and non-human 
primary cardiomyocytes is hampered by the cells lack of 
propensity for proliferation. In spite of this, they have been 
used with great effect in understanding the electrophysiological 
changes that occur during heart failure. Maltsev et  al. (2007) 
demonstrated that the cardiomyocytes derived from failing 
human and dog hearts were prone to early after depolarisations 
due to increased variation in action potential duration. An 

increase in late sodium current (INa) activity was identified 
as a potential cause, with inhibition of the current reducing 
action potential duration variability and the presence of early 
after depolarisations.

Cellular Systems: Immortalised Cardiac Cells
Immortalised cardiomyocyte cell lines can be  generated from 
human and non-human cardiac tissue. They can be  readily 
expanded in vitro, theoretically circumventing one of the 
major limitations associated with primary cardiac cells 
(Davidson et  al., 2005). In reality, the proliferative capacity 
of immortalised cardiomyocytes can limit their use as a viable 
cardiac model. This is due to the instability of their myofibrils, 
which are continually undergoing disassembly during cell 
division (Ahuja et al., 2004; Onódi et al., 2022). Immortalised 
cardiac cell lines can be generated through the ectopic expression 
of the oncogene SV40, which allows mitotically arrested cells 
to re-enter the cell cycle and proliferate (Ramkisoensing 
et  al., 2021).

HL-1, a renowned mouse cardiac (atrial) cell line, has been 
successfully used to model the effects of structural and electrical 
remodelling in AF development (Wiersma et  al., 2017; Zhang 
et  al., 2018). More recently, it has been used to investigate 
the effect overexpression of microRNAs (mRNAs) have in 
patients with heart failure with reduced ejection fraction and 
AF (Garcia-Elias et  al., 2021). The group demonstrated that 
exposure of HL-1 cells to the mRNAs identified in patients 
with heart failure and AF caused disruption to calcium handling 
and cell to cell communication.

One major limitation of immortalised cardiac cells is that 
the uncontrolled expression of oncogenes can cause the generation 
of a population of cells with desynchronised cell cycles. Over 
time, this can lead to a heterogenous population of cells with 
disparate electrophysiological and functional properties. The 
development of conditionally immortalised cell lines, in which 
the SV40 oncogene is under the control of an inducible promoter, 
has partially addressed this limitation and has enabled the 
generation of models with greater electrophysiological maturity 
and homogeneity (Liu et  al., 2018). The non-cardiac cell line 
human embryonic kidney 293 is used in cardiac research to 
explore the effect pathogenic variants have on the activity of 
specific ion channels. Pathogenic variants of ion channel genes 
can be  transiently expressed in the cells to elucidate cellular 
mechanisms behind cardiac disease (Prakash et  al., 2021). The 
reader is directed to Odening et  al. (2021) for a more detailed 
description on the role such cells play in cardiac electrophysiology  
research.

Cellular Systems: Induced Pluripotent Stem Cells
Generation of Cardiomyocytes From Induced Pluripotent 
Stem Cells
Following the pioneering work by Takahashi and Yamanaka 
(2006) in identifying transcription factors capable of inducing 
pluripotency in somatic cells, cellular reprogramming technology 
has revolutionised disease modelling. The generation of induced 
pluripotent stem cell (iPSCs) lines from genetically diverse 
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individuals has enabled researchers to explore the impact 
common and rare genetic variants have on complex disease.

The relative ease in which genetic engineering can 
be  performed on iPSCs is unparalleled in primary and 
immortalised cell lines. This can consequently facilitate the 
“high-throughput” screening of pathogenic variants. Cultures 
of iPSCs can be  differentiated into cardiomyocytes by the 
manipulation of the Wnt signalling pathway. This allows the 
generation of a variety of cardiac cell types, including ventricular, 
atrial and nodal cardiomyocytes (Burridge et al., 2014; Schweizer 
et  al., 2017; Cyganek et  al., 2018).

In contrast to primary and immortalised cardiac cells, iPSCs 
act as both a renewable and reliable source of cells. Free from 
the ethical restrictions concomitant with embryonic stem cells 
and capable of being derived from individuals that vary in 
age, sex, race and disease state, the versatility afforded to iPSCs 

has led to their routine use in arrhythmia and heart 
failure research.

Cardiovascular Research Using iPSC-Derived 
Cardiomyocytes
The adoption of induced pluripotent stem cell models into 
arrhythmia and heart failure disease modelling has not come 
without challenges. Inefficient differentiation protocols yielding 
heterogeneous and often phenotypically immature cardiac cells 
has hindered the use of iPSCs in the modelling of many 
complex cardiovascular diseases (Goedel et  al., 2017). Despite 
this, iPSC-derived cardiomyocytes (iPSC-CMs) have been 
successfully used to model channelopathies including long QT 
and Brugada syndrome (Savla et  al., 2014). The monogenic 
aetiology of many channelopathies means that phenotypic 
variation can often be  adequately assessed in single-cell assays. 

FIGURE 2 | In vivo models used in cardiac arrhythmia and heart failure research. An outline of the in vitro cell models used in arrhythmia and heart failure research, 
how they are derived (left), the format in which they can be used (middle right) and the techniques most commonly used in their evaluation (right). Complexity of the 
model used increases from bottom (primary cell suspension) to top (microfluidic heart on chip). Created with BioRender.com
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This circumvents the need for vast quantities of homogenous 
cardiac myocytes.

In contrast to some of the other physiological properties 
of the iPSC-CM, the activity of many of the key ion currents 
(inward sodium current, inward calcium current, delayed rectifier 
current, transient outward current) is broadly similar to human 
adult cardiomyocytes (Knollmann, 2013). Itzhaki et  al. (2011) 
used multi-electrode arrays and patch clamping (sections “Patch 
Clamp” and “Multi Electrode Arrays”) to analyse iPSC-CMs 
derived from a patient with congenital long QT syndrome. 
The patient possessed a missense variant in the potassium 
voltage-gated ion channel subunit gene KCNH2. The cells 
demonstrated EADs and prolonged action potentials, due to 
a reduction in rapid delayed rectifier (IKr) current activity.

Genetic variants identified in patients with cardiomyopathies 
and/or arrhythmias have been successfully modelled in iPSC-CM 
to investigate the molecular mechanisms behind their 
pathogenesis. Mutations within the TTN gene, that encodes 
the sarcomeric protein titin, are strongly linked to the 
development of familial dilated cardiomyopathy and atrial 
fibrillation (Herman et  al., 2012; Choi et  al., 2018). They have 
been successfully modelled in iPSC-CM to deepen our 
understanding of the pathogenic impact titin variants have on 
sarcomere organisation and calcium handling (Schick et al., 2018).

Challenges of iPSC-Derived Cardiomyocytes
The greatest challenge associated with the widespread 
employment of iPSC models in cardiovascular research remains 
the phenotypic immaturity of the derived cardiac cells. This 
is evidenced by the automaticity, reduction of inwardly rectifying 
potassium current (IK1) density and relatively positive diastolic 
membrane potential present in many populations of iPSC-CM 
(Goversen et  al., 2018). The problem is further exacerbated 
when considering the age-related dependency of many 
cardiovascular diseases and arrhythmogenic syndromes. There 
is a myriad of methods used to enhance maturation of iPSC-CM. 
These can range from mechanical and electrical stimulation 
of the cells to the construction of 3D organoids. Many of 
these methods are comprehensively described in Machiraju 
and Greenway (2019).

Current differentiation protocols can generate cells that 
demonstrate tissue-specific expression of atrial, ventricular 
and nodal ion channels, transporters and connexins (Schweizer 
et al., 2017; Cyganek et al., 2018). Current protocols, however, 
often generate mixed populations of cells and are to our 
knowledge unable to specify the generation of cells from 
either the left or right chambers of the heart. This is of 
particular importance when considering the compartmental 
origin of the different types of heart failure. The optimisation 
of cellular differentiation protocols is often limited by the 
onerous and expensive nature of cellular differentiation and 
characterisation. The recent incorporation of genetically encoded 
calcium sensors (section “Genetically Encoded Calcium 
Indicators”) into commonly used iPSC lines has helped 
ameliorate this by facilitating high-throughput phenotypic 
screening of iPSC-CM following cellular differentiation (Chen 
et  al., 2017b).

Re-entrant arrhythmias commonly seen in patients with 
heart failure often present due to structural differences in the 
3D anatomy of the heart. This is challenging to model in vitro 
in 2D monolayers. The integration of iPSC-derived cardiac 
cells in co-culture and three-dimensional culture systems can 
provide models that demonstrate significantly greater phenotypic 
maturity and physiological relevance (Lemoine et  al., 2017). 
However, they are still some way off recapitulating the intricacies 
of the cardiac micro-anatomy and intra-chamber regional 
variability which are important to both arrhythmia and heart 
failure development (Holmes et  al., 2016). Furthermore, 
pathophysiological stressors including diabetes, hypertension, 
hypoxia, ageing, obesity and reduced cardiac blood flow, which 
act as major drivers for arrhythmogenesis and heart failure, 
are difficult to recapitulate, even in 3D iPSC-CM cultures 
(Yildirir et al., 2002; Lau et al., 2013; Chow et al., 2014; Pathak 
et  al., 2015; Morand et  al., 2018).

Emerging Strategies to Improve iPSC-Derived 
Cardiomyocyte Models
In recent years, an amalgamation between iPSC disease modelling 
and tissue engineering has fathered the generation of three-
dimensional iPSC-CM models, such as cardiac microspheres 
and engineered heart tissue (Figure  2; Schaaf et  al., 2011; 
Beauchamp et  al., 2015). Such models are capable of 
demonstrating improved intracellular calcium handling and IK1 
current densities (Buikema et  al., 2013; Amano et  al., 2016; 
Silbernagel et al., 2020). A comprehensive description of three-
dimensional in vitro cardiac models is beyond the scope of 
this review, the reader is directed to Salem et  al. (2021) for 
a current report describing such models.

The incorporation of co-culture and three-dimensional culture 
systems into microfluidic “heart on chip” platforms is an exciting 
prospect. In-built optical and electrical sensors allow data to 
be  generated on calcium handling and contractility (Cho et  al., 
2020). Furthermore, microfluidic chips enable greater control over 
culture conditions, such as pH and substrate stiffness, with future 
iterations possibly permitting researchers to adjust parameters 
to consider pathophysiological stressors important in heart failure, 
including hypoxia and reduced blood flow (Beauchamp et al., 2020).

As is the case with primary and immortalised cell lines, 
the maintenance cost required for the use of iPSCs in arrhythmia 
and heart failure research is substantially lower than that of 
maintaining in vivo models, such as mice and zebrafish. 
Pathological variants of genes that cause embryonic lethality 
in mouse models can be  modelled in iPSC models without 
the design and generation of complex conditional expression 
systems (Nishii et  al., 2014). Despite this, there is scepticism 
about the in vivo reproducibility of experimental data derived 
from iPSC models. Presently, validation of such experimental 
data is often required in small rodent animals. The development 
of more efficient differentiation protocols and maturation 
strategies will likely facilitate the generation of iPSC-derived 
cardiomyocytes that are phenotypically much closer to adult 
cardiac myocytes. Furthermore, future iterations of co-culture 
model systems will provide greater accuracy in replicating the 
cardiac micro-anatomy.
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Electrophysiological Study of in vitro 
Model Systems
Patch Clamp
Overview
Patch clamping is the definitive technique used to study ionic 
currents and membrane potential in tissue samples, isolated 
cells and expression systems. Patch clamping has and continues 
to be  the gold standard for studying ion channel activity in 
excitable cells including cardiomyocytes and neurones 
(Guinamard et al., 2004; Alloui et al., 2006). There are a myriad 
of patch clamping setups used to monitor the electrophysiology 
of cells under a variety of controlled conditions. The reader 
is directed to Kornreich (2007) for an in-depth description of 
patch clamping setups and their suitability in addressing specific 
research questions.

Patch clamping can be  broadly separated into two types. 
Voltage clamping involves “clamping” cardiac myocytes at 
different defined membrane potentials, in order to elicit specific 
currents of interest which can then be  recorded. This often 
takes place in the presence of numerous pharmacological agents 
which block other ion channels allowing for the isolation of 
a single current. Conversely, in the current clamp setup, the 
researcher controls the current being injected into the cell and 
records the membrane potential. This is usually in the form 
of an action potential. Both setups are routinely used in heart 
failure and arrhythmia research to understand the impact 
genetic variants, drug treatment and hypoxia have on ionic 
current, action potential morphology and resting membrane 
potential (Chavali et  al., 2019; Plant et  al., 2020).

Patch Clamping in Arrhythmia and Heart Failure 
Research
Patch clamping is used in heart failure research to investigate 
cardiac electrical remodelling in a variety of in vitro model 
systems including primary, immortalised and iPSC-derived 
cardiomyocytes. Hallmarks of arrhythmia in heart failure, which 
can be  detected in in vitro cardiac cell models using patch 
clamping, include but are not limited to depolarised resting 
membrane potentials (largely due to a reduction in IK1), delayed 
after depolarisations (due to spontaneous Ca2+ leak from the 
SR and activation of the depolarising sodium-calcium exchanger), 
early after depolarisations (subsequent to reactivation of ICaL 
and possibly INa), prolongation of the action potential duration 
[primarily dependent on a decrease in major repolarising 
currents including Ito, IKs and IKr, but also due to enhanced 
late sodium current (INaL)], ectopic automaticity, sinus node 
dysfunction and calcium handling disruption, recently reviewed 
in full by Husti et al. (2021). That said, ion channel remodelling 
in heart failure can display significant variation between 
individuals likely dependent on the different underlying origins 
and types of heart failure and the extent of disease progression. 
Shemer et al. (2021) used patch clamping techniques to interrogate 
the electrophysiology of iPSC-CM derived from two patients 
with LMNA-related dilated cardiomyopathy. Patients with LMNA-
related dilated cardiomyopathy are at risk of severe heart failure 
and sudden cardiac death (Pasotti et  al., 2008). The group 

identified delayed and early after depolarisations, as well as 
prolonged action potential durations in the iPSC-CM. This 
consequently increased our understanding of the mechanisms 
causing severe ventricular arrhythmias in patients with LMNA-
related dilated cardiomyopathy.

Patch clamping is a technique that offers researchers 
unparalleled interrogation of the intracellular electrophysiology 
of cardiac cell models. However, patch clamping is relatively 
low throughput, with recordings being obtained from a single 
cell for a short period of time. The technique is highly skilled 
and consequently requires extensive time to master. Finally, 
there is still considerable subjectivity involved in choosing 
which cell to record from. This is exacerbated when patching 
iPSC-CM which are often heterogeneous, varying in shape, 
size and electrophysiological phenotype. Many of these 
limitations are being overcome using easy-to-handle automated 
patch clamp systems, which can improve throughput and 
standardisation and are comprehensively described in Suk 
et  al. (2019), Obergrussberger et  al. (2021), and Bell and 
Fermini (2021).

Multi-Electrode Arrays
Overview
Multi-electrode arrays (MEAs) are a non-invasive methodology 
used to assess the regional electrophysiology activity/
heterogeneity in multicellular preparations. They have been 
used to measure electrical propagation in primary cardiac 
tissue, cultured monolayers of neonatal cardiac myocytes, 
immortalised cardiac cell lines and iPSC-derived cardiomyocytes 
(Wells et  al., 2019). Cells are cultured on a surface embedded 
with dot-like electrodes to monitor regional extracellular field 
potentials at different points across the preparation, over a 
prolonged period (Spira and Hai, 2013). Changes in extracellular 
voltage occur due to the propagation of a spontaneous or 
stimulated action potential through the cell monolayer. The 
recorded field potential can be  subsequently used to directly 
measure or estimate key electrical parameters including activation 
patterns, conduction velocity, spontaneous beating frequency, 
field/action potential duration and field/action potential 
amplitude (Halbach et  al., 2003; Wells et  al., 2019). Further 
information on the fundamentals behind MEA technology and 
the practicalities behind its use with cardiac cell types is beyond 
the scope of this review but can be  obtained from Clements 
(2016) and Kussauer et  al. (2019).

MEAs in Arrhythmia and Heart Failure Research
The adoption of MEAs into cardiac electrophysiology research 
has occurred relatively recently, with systems previously being 
designed for use in assessing the electrical activity of neural 
networks (Erickson et  al., 2008). MEAs are broadly used on 
in vitro cell models to provide an overall assessment on the 
electrophysiological state of cardiomyocytes, in a way not 
dissimilar to the use of ECGs in in vivo models. MEAs have 
been used to ascertain the effectiveness of anti-arrhythmic 
therapies. For example, a study by Kim et  al. (2022) used 
MEAs to evaluate the potential use of cardiac radioablation 
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in the treatment of refractory ventricular arrhythmias, 
commonly seen in patients with heart failure (Peichl et  al., 
2021). The group monitored the electrical activity of iPSC-CM 
following irradiation, to further understand the 
electrophysiological response of the cells to the treatment. 
Despite this, MEAs are currently most often employed in 
assessing cardiotoxicity of pharmacological therapeutics. The 
effect the drug has on the field potential can be  translated 
onto the action potential and subsequently used to predict 
in vivo cardiotoxicity (Braam et  al., 2010; Colatsky et  al., 
2016; Tertoolen et  al., 2018). Further information on the role 
MEAs play in in vitro drug research is beyond the scope of 
this review but can be obtained from Andrysiak et  al. (2021). 
The main advantages of MEAs are that they are high-throughput 
and allow experimentation over prolonged periods, unlike 
patch clamping based methodologies. However, they are 
unsuitable for assessing the electrophysiology of single cells 
and lack the signal complexity afforded to intracellular 
interrogation. An exciting prospect for the future is the 
amalgamation of MEA technology into microfluidic heart on 
chip models. This may allow the electrophysiological response 
of cardiac cells to be monitored under pathological conditions 
associated with heart failure, such as hypoxia and hypokalaemia 
(Liu et  al., 2020).

Calcium Imaging in in vitro Model Systems
Calcium (Ca2+) flux is the principal determinant of contraction 
in cardiac myocytes (Bers, 2002). Intracellular calcium 
handling underlies excitation–contraction coupling and is 
commonly perturbed in patients with cardiac arrhythmia 
and end-stage heart failure (Gwathmey et  al., 1987; Ter 
Keurs and Boyden, 2007). Detailed information regarding 
the role intracellular calcium handling plays in cardiac 
arrhythmia and heart failure is beyond the scope of this 
review but is excellently summarised by Landstrom et  al. 
(2017). Disruption to calcium handling can be  caused by 
a number of mechanisms. Genetic variants of key ion channels, 
such as Ryanodine receptor 2, are one such example and 
can predispose individuals to arrhythmogenic syndromes 
and heart failure (Swan et  al., 1999; Dridi et  al., 2020).

The most dynamic and recognisable process in intracellular 
calcium handling is the release and subsequent re-sequestration 
of Ca2+ by the sarcoplasmic reticulum. This is known as a 
whole-cell calcium transient and commonly occurs prior to 
the contraction of a cardiac myocyte. It can be  measured in 
primary, immortalised and iPSC-derived cardiac cell models. 
The spatial analysis of calcium transient kinetics has been used 
to explore mechanisms behind pathogenic variant driven 
arrhythmias and chronic heart failure in in vitro cell models. 
Lehnart et  al. (2006) demonstrated diastolic Ca2+ leak from 
the sarcoplasmic reticulum of cardiomyocytes derived from 
mice deficient in calstabin-2, a protein key to ryanodine receptor 
2 stabilisation, while Yin et  al. (2014) used calcium imaging 
to elucidate the effect arrhythmogenic calmodulin variants had 
on intracellular calcium handling. It is worth noting that calcium 
imaging is a skilled technique, where careful consideration of 
the appropriate indicator is required.

Calcium Dyes and Indicators
Chemical Calcium Indicators. A range of light emitting dyes 
have been used to image Ca2+ in in vitro cardiac models. The 
dyes can be  broadly categorised as being ratiometric or 
non-ratiometric. Ratiometric dyes display a shift in excitation 
or emission spectra following the binding of Ca2+. The ratio 
between the spectra allows the calculation of the absolute 
concentration of Ca2+ which is pertinent when measuring the 
amplitude of Ca2+ transients (Van Meer et al., 2016). An increase 
in fluorescence from non-ratiometric dyes corresponds to an 
increase in the relative concentration of cytosolic Ca2+. As no 
spectral shift is observed when a non-ratiometric dye is bound 
to Ca2+, variability in dye loading and cell permeability can 
cause a greater susceptibility to inter-assay variation. While 
ratiometric dyes are advantageous in capturing contractile 
behaviour for arrhythmia research, many imaging setups do 
not support their use (Jaimes et  al., 2016).

Tetracarboxylate-based probes, synthesised by Tsien (1983), 
acted as blueprints for the fabrication of contemporarily 
used ratiometric and non-ratiometric calcium probes. 
Cyclically fluorescent and capable of traversing the 
sarcolemma, the dyes enabled the prolonged imaging of 
intracellular Ca2+ in cells derived from myocardial tissue 
without the inconvenience of cellular microinjection. Further 
iterations of the dyes led to the development of the 1,2-bis(2-
aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) 
based probes fura-1 and fura-2. The BAPTA based dyes 
resolved limitations associated with previous tetracarboxylate-
based probes, including narrow excitation/emission spectra 
and autofluorescence. Furthermore, they provided additional 
benefits including improved Ca2+ selectivity and the use of 
ratiometry (Grynkiewicz et  al., 1985).

The synthesis of fluorescent indicators based on the 
chromophores rhodamine and fluorescein by Minta et  al. 
(1989) facilitated the imaging of cytosolic Ca2+ transients 
at greater resolutions. Probes derived from these 
chromophores, such as rhod 1 and fluo 1, are non-ratiometric 
and display a lower affinity for Ca2+. This consequently 
confers improved dynamic range and increased sensitivity 
during calcium imaging. Properties, such as these, make 
the dyes particularly suitable for the imaging of ephemeral 
Ca2+ flux and intracellular diastolic calcium removal (Lock 
et  al., 2015). Although still widely used, phototoxicity has 
limited the use of chemical calcium indicators in exploring 
intracellular calcium handling of in vitro models under 
prolonged investigation (Shinnawi et  al., 2015).

Genetically Encoded Calcium Indicators. Genomic engineering 
has provided novel and innovative tools for the intracellular 
imaging of calcium ions. The use of ratiometric dyes, such as 
fura-2, can impair the contractility of cardiomyocytes through 
unwanted Ca2+ chelation and can produce uneven and erroneous 
dye loading (Robinson et  al., 2018). Genetically encoded Ca2+ 
indicators (GECI) offer numerous advantages over small molecule 
dyes including cell type-specific calcium imaging, homogenous 
indicator expression and reduced levels of unintentional 
compartmentalisation (Bassett and Monteith, 2017).
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The recombinant gene for the sensor, which is usually a 
derivative of green fluorescent protein, can be  cloned into 
commonly used laboratory animals or expressed within in vitro 
cell lines following transfection or viral transduction. The precise 
mechanisms behind the delivery and design of genetically 
encoded calcium indicators are beyond the scope of this review. 
Further information can be  obtained from Kaestner et  al. 
(2014). Genetically encoded Ca2+ sensors are emerging as a 
promising tool for high-throughput anti-arrhythmic drug 
development (Wu et  al., 2019). However, their use is currently 
limited by narrow spectral bands and putative disruption of 
endogenous signalling cascades.

Intracellular calcium imaging using small molecule and 
genetically encoded indicators have proven insightful in exploring 
the effects pathogenic variants have on excitation–contraction 
coupling, arrhythmia and heart failure. When used in conjunction 
with the optical imaging of voltage-sensitive dyes, it enables 
a comprehensive assessment of the electrophysiological state 
of in vitro cell models. This is evidenced in Pierre et al. (2021), 
where both optical action potentials and calcium transients 
were recorded to assess the impact of a NaV1.5 knock-out in 
iPSC-CM monolayers.

Calcium Spark Analysis
Calcium sparks are small areas of localised fluorescence caused 
by the ephemeral release of Ca2+ from the ryanodine receptors 
of the sarcoplasmic reticulum (Cheng et al., 1993). In contrast 
to the calcium transient, the calcium spark is a sudden and 
unsustained release of Ca2+ which cannot independently trigger 
the contraction of the cell. Calcium sparks are the building 
blocks of the calcium transient and excitation–contraction 
coupling (Cheng et al., 1996). Highly sensitive calcium indicators 
that confer a high signal to noise ratio, such as the 
non-ratiometric dyes fluo-3 and fluo-4, are used to image 
calcium sparks.

Increases in angiotensin II activity are commonly observed 
during the development of AF (Goette et al., 2000). The analysis 
of calcium sparks in atrial cardiomyocytes by Gassanov et  al. 
(2006) helped demonstrate the pro-arrhythmic effects of 
angiotensin II. Primary atrial cardiomyocytes that were incubated 
in angiotensin II demonstrated increased frequencies of 
spontaneous calcium spark production. Such an increase is 
linked to abnormal cell membrane depolarisation and is thought 
to contribute to the re-initiation of AF.

Compartment-Specific Calcium Imaging
The compartmentalisation of Ca2+ sensitive indicators in 
intracellular organelles was reported as a common problem 
during early attempts at calcium imaging (Malgaroli et  al., 
1987). Recently however, indicators have been used specifically 
to image the flux of Ca2+ in organelles including the mitochondria, 
endoplasmic reticulum and nucleus. Mitochondrial calcium 
signalling causes the formation of a dynamic buffer which 
helps control the concentration of cytosolic Ca2+ and it is 
essential for the generation of the ATP required for cardiac 
contraction (Dedkova and Blatter, 2013; Boyman et  al., 2014). 

Dysfunction of mitochondrial calcium handling can cause 
oxidative stress and is strongly associated with the development 
of chronic heart failure and AF (Luo and Anderson, 2013; 
Xie et  al., 2015; Wiersma et  al., 2019). Mitochondrial calcium 
imaging was used effectively by Santulli et  al. (2015) to assess 
the importance of mitochondrial calcium overload in murine 
post-myocardial infarction heart failure. Cardiomyocytes derived 
from the mice demonstrated significant increases in cardiac 
mitochondrial Ca2+ and reactive oxygen species levels following 
myocardial infarction.

Genetically encoded calcium indicators have been particularly 
useful for calcium imaging in specific organelles, such as the 
endoplasmic reticulum, Golgi apparatus and mitochondria 
(Suzuki et  al., 2016).

Computational Cardiac Modelling and 
Simulations
Fundamentals of Computational Cardiac 
Modelling and Simulation
Computational (in silico) cardiac modelling and simulation 
is a widely used technique to investigate the biophysical 
processes underlying cardiac pathophysiology, arrhythmias 
and heart failure at a multiscale level. They provide unique 
mechanistic insights at high spatio-temporal resolution, to 
augment experimental and clinical investigations. Detailed 
experimental characterisation of cardiac electrophysiology 
mechanisms by techniques, such as voltage clamping, has 
enabled the generation of mathematical models capable of 
describing action potential, excitation–contraction coupling 
and underlying ionic currents of human atrial, ventricular, 
Purkinje and iPSC-CMs (Courtemanche et  al., 1998; Tomek 
et  al., 2019a; Paci et  al., 2020; Trovato et  al., 2020; freely 
available https://www.cs.ox.ac.uk/insilicocardiotox/model-
repository). Models, such as these, are based upon the pioneering 
work performed by Hodgkin and Huxley (1952) and Noble 
(1960) for the neuronal and cardiac action potential, respectively. 
The models consist of a set of equations characterising the 
dynamics of transmembrane and sarcoplasmic reticulum ion 
channels, pumps and transporters.

Ventricular and Atrial Cardiac Computational 
Models
The ToR-ORd model (Tomek et  al., 2019a) is the most recent 
human ventricular cardiomyocyte model and was derived from 
the O’Hara-Rudy (ORd) model (O’Hara et  al., 2011). The 
ToR-ORd model includes formulations of key current dynamics 
and can express repolarisation abnormalities promoting the 
arrhythmic substrate. The models’ parameters can be  varied 
to represent intersubject variability and disease conditions 
promoting arrhythmogenesis (Dutta et  al., 2017; Passini et  al., 
2017; Zile and Trayanova, 2017; Muszkiewicz et  al., 2018). 
Specifically, simulation studies using human ventricular single-
cell models have provided novel insights into the mechanisms 
behind heart failure associated arrhythmogenicity (Gomez et al., 
2014; Mora et  al., 2021; Szlovák et  al., 2021). Models have 
also been developed to study the effect of heart failure-associated 
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changes in sub-cellular structures including t-tubules (Hrabcová 
et  al., 2013; Poláková and Sobie, 2013).

Cardiac computational simulations of atrial electrophysiology 
are commonly performed using models derived from Nygren 
et  al. (1998), Courtemanche et  al. (1998) and Grandi et  al. 
(2011). Such models have been used extensively to study the 
underlying mechanisms behind the most common sustained 
type of arrhythmia, AF (Grandi et  al., 2019). Genetic variation 
in the two-pore domain acid-sensitive potassium channel TASK-1 
(ITASK) has been linked to an increased susceptibility of AF 
and has been shown to cause prolongation of the action potential 
duration in animal models (Petric et  al., 2012; Liang et  al., 
2014). Schmidt et  al. (2015) used a version of the Grandi 
model to demonstrate that upregulation of ITASK facilitated the 
pro-arrhythmic shortening of action potential duration in silico 
and that pharmacological inhibition of the channel represented 
a viable anti-arrhythmic strategy. Tools incorporating single-cell 
models of different cell types have been developed to predict 
pro-arrhythmic cardiotoxicity and inform clinical risk 
stratification of different drugs, specifically anti-arrhythmic 
drugs (Passini et  al., 2017; Sutanto et  al., 2019).

Applications of Cardiac Computational Modelling 
and Simulation
Cardiac computational models can be used to comprehensively 
investigate the mechanisms behind genetic variant associated 
arrhythmogenicity. Robust models of atrial, ventricular and 
sinoatrial nodal cellular electrophysiology can be  used in 
conjunction to help researchers reveal the effect that pathogenic 
variants confer in multiple cardiac cell types. Gain of function 
variants in the voltage-gated potassium channel gene KCNQ1 
are associated with the development of complex phenotypes 
including AF and QT prolongation (Hasegawa et  al., 2014). 
Paradoxically, pathogenic variants in KCNQ1 have also been 
identified in patients with short QT syndrome 2 (Wu et  al., 
2015). Zhou et  al. (2019) conducted experimentally informed 
in silico simulations using a selection of human atrial, ventricular 
and sinus nodal models to identify the pathological mechanism 
behind a gain of function variant of KCNQ1. The simulations 
implicated the elongation of the ventricular action potential 
duration as a possible cause of conduction delays and 
QT prolongation.

Integrating biophysical cellular models into anatomical whole-
organ and electrical propagation models enables multiscale 
simulations of cardiac electrophysiology from ionic current to 
the ECG (Sánchez et  al., 2018; Martinez-Navarro et  al., 2019; 
Mincholé et al., 2019). Incorporating experimental mechanistic 
insights and data on the mechanics of tension development 
in human cardiomyocytes allows for the construction of human-
based electromechanical models capable of representing 
abnormalities in the ECG and mechanical function caused by 
disease conditions, such as myocardial infarction (Land et  al., 
2017; Margara et  al., 2021; Wang et  al., 2021). They have also 
been used to investigate mechanical function in a biventricular 
model under heart failure conditions (Park et  al., 2018). 
Furthermore, three-dimensional in silico modelling and 
simulation has been employed to study arrhythmogenicity of 

cell therapy using stem cell-derived cardiomyocytes, exploring 
the effects of graft size, location, anisotropy and ectopic beat 
propagation (Yu et  al., 2019, 2021). Organ level computational 
studies have furthermore been conducted on the atria, with 
a specific focus on mechanisms and treatment of AF (Aslanidi 
et  al., 2011; Zhao et  al., 2017; Roney et  al., 2018). A study 
by Dux-Santoy et al. (2011) highlighted the relevance of including 
the cardiac conduction system in whole heart simulations, the 
absence of which presents a considerable limitation in some 
three-dimensional studies.

Machine Learning
The use of artificial intelligence (AI) and machine learning (ML) 
presents an exciting opportunity to increase the predictive power 
of computational models in clinical and experimental arrhythmia 
research. Definitions of key concepts including deep learning, 
ML and artificial neural networks as well as examples by which 
the implementation of AI could change clinical research in 
cardiac electrophysiology and disease can be  drawn from Feeny 
et  al. (2020). In recent years, the generation of clinical data, 
including cardiac images, ECGs and DNA sequencing status, 
has occurred at an unprecedented rate. AI methods enable large 
quantities of complex data to be filtered and analysed to identify 
causal links that may not be  immediately evident.

Supervised machine learning (SML) has been the most 
widely used form of AI applied to arrhythmia and heart failure 
research. SML techniques have been employed to categorise 
iPSC-CM from patients with catecholaminergic polymorphic 
ventricular tachycardia, long QT syndrome and hypertrophic 
cardiomyopathy (Juhola et al., 2018). Another study has employed 
machine learning techniques to classify different phenotypes 
of hypertrophic cardiomyopathy, the mechanisms behind their 
heterogeneities and differences in arrhythmic risks (Lyon et al., 
2019). These studies highlight the exciting development in 
applying ML techniques to experimental data and could facilitate 
significant change in the ways we  currently evaluate genetic 
variants and the increased risk they confer on arrhythmogenesis.

Impact and Benefit of Computational Cardiac 
Modelling and Simulations in Arrhythmia and 
Heart Failure Research
In summary, computational modelling and simulation has 
improved our current understanding of cardiac electrophysiology, 
the development of arrhythmia and the mechanisms underlying 
heart failure. Experimental and clinical studies are time-
consuming, require biological resources and overall can 
be  extremely costly. In silico simulation studies provide a cost-
effective and complementary technique, which can reduce the 
amount of necessary in vitro and animal models used in the 
interrogation of cardiac mechanisms. Computational modelling 
and simulation studies can also precede and drive large scale 
experimental or clinical studies by predicting a drug’s optimal 
dose or identifying groups at risk of adverse treatment effects.

In silico models and simulations are scalable, detailed and 
biophysically accurate and can give insights into arrhythmia 
mechanisms which would be  otherwise imperceptible to 
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researchers using experimental data solely. Since computational 
studies are informed by and based on real data to ensure 
their clinical relevance, they can sometimes be  restricted by 
the availability of suitable data. Furthermore, computational 
power is limited, implying that researchers must balance the 
complexity of their model against its performance. Parallel 
computing and advances in computer architecture have made 
advances in addressing these issues (Sachetto Oliveira et al., 2018).

DISCUSSION

The Benefit of Combining Research 
Modalities
The relationship between heart failure and arrhythmias is 
complex and often manifests through diverse aetiologies. Hence, 
there is benefit in a varied approach to study them, combining 
the use of in vitro, in vivo and in silico models and using a 
wide array of experimental techniques. This will overcome the 

limitations present when using only a single model or a limited 
toolbox of techniques. However, it requires pulling expertise 
from various areas and the collaboration of specialists in a 
“Team Science” approach. The benefits of this approach are 
outlined in Figure  3. Similarly, Odening et  al. (2021) advocate 
“strategies that combine different methodological approaches” 
in cardiac electrophysiology research.

In vivo and in vitro models have been used in conjunction 
to generate complementary data sets. This is evidenced in 
Gesmundo et  al. (2017), where the group used a number of 
the models and techniques discussed above to investigate the 
beneficial effect growth hormone-releasing hormone had on 
cardiac hypertrophy and heart failure. Elicitation of the drug 
in immortalised H9c2 cardiac cells (section “Cellular Systems: 
Immortalised Cardiac Cells”), adult rat ventricular cardiac myocytes 
(section “Cellular Systems: Primary Cells”) and iPSC-CM (section 
“Cellular Systems: Induced Pluripotent Stem Cells”) counteracted 
phenylephrine-induced hypertrophy and reduced expression of 
hypertrophic genes, such as Epac1 (Ulucan et al., 2007). In vivo, 

FIGURE 3 | The benefits of a “Team Science” approach in cardiac arrhythmia and heart failure research. Created with Biorender.com.
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an agonist of the hormone provided complementary results and 
was able to improve cardiac function and alleviate cardiac 
hypertrophy in mice with transverse aortic constriction.

The synergistic use of computational modelling and wet-lab 
experiments is an emerging area with potential to achieve robust, 
mechanistic and interpretable results. It is exemplified by the 
combined use of in vivo and in silico models in Tomek et  al. 
(2019b) where optical mapping data was derived from Langendorff 
perfused post-myocardial infarction (MI) rat hearts (section “Ex 
vivo Cardiac Preparations”). An increased liability to alternans 
formation was observed at the border zone when paced at longer 
cycle lengths. β-Adrenergic receptor stimulation with 
norepinephrine reduced alternans formation by approximately 
60% when elicited in the infarct border zone of retrogradely 
perfused rat hearts. Results were subsequently reproduced in 
computer models of the border zone informed on intracellular 
calcium handling and ion channels. The results obtained in the 
study, using both ex vivo and in silico models, supported clinical 
imaging studies which predict border zone denervation as being 
pro-arrhythmic (Malhotra et  al., 2015). While previous data 
obtained from animal models have conversely demonstrated 
sympathetic reinnervation of the border zone post-myocardial 
infarction as being pro-arrhythmic (Shen and Zipes, 2014). 
Understanding the effect β-adrenergic receptor stimulation has 
on the border zone of healed myocardial infarctions (MI) is 
clinically important, as it can inform treatment. It is routine 
for patients to be  prescribed beta blockers post-MI and for 
chronic heart failure, as they reduce heart rate and blood pressure 
and thus decrease myocardial workload (Lange et  al., 1983). 
These examples highlight the relevance of combining different 
experimental and computational techniques to validate findings 
and ensure the robustness of predictions for a clinical setting.

Conclusion
This review has outlined state-of-the-art experimental and 
computational methods and their relative strengths and 
weaknesses. The authors conclude that there is not one ideal 
model or methodology for all studies. Instead, research into 

arrhythmia and heart failure requires a careful consideration 
of its goals, resources and scope. Previous studies have shown 
that a combination of experimental and computational models 
can provide robust and validated outcomes in a variety of 
research settings. Such an approach will help to gain detailed 
mechanistic insights, which are a prerequisite for developing 
targeted therapies to prevent or at least ameliorate arrhythmias 
in heart failure patients.
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