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Abstract: Flaviviruses are a large group of positive strand RNA viruses transmitted by 
arthropods that include many human pathogens such as West Nile virus (WNV), Japanese 
encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis 
virus. All members in this genus tested so far are shown to produce a unique subgenomic 
flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR). sfRNA is a 
product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease 
XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 
3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase 
in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was 
highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity 
in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet 
unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for 
Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral 
pathogenicity; however the overlying mechanism linking all these multiple functions of 
sfRNA remains to be elucidated. 
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1. Conservation of sfRNA in the Genus Flavivirus 

1.1. Genus Flavivirus 

West Nile virus (WNV) is an emerging pathogen of humans that has the capacity to induce fatal 
encephalitis in the infected host [1–3]. WNV is a member of the genus Flavivirus within the family 
Flaviviridae which comprises small, enveloped viruses with non-segmented genomes consisting of 
single-stranded positive sense RNA. The Flavivirus genus can be divided into four main groups: 
mosquito-borne, tick-borne, no known vector (NKV), and the highly divergent insect-specific (ISF) 
groups (Figure 1A,B) [4–8]. Viruses belonging to the mosquito- and tick-borne groups are maintained 
in a natural transmission cycle between amplifying vertebrate hosts and particular haematophagous 
arthropods. NKV viruses are restricted to mammalian bat or rodent hosts, without a known arthropod 
vector for transmission. ISFs are the most divergent group, infecting and transmitted by predominantly 
Aedes and Culex genus mosquitos, and are unable to infect vertebrate hosts. Tamana bat virus (TABV) 
is the most divergent species apparently replicating exclusively in mammalian cells [9], requiring 
placement in its own group removed from the rest of the genus [10,11]. 

1.2. The 3′UTR of the Family Flaviviridae  

The family Flaviviridae is composed of viruses with monocistronic single-stranded positive-polarity 
RNA genomes that lack a polyA tail. Flanking the single ORF are highly structured 5' and 3' 
untranslated regions (UTRs) that act as important mediators of viral genome replication and translation. 
These UTRs contain conserved and highly elaborated secondary structures that are generally more 
pronounced at either end of the genome [12]. Viruses of the genera Hepacivirus, Pegivirus, and Pestivirus 
concentrate the highest degree of structural elaboration at their 5'UTRs which have evolved to function 
as internal ribosome entry sites (IRES) that drive cap-independent translation of the polyprotein. 
Members of the genus Flavivirus, to which WNV belongs, retain an m7GpppAmpN1 cap structure at 
the 5'-terminus and thus have shorter 5'UTRs (≈100 nt) [13] consisting of a pair of conserved  
stem-loops (SL-A and SL-B) [14] and encoding regions important for genome cyclisation at the initial 
phase of replication (5'CS, 5'UAR, and 5'DAR; reviewed in [15]). 

The 3'UTR of flaviviruses is considerably larger (≈380–600 nt in length) and can—in the case of 
mosquito-borne flaviviruses—be divided into three domains: a highly variable proximal domain 1 that 
directly follows the stop codon, a second domain 2 with moderately conserved sequence and a number 
of stem-loop and dumbbell structures, and the highly conserved distal domain 3 which contains the 
complementary cyclisation elements and the stable, terminal stem-loop structure (Figure 2A) [15]. The 
3′UTR of WNV consists of an AU-rich stem-loop SL-I structure followed by a highly-conserved, 
branched, pseudoknot (PK1)-forming SL-II immediately preceding a short conserved loop RCS3 
(Figure 2A). This structural motif is then effectively repeated by SL-III, SL-IV (with PK2) and CS3 
(Figure 2A). Downstream of this are two dumbbell structures DB1 and DB2, with DB1 also predicted 
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to form pseudoknot PK3 (Figure 2A). This region is then followed by a predicted short stem-loop and 
the large terminal 3'SL (Figure2A) [15–18]. 

Figure 1. Phylogenetic relationships and sfRNA production within the genus Flavivirus 
and the family Flaviviridae. (A) Phylogenetic tree demonstrating the evolutionary relationships 
between flaviviruses characterised for sfRNA production and basal Tamana bat virus 
(TABV) which remains uncharacterised (underlined). The tree was generated using the 
amino acid sequence of the entire genomic polyproteins. Vector classes for virus groups 
are indicated by black bars to the right of the tree. Primary vertebrate hosts are indicated in 
italics (other than for ISFs). Bar = 0.2 substitutions per site. ISF = insect-specific flavivirus; 
NKV = no known vector. Modified from Cook et al., 2012 and Kitchen et al., 2011 [5,6]; 
(B) sfRNA does not appear to be produced by other genera (Hepacivirus, Pestivirus) within 
the family Flaviviridae. The proposed genus Pegivirus remains uncharacterised for  
sfRNA production. Phylogenetic tree generated using the amino acid sequences of viral 
RNA-dependant RNA polymerases. Bar = 0.2 substitutions per site. Modified from 
Stapleton et al., 2011 [11]. 
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Figure 2. Structural elements within the 3'UTR of WNV and conservation of SL-II within 
the genus Flavivirus. (A) Schematic representation of the 3'UTR of WNV demonstrating 
the arrangement of stem-loops (SL) and pseudoknots (PK) and the sfRNA 5'-terminus. 
Modified from Pijlman et al., 2008 [18] and Funk et al., 2010 [19]; (B) Schematic 
representation demonstrating the predicted conservation of the SL-II/PK1-like RNA structure 
within the 3'UTR of divergent members of the genus Flavivirus. 

 

The 3'UTR of flaviviruses has been demonstrated to bind to several host proteins (see the last 
section) as well as proteins of the viral replication complex (RC). Such interactions promote genomic 
RNA cyclisation which is important for two distinct functions: (i) SL-A in the 5'UTR acts as a promoter 
element [20–22] that stimulates the viral RNA-dependent RNA polymerase NS5 to begin negative 
strand synthesis at the 3'UTR, initiating the replication cycle [15], and (ii) the 3'UTR binds to host 
proteins that normally associate with mRNA polyA tails such as phosphorylated translation elongation 
factor 1α (EF-1α) and poly(A)-binding protein (PABP), thus bringing the 5' and 3'UTRs into close 
association, which allows cap-dependent translation of the viral polyprotein to proceed [15,23–25]. 
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1.3. Discovery of sfRNA 

The accumulation of a small viral RNA species now known as sfRNA was first observed for the 
mosquito-borne encephalitic flaviviruses Murray Valley encephalitis virus (MVEV) [26], Japanese 
encephalitis virus (JEV) [27], and WNV [28]. These early observations identified the presence of the 
sfRNA species in vitro and in vivo without ascribing a biological role to the moiety, although in the 
JEV paper [27] the authors mapped sfRNA to the 3′UTR and determined its 5' end. Although attempts 
were undertaken to explain the nature and generation mechanism of the molecule, this remained 
elusive until 2008 when we first reported the mechanism of sfRNA generation and the important role 
of sfRNA in pathogenicity of WNV [18]. 

In this 2008 manuscript we utilized an extensive array of recombinant constructs expressing 
truncated lengths of the WNV genome to demonstrate that sfRNA is a product of the 3'UTR, not 
requiring the presence of other gRNA sequences, viral proteins or active viral replication. We identified 
cellular 5'–3' exoribonuclease XRN1 as the enzyme responsible for the generation of sfRNA via 
stalling at stem-loop (SL) structures while degrading viral gRNA. Similar to the JEV study [27], we 
used primer extension to map the 5'-terminus of WNV sfRNA to the beginning of SL-II structure.  

A series of deletion mutants demonstrated the importance of secondary structures within the 3'UTR 
in sfRNA generation with mutant viruses incapable of producing full-length sfRNA species, sfRNA1, 
exhibiting decreased cytopathicity in cells and attenuation of virulence in a murine model of infection. 

1.4. Conservation of sfRNA between Different Groups within the Genus Flavivirus 

The outcomes of the 2008 WNV sfRNA paper and several studies since then [18,29–31] were that 
sfRNA was demonstrated to be accumulating concurrently with genomic RNA in both vertebrate and 
invertebrate cells (Figure 3A) infected with members of the genus Flavivirus from each of the 
mosquito-borne (encephalitic: WNV, MVEV, Alfuy virus; non-encephalitic: Dengue virus (DENV) 
and Yellow fever virus (YFV)) and tick-borne (Samaurez Reef virus) groups, and absent from the 
genera Hepacivirus (HCV replicon) and Pestivirus (Bovine viral diarrhoea virus). Indeed, sfRNA has 
been demonstrated to be produced in infections with every member of the genus Flavivirus that has 
subsequently been assessed, expanding the cohort of sfRNA producers to include NKV viruses 
(Modoc virus (MODV), Apoi virus, Rio Bravo virus, Montana myotis leukoencephalitis virus, and 
Yokose virus) [32] and ISFs (cell-fusing agent virus (CFAV), Culex flavivirus (CxFV)) [33], as well 
as tick-borne encephalitis virus (TBEV) [34].  

Importantly there remain at least two groups within the family Flaviviridae that have not been 
assessed for sfRNA production. As the most basal and distantly related member of the genus  
Flavivirus [10] it would be interesting to investigate sfRNA formation by TABV. Indeed, RNA modeling 
of a 241-nt sequence downstream of the predicted TABV NS5 coding sequence (partial 3'UTR; Genbank 
accession AF346759.1) did show the presence of a SL-II-like structure with a 4 bp-pseudoknot 
interaction but without downstream stemloop (Figure 2B), yet the predicted length of the resulting 
putative sfRNA molecule is not known until the complete 3'UTR has been sequenced. If sfRNA is 
experimentally demonstrated to be produced by TABV it would confirm that this moiety is characteristic 
of the genus, however if it is found to not be produced by this virus, this may indicate that sfRNA 



Viruses 2014, 6  
 

 

409 

solely emerged as a means to facilitate infection of invertebrate hosts. This last possibility is intriguing 
given that sfRNA has been demonstrated to inhibit the predominant insect innate immune pathway, 
RNA interference (RNAi; see below) [35], and that members of the genus Flavivirus are the only 
viruses in the entire family Flaviviridae to productively infect invertebrates. The other group of viruses 
yet to be investigated are the members of the genus Pegivirus (e.g., GB virus C). Several conserved 
RNA secondary structures have been predicted within the 3'-terminus of pegivirus genomes, more so 
than that observed in hepaciviruses and pestiviruses [12]. Thus the possibility of sfRNA-like 
production in this genus may shed light on the evolutionary relationships of viruses in this family. 

2. Mechanism of sfRNA Generation 

2.1. Exoribonuclease Stalling 

The unique sfRNA generation mechanism involves the efficient stalling of 5'–3' exoribonuclease 
XRN1 during degradation of viral genomic RNA [18,19,30,35]. XRN1 is a key enzyme in host and 
viral mRNA turnover [36,37] occurring in cytoplasmic processing bodies (PBs) [36] and is a classical 
PB marker [38]. The stalling of XRN1 in flavivirus RNA is caused by a short RNA structure of ~80 nt 
at the 5' end of sfRNA (called SL-II in WNV or SL-E in YFV) with high stability involving a 
pseudoknot (PK) base pairing interaction between the upper loop and a short sequence downstream of 
the SL structure (PK1, Figure 2A). Although the primary sequence is highly variable, this SL-II/PK1 
structure has been predicted to be remarkably well conserved in all flavivirus strains demonstrated to 
produce sfRNA [17,18,31] (Figure 2B). The WNV SL-II/PK1 sequence has also been successfully used 
to stall XRN1-mediated degradation of herpes virus RNA [39]. The 3D structure of SL-II/PK1 remains 
unknown but is most likely key to fully understand its functional ability to stall and neutralize XRN1. 

2.2. RNA Structures Required for sfRNA Production 

Initial research efforts to study the 3'UTR were mostly focused on sequences at the very 3'-terminus 
of gRNA [13,40–42] while the 5'end of the 3'UTR was simply regarded as the variable domain. Yet, it 
is in this 5'end where one of the essential features of the 3'UTR is conserved, namely the RNA 
structures responsible for stalling of XRN1 [18,19,30]. 

The contribution of each of the SL and PK structures in facilitating XRN1 stalling has been 
investigated for WNV [18,19] and YFV [30]. Experiments involving disruption of these secondary and 
tertiary structures in the genomes of both viruses provide compelling evidence for the absolute requirement 
of a pseudoknot in sfRNA generation. Straightforward deletion of SL-II in WNV (FLΔSLII), mutation of 
the stem-loop (FL-IRA), or disruption of PK1 (FL-PK1') led to production of a smaller sfRNA species 
of approximately 365 nt (sfRNA2) predicted to form by XRN1 stalling at the SL-IV/PK2 (analogous in 
structure to the upstream SL-II/PK1) (Figure 3B–D) [18,19]. Deletion of SL-E in YFV (YFV-ΔSLE), 
however, led to complete abrogation of sfRNA production as determined via Northern blot using a 
probe complimentary to sequences in SL-B at the very centre of sfRNA [30]. An analogous phenotype 
was observed upon mutation of the stem-loop, or disruption of the component PK. Unlike WNV, YFV 
does not have a repeated SL-E structure to act as a secondary stalling point; hence the 5'–3' degradation 
mediated by XRN1 may no longer be prevented. 
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Figure 3. sfRNA is generated by XRN1 stalling at conserved SL and PK structures.  
(A) Northern blot detection of WNV sfRNA accumulation over the course of infection in 
mammalian (Vero) and mosquito (C6/36) cell lines using oligonucleotide probes 
complementary to the 3'SL [19]; (B) Schematic representation of the mechanism of sfRNA 
generation. Following decapping or upstream cleavage within the flavivirus gRNA, host 
XRN1 degrades 5'–3' stalling at the SL-II/PK1 structure and thus forming sfRNA1 and 
becoming inactive by association with this moiety. Mutation to delete/disrupt SL (C) or PK 
(D) structures leads to downstream XRN1 stalling and accumulation of successively smaller 
sfRNA species. Modified from Pijlman et al., 2008 [18] and Funk et al., 2010 [19]. 
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The YFV 3'UTR does contain a further two predicted PKs, forming at downstream SLs, thus these 
too fail to stall XRN1. This contrasts with the utility of the PK interactions in the WNV 3'UTR. 
Further disruption of secondary/tertiary structure in WNV via deletion of SL-II to RCS3 and CS3 
(FLΔSLII-RCS3ΔCS3), disruption of SL-II and deletion of CS3 (FL-IRAΔCS3), or mutation of PK1 
and PK2 (FL-PK1'2') leads to production of a smaller sfRNA species of ≈270 nt (sfRNA3) predicted to 
form by XRN1 stalling at DB1/PK3 (Figure 3B–D) [18,19]. An even smaller sfRNA4 produced 
presumably by stalling at DB2 was detected in mosquito cells infected with WNV containing combined 
mutations in upstream PKs 1, 2, and 3 (FL-PK1'2'3' in Figure 3B,D) [19]. 

In each example of deletions/mutations producing shorter sfRNA species the corresponding viruses 
were attenuated in regards to cytopathicity, and pathogenicity [18,19,30,43], demonstrating the importance 
of full-length sfRNA species, sfRNA1, to these processes. However several questions still remain to be 
answered in regards to the physical limitations of SL/PK interactions in XRN1 stalling. For instance, 
what is the minimal PK structure for stalling XRN1? What is the minimal SL-II structure? Can we learn 
from other viruses or different groups within the flaviviruses (e.g., ISFs)? Are these structures present 
in eukaryote genomes as well and, if so, do they facilitate a biological role? 

2.3. Endogenous Production of Truncated sfRNAs 

One notable aspect of sfRNA production that has received little attention is that infection with  
wild-type flavivirus isolates has been observed to lead to the natural production of truncated sfRNA 
species [19,29–31]. The presence of a smaller, less intense sfRNA band in a Northern blot is generally 
only observed occasionally for wild-type viruses and thus goes unmentioned in publications [19,29]. 
Such low intensity and infrequent bands likely represent occasional “slipping” of the XRN1 stalling 
process at SL-II. However, this occasional slipping does not appear to be the case with YFV and 
selected strains of DENV-2 [30,31]. 

Unlike the infrequent production/detection of smaller sfRNA species noted in other wild-type 
viruses, certain strains of DENV appear to readily produce these truncated species in infected cells [31]. 
This was particularly noted for the Chinese isolates of DENV-2 (strains DV2-FJ10 producing sfRNA1 
and 2, and DV2-43 producing sfRNA1, 2, and 3) in infected BHK-21 cells. The three sfRNA species 
produced by DV2-43 were also readily observed in infected mouse brain and C6/36 mosquito cells. 
While the biological relevance of these truncations remains to be determined, it is important to note 
that DV2-43 is an isolate from an infected patient that displays no attenuated phenotypes in culture [44]. 
This observation contrasts with demonstrated attenuative effects of mutations in WNV leading to 
generation of shorter sfRNA species [18,19,43] and may therefore indicate a differential requirement 
for full-length sfRNA in pathogenicity/virulence of different flaviviruses. 

Through the use of 32P-labelled oligonucleotide probes complementary to sequences at the 5'- and 
3'-termini of sfRNA, a shorter YFV sfRNA2 was demonstrated to be a product of 3'-truncation in 
mammalian (but not insect C6/36) cell lines leading to deletion of the terminal 3'SL [30]. Notably this 
means of truncation appears unique to YFV as WNV does not produce this form of smaller sfRNA) [18] 
and the exact mechanism of this 3'–5' truncation is yet to be determined. 
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3. Cellular Localisation of sfRNA  

Accurate localisation of sfRNA in infected cells has been hampered by an inability to discriminate 
between the 3'UTR of gRNA and processed sfRNA in infected cells. Nevertheless, the use of 
fluorescence in-situ hybridisation (FISH) probes to specifically detect the WNV 3'UTR (sfRNA) and 
NS3 gene (gRNA) has demonstrated that sfRNA forms punctuate foci distinct from the perinuclear 
localisation of gRNA [45]. These foci co-localise variably with XRN1 (a marker of PBs) [18] and with 
the stress-granule (SG) marker protein eIF3ŋ [45]. PBs are cytoplasmic aggregates that contain proteins 
involved in diverse posttranscriptional processes, such as mRNA degradation and RNA-mediated gene 
silencing [38]. The RNAi machinery is also concentrated in PBs [37]. PBs mediate the decapping and 
5'–3' degradation of mRNA as part of the homeostatic turn-over of nucleic acids [36,37] and have been 
demonstrated to traffic some of their components to the sites of WNV replication [46]. Localisation of 
sfRNA to PBs is consistent with the generation of this RNA species [18], and our later studies 
determined that during its generation (presumably in PBs) sfRNA remains bound to and inactivates 
XRN1 which leads to increase in host mRNA half-lives [35] (see below). SGs accumulate during 
cellular response to various stress stimuli and consist of stalled translational pre-initiation complexes 
that act to temporarily suppress protein translation [37,47]. SGs can have diverse pro- and antiviral 
functions [47] and some viruses actively suppress bona fide SG assembly [48], however, the molecular 
interactions between viral products and SG components are only beginning to be elucidated. A 
biological role for sfRNA co-localisation with SGs has yet to be determined. As SGs act to sequester 
cellular RNA pools it is possible that sfRNA association is non-specific. It is worth noting however, 
that WNV has been demonstrated to actively delay the SG response by delaying early gRNA 
replication [49] and a functional role for sfRNA in this process cannot be discounted at this stage. 

4. Flavivirus Replication and sfRNA 

Decreased replication in mammalian and mosquito cell lines was observed for WNV and YFV 
mutants deficient in sfRNA [18,19,30]. A more recent study investigating the roles of sfRNA in JEV 
infection has revealed preliminary evidence that suggests sfRNA may play a role in viral RNA 
replication and/or translation [29]. Although the experimental methodology used in the JEV paper was 
at times highly artificial (sfRNA were transcribed in vitro from a T7 promoter thus are unlikely to possess 
an authentic 5'-monophosphate and so are unlikely to act genuinely in vivo), at least one key set of 
experiments lends credence to the authors’ hypothesis. Transfection of JEV-infected BHK-21 cells with 
in vitro transcribed antisense sfRNA at 28 h post-infection (hpi) led to a notable increase in antisense 
gRNA at 38 and 48 hpi compared to cells either transfected with positive-sense sfRNA or  
mock-transfected [29]. While the biological activity described appears genuine, it is unclear exactly 
how this antisense sfRNA is promoting antigenome synthesis. It may base-pair with endogenous 
positive-sense sfRNA and so negate a possible role in antigenome suppression. Alternatively it may 
displace the 5'-end of the antigenome within the replicative form to allow NS5 access and new 
antigenome synthesis.  

In addition, both positive-sense and antisense sfRNA were able to specifically inhibit translation of 
a JEV-based Renilla luciferase reporter minicon (Renilla luciferase gene incorporated in-frame after 
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Δcapsid in a truncated JEV genome consisting of 5' and 3'UTRs, Δcapsid, Δenvelope, ΔNS1, and 
ΔNS5) in vivo in transfected BHK-21 cells. Samples exposed to control RNA derived from JEV E-NS1 
sequences did not demonstrate translation inhibition. This phenotype was also observed in vitro during 
incubation with rabbit reticulocyte lysate (RRL) [29]. Unfortunately, however, the results described 
will need to be supported by future experiments utilizing live viral infections as these minicon 
investigations do not simulate the context of viral gRNA expression with absolute authenticity. Without 
expression of the non-structural proteins and true genomic replication, the characteristic for flavivirus 
infection cellular membrane environment [50–52] is lacking which may have profound consequences 
for sfRNA and translation-factor access to gRNA. 

5. MicroRNA Production from sfRNA 

The predominant innate antiviral response in insects, RNA interference (RNAi), was first identified 
in plants and appears to be a conserved mechanism of innate immunity and epigenetic control in 
eukaryote organisms [53,54]. RNAi centres on the cleavage of dsRNA into 21–30 nt long ssRNA 
which is then loaded into RNA-induced silencing complexes (RISC) and utilised as a homing motif for 
base-pairing of target sequences which are subsequently cleaved, downregulated, or upregulated. 
RNAi is divided into three main branches: microRNA (miRNA) which is generally involved in  
epigenetic control of expression, small-interfering RNA (siRNA) involved in the antiviral response, 
and P-element-induced wimpy testes in Drosophila (PIWI)-associated interfering RNA (piRNA) 
which is utilised primarily for the control of mobile genetic elements [53,55]. RNAi has been 
demonstrated to be active in the insect immune response to WNV, contributing to the evolution of viral 
RNA diversity [56]. 

Canonical biogenesis of miRNA requires a nuclear step where drosha cleaves miRNA transcript 
into pri-miRNA [57,58], however, mounting evidence suggests the existence of a non-canonical 
cytoplasmic pathway of miRNA generation [59,60]. There have been only few reports of miRNA 
production by cytoplasmic RNA viruses, and most of these are engineered cellular miRNA precursors 
inserted in the viral genome of, e.g., TBEV [59] and SINV [61]. 

Recently we identified the first flavivirus-derived miRNA, KUN-miR-1, in WNV-infected mosquito 
cells [62]. WNV sfRNA was deemed the likely source of KUN-miR-1 as expression of this RNA 
species from a heterologous Semliki Forest virus (SFV, an unrelated alphavirus) replicon was sufficient 
to lead to production of the functional KUN-miR-1 miRNA. In addition, infection with FL-IRAdCS3 
mutant WNV resulted in detection of diminished amounts of KUN-miR-1, although it also coincided 
with diminished viral RNA replication. KUN-miR-1 was demonstrated as important for the WNV 
lifecycle in mosquitoes, as a specific inhibitor of this miRNA greatly reduced virus replication in 
mosquito cells. In addition, a host mRNA target for KUN-miR-1 in mosquito cells was determined to 
be zinc-finger transcription factor GATA4. WNV infection of or SFV-sfRNA replication in mosquito 
cells upregulated the levels of GATA4 mRNA so did the ectopic expression of pre-KUN-miR-1 alone 
from a plasmid DNA or from SFV replicon. Importantly, knock-down of GATA4 led to a reduction in 
WNV replication analogous to that observed with a KUN-miR-1 inhibitor. While the exact nature of 
the WNV interaction with GATA4 remains unknown, this host protein has been linked in mosquitoes 
to the trafficking of lipids [62]. Thus it is possible that KUN-mirR-1-induced up-regulation of GATA4 
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plays a pivotal role in facilitating proliferation of a lipid-rich virus-induced membrane environment 
known to be crucial for flavivirus RNA replication [50–52].  

6. Host Response and sfRNA 

6.1. Cytopathicity in Cells and Pathogenicity in Mice are Dependent on sfRNA 

Early experiments to characterise the activities of sfRNA demonstrated that the cytopathic effect 
(CPE) generated by WNV mutants that produced less abundant, truncated sfRNAs were significantly less 
pronounced in Vero cells, leading to marked reduction in size or complete absence of viral plaques [18]. 
This loss of CPE was observed for mutants containing either deletions in SL structures [18] or 
disruption of PK interactions [19]. Importantly, transfection of Vero cells with a plasmid designed to 
produce authentic sfRNA upon XRN1-mediated degradation (pCMVβgal3') partially rescued CPE of 
the sfRNA1-deficient FL-IRAΔCS3 virus [18]. This phenotype can be specifically attributed to sfRNA 
as transfection of the control plasmid pCMVβgal did not demonstrate recovery of CPE during  
FL-IRAΔCS3 infection. 

This reduction in CPE appears to directly correlate with attenuation of WNV virulence in a murine 
model of infection. Three week old mice injected intraperitoneally (i.p.) with 10,000 plaque-forming 
units (PFU) of both FL-IRA (sfRNA2) and FL-IRAΔCS3 (sfRNA3) failed to demonstrate symptomatic 
infection and remained alive by 14 days post-infection (dpi) [18]. This is in contrast to mice that 
received the same dose of wild-type Kunjin strain of WNV (FLSDX) which all succumbed to infection 
by 9 dpi. These results have been recapitulated with PK mutants: i.p. injection of three week old mice 
with 10,000 PFU of mutant viruses FL-PK1', FL-PK1'2', and FL-PK1'2'3' failed to induce mortality 
greater than 20% by 14 dpi [19] while infection of mice with wild type FLSDX virus led to complete 
mortality by 8 dpi in this experiment. Interestingly, all mutant viruses despite demonstrating high 
degree of attenuation of virulence were effective in eliciting an immune response that provided 
complete protection against lethal challenge with highly pathogenic New York 99 strain of WNV. 
Thus, mutations leading to deficiency in generation of sfRNA1 can be employed in developing 
effective live attenuated flavivirus vaccines.  

6.2. The Interferon Response and sfRNA 

In order to characterise the parameters leading to the reduced pathogenicity in vivo observed for 
sfRNA-deficient WNV mutants [18,19], the potential role of the host type-I interferon (IFN-α/β) 
response was investigated. The IFN-α/β response pathway has been demonstrated as the most 
important mediator of host resistance to flavivirus infection [63,64]. Thus mutations that lead to virus 
attenuation are likely to affect the viral countermeasures to IFN-α/β. 

Infection of wild-type (IFN-competent) mouse embryonic fibroblasts (MEFs) at a multiplicity of 
infection (MOI) of 1 with sfRNA-deficient FL-IRAΔCS3 led to decrease in gRNA replication and 
virion formation compared to FLSDX infection as measured by Northern blot and plaque assay, 
respectively [43]. In contrast, infection of MEFs with knock-out of the IFN regulatory factor (IRF)-3 and -7 
genes (IRF-3/7−/−; cannot effectively produce IFN-α/β but can respond to exogenous IFN) demonstrated no 
appreciable difference in replication efficiency between FL-IRAΔCS3 and FLSDX viruses.  
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The relationship between full-length sfRNA production and viral subversion of the host IFN-α/β 
response was further confirmed by complementary experiments assessing the effects of addition or 
neutralisation of IFN upon WNV replication. Pre-incubation of IRF-3/7−/− MEFs with increasing 
concentrations of exogenous IFN-α followed by infection with FL-IRAΔCS3 and FLSDX viruses 
demonstrated a significantly higher sensitivity of the sfRNA-deficient mutant to the anti-viral activity 
of IFN-α. Conversely, neutralisation of the IFN-α/β receptor IFNAR1 by monoclonal antibodies during 
infection was able to rescue replication of FL-IRAΔCS3 mutant virus in wild-type MEFs [43]. 

In vivo experiments confirmed these results by comparing infection of wild-type C57BL/6 mice 
with IRF-3/7−/− mice. The results demonstrated increased virulence of FL-IRAΔCS3 in knock-out mice 
with 80% mortality by 9 dpi with 103 PFU of virus (a dose that was only able to kill 50% of wild-type 
mice). Additional infections of IFNAR−/− mice demonstrated that FL-IRAΔCS3 was universally lethal 
by 8 dpi when injected with 103 PFU virus (a delay of only 2–3 days compared to FLSDX). Assessment 
of viraemia by qRT-PCR however, demonstrated that FL-IRAΔCS3 replication, while increased in 
IFNAR−/− mice, was still significantly reduced compared to FLSDX [43] indicating a potential partial 
contribution of IFN-α/β-independent host responses in controlling mutant virus replication in the 
mouse model of WNV infection. 

Although sfRNA had convincingly been demonstrated to subvert host IFN-α/β signalling, the exact 
mechanism involved in this process had yet to be elucidated. IFN-α/β signalling in mammalian cells 
induces the nuclear translocation of phosphorylated signalling transducer and activator of transcription 
(STAT)-1 and -2 proteins and the upregulated expression of hundreds of antiviral IFN-stimulated 
genes (ISGs) [63,64]. In order to gauge the influence of sfRNA production on ISG mode of action,  
two well characterised ISGs known to exhibit activity during WNV replication—protein kinase R 
(PKR) [65–68] and RNase L [28,66,69]—were investigated for their ability to be modulated by sfRNA. 

PKR has many potential roles in eukaryote cells including anti-proliferative, cell death, inflammatory, 
and innate immune activities. PKR recognises dsRNA of at least 30 nt in length, but optimally  
70–80 nt [70]. The antiviral activity of PKR is predominantly mediated via phosphorylation of the  
α-subunit of eukaryote initiation factor 2 (eIF2α) at serine 51 which ultimately inhibits mRNA 
translation [70]. PKR−/− MEFs demonstrated no observable rescue of FL-IRAΔCS3 replication compared 
to that observed via infection in wild-type MEFs [43], thus PKR is unlikely to be inhibited by sfRNA. 

RNase L is a ssRNA-specific endonuclease activated by the binding of 2'–5'-linked oligoadenylates 
(2'–5'An); a unique molecule produced by the 2'–5'-oligoadenylate synthetase (OAS) family of proteins 
upon the binding of dsRNA and stem-loops >15 nt in length [70]. RNase L is thought to exert antiviral 
activity via the direct degradation of gRNA as well as by cleaving host mRNAs to generate novel  
IFN-stimulating moieties [70]. In contrast to results obtained in PKR−/− MEFs FL-IRAΔCS3 replication 
was partially rescued in RNase L−/− MEFs, indicating a potential interaction of sfRNA with the  
2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway [43]. However an in vitro assay demonstrated 
that sfRNA does not associate directly with RNase L as it was unable to prevent this endonuclease 
from degrading WNV gRNA or other RNase L-sensitive viral RNAs. Virulence of FL-IRAΔCS3 
mutant was also not rescued in RNase L−/− mice further indicating that RNase L is unlikely to be a 
direct sfRNA target. 

Preliminary evidence has also demonstrated that transfection of in vitro transcribed sfRNA may 
inhibit IRF-3 phosphorylation in JEV-infected cells [71]. The authors propose that this inhibition of 
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IRF-3 activation may lead to a decrease in IFN-β transcription. Unfortunately, however, their experiments 
to assess this phenotype lacked critical controls for the efficiency of JEV infection which may itself 
influence IFN-β transcription and therefore further investment of research will be required to confirm 
and fully explore this intriguing putative role of sfRNA. 

Although the possibility that sfRNA may specifically inhibit one or more proteins involved in IFN-α/β 
response pathway remains open, it is probably more likely that the mechanism of inhibition of anti-viral 
response by sfRNA is more general and is related to the ability of sfRNA to serve as a sink for cellular 
RNA-binding proteins that are involved in regulation of transcription and/or translation of wide range 
of genes involved in various cellular response pathways, including those participating in IFN-α/β response. 

6.3. Inhibition of Host mRNA Turnover Mediated by sfRNA  

The structures that lead to sfRNA generation are highly unique as they are the first RNA elements 
that have been shown to consistently stall XRN1 in mammalian cells. Thus the generation of sfRNA 
by stalling of the XRN1 enzyme is very unusual and interestingly, has an additional perhaps highly 
significant impact on the cell. The generation of sfRNA results in the repression of XRN1 enzymatic 
activity, presumably due to the slow release of the stalled enzyme from the structures at the proximal 
side of the flavivirus 3'UTR [35]. The repression of XRN1 by sfRNA generation occurs with both the 
mammalian and mosquito enzymes, thus it is likely to impact viral infection in both the host and the 
vector. Furthermore, sfRNA-containing substrates directly block XRN1 enzymatic activity as repression 
can be observed using purified recombinant enzyme and flaviviral RNA [35]. XRN1 repression, as 
seen by an increase in uncapped mRNAs, occurs in infections of cells with either DENV-2 or WNV. 
Thus flaviviruses contain a rather novel way to shut down a host cell enzyme that is likely actively trying 
to degrade viral transcripts during an infection. 

XRN1 repression appears to have much broader impact on the cell than simply promoting the 
stability of flaviviral RNAs. Approximately 400 cellular mRNAs were shown to be upregulated 3X or 
more in a WNV infection and numerous cellular mRNAs are stabilized during flavivirus infection in 
an sfRNA-dependent fashion due to the apparent shut down of the entire 5'–3' RNA decay pathway [35]. 
The feedback of the repression of XRN1 to other factors in the 5'–3' decay pathway may be due to 
direct protein-protein interactions between XRN1 and decapping enzymes [72] as well as through  
P-bodies (which, interestingly, become disrupted in flavivirus infections [46,73]). This dramatic 
dysregulation of cellular gene expression at the level of RNA stability by the generation of sfRNA may 
significantly contribute to viral pathogenesis and immune evasion. 

6.4. The RNAi Pathways and sfRNA 

RNA viruses have small genomes carrying only a minimal set of genes required for replication but 
also suppression of innate immune responses of their hosts. Despite their small genome size, RNA 
viruses have evolved unique ways to manipulate their host cell and create a specialized intracellular 
micro-environment to support virus replication. For RNA viruses of insects and plants, the most potent 
host antiviral response they counteract is RNAi [53]. The host RNAi machinery processes the viral 
double-stranded RNA (dsRNA) intermediates into siRNA to subsequently target and degrade the viral 
RNA. It is therefore no surprise that many, if not all, insect (and plant) RNA viruses encode and 
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produce viral suppressors of RNAi (VSR) to inhibit antiviral RNAi. While it is clear that arboviruses 
suffer from RNAi [74,75] and likely have strategies to dampen the detrimental effects [76], despite 
efforts by different research groups arboviral VSRs have not yet conclusively been identified. 

Our most recent research led to the discovery of sfRNA as a suppressor of the antiviral RNAi 
response in different model systems [77]. The first suggestion that WNV interfered with RNAi came 
from experiments that showed that induced RNAi was impaired in cells harbouring actively replicating 
WNV replicon RNA. Next, we initiated a screen for RNAi activity of viral products (proteins, RNA) 
produced during WNV replication and concluded that none of the WNV nonstructural proteins could 
suppress RNAi, neither in mammalian cells nor in plants. However, sfRNA was the only molecule in 
our screen that was capable of suppressing RNAi. Subsequent experiments showed that sfRNA displayed 
VSR activity in both insect as well as mammalian cells and not only affected ds/siRNA-induced RNAi, 
but also interfered with the miRNA pathways, again both in insect as well as mammalian cells. 
Interference with human Dicer processing of dsRNA in vitro suggested that sfRNA acts as a decoy 
molecule upstream of the RNA-induced silencing complex (RISC). As a result from this, less (antiviral) 
siRNA is produced when sfRNA is present, which is in line with the observation that sfRNA enhanced 
the replication of a heterologous arbovirus in mosquito cells [77].  

The observation that sfRNA is a Dicer substrate corresponds with the production of KUN-miR-1 
from the 3'UTR/sfRNA that was shown to be mediated by insect Dcr-1 [62]. The relative substrate 
affinity of sfRNA for insect Dcr-1 in comparison to Dcr-2, which is predominantly involved in 
antiviral RNAi, is currently unknown, but resolving this issue could further illuminate the precise, 
perhaps diverse, roles of sfRNA in insects. An attractive hypothesis to be tested is whether sfRNA 
production is required for efficient replication of flaviviruses in the arthropod vector, but this remains 
to be experimentally proven. The production of sfRNA by ISFs would certainly fit in this picture.  

The exact biological activity of sfRNA as RNAi suppressor during flavivirus replication in vertebrates 
is still elusive, although evidence is accumulating that antiviral RNAi may exist in higher animals and 
humans as well [78]. In that case, sfRNA may not only feed into the endogenous miRNA pathway as 
we have shown [77], but could also have a profound impact on suppressing the silencing of flavivirus 
RNA replication in humans and other vertebrate species. 

7. Host Binding Partners of the 3'UTR and/or sfRNA 

Several candidate binding partners to the flavivirus 3'UTR have been identified via pull-down and 
mass-spectrometry and verified via gel shift mobility assays, immunoprecipitation, and mutational 
screens. Many more putative binding partners (e.g., Dicer [77]) have been inferred due to an observed 
functional interaction despite the lack of co-immunoprecipitation data. The binding partners variously 
have roles in stimulating viral gRNA replication and polyprotein translation, or function as mediators 
of the host anti-viral immune response. Analysis of binding partners for sfRNA specifically is 
distinctly lacking within the literature. Due to the conservation of sequence and structural elements 
between the 3'UTR and sfRNA, it is likely that many if not all of these proteins interact with this 
subgenomic element. Indeed due to the rapid accumulation of sfRNA it may be revealed that these 
proteins exert a large proportion of their functions when bound to this moiety. Table 1 summarises the 
identity and known functions of these 3'UTR/sfRNA binding proteins. 
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Table 1. Host binding partners of the flavivirus 3'UTR and/or sfRNA. 

Protein Origin Function Binds 3'UTR? Binds sfRNA? Method of 
Identification Ref. 

NS5 Virus Polymerase 5' RNA cap Yes, 3'SL Likely Infected cells Pull-down 
IVT 1 RNA [71,79] 

Capsid Virus Nucleocapsid Yes NK 3, Likely Pull-down IVT RNA [80] 
NS2A Virus Viral RC Anti-IFN 2 Yes, 3'SL NK, Likely IVT RNA [81] 
NS3 Virus Helicase,Protease, NTPase Yes, 3'SL NK, Likely IVT RNA [79,82] 

EF1α 4 Host Translation elongation factor Yes, middle of 
3'SL NK, Likely Infected cells, Pull-

down, IVT RNA [24,25,83] 

PABP 5 Host Translation initiation, SG 
component 

Yes, A-rich regions 
flanking DBs NK, Likely IVT RNA [23] 

La 
autoantigen Host RNA chaperone, Protection 

from RNases Yes, 3′SL NK, Likely Infected cells, Pull-
down, IVT RNA [25,84–87] 

PTB 6 Host RNA splicing Yes NK, Likely Pull-down, IVT RNA [25,88] 

DDX6 7 Host PB component,Promote 
RNA degradation 

Yes, DB1 and 
DB2 NK, Likely 

Infected cells, Pull-
down, IVT RNA, 

Quantitative mass-spec 
[89] 

Caprin1 8 Host Transport and translation of 
mRNAs, SG component 

Yes, region SL-I 
to DB1 

NK, Possibly 
unless binds SL-I 

Pull-down, IVT RNA, 
Quantitative mass-spec [89] 

G3BP1/2 9 Host dsDNA or dsRNA 
unwinding, SG components 

Yes, region SL-I 
to DB1 

NK, Possibly 
unless binds SL-I 

Pull-down, IVT RNA, 
Quantitative mass-spec [89] 

USP10 10 Host De-ubiquitination, SG 
component 

Yes, region SL-I 
to DB1 

NK, Possibly 
unless binds SL-I 

Pull-down, IVT RNA, 
Quantitative mass-spec [89] 

FBP1 11 Host ssDNA binding protein, 
Influence mRNA stability Yes NK, Likely Pull-down,IVT RNA [90] 

p100 Host Transcription and RNA 
transport Yes, 3'SL NK, Likely Pull-down,IVT RNA [88] 

IGF2BP1 12 Host Translation and mRNA 
stability Yes NK, Likely Pull-down, IVT RNA [88] 

RBMX 13 Host Pre-mRNA splicing Yes NK, Likely Pull-down, IVT RNA [88] 

YB-1 14 Host 
Transcription regulation, 
Translation regulation, 

mRNA stability 
Yes, 3'SL NK, Likely 

Infected cells, Pull-
down,IVT RNA, Mass-

spec 
[91] 

hnRNP 15 
Q Host Splicing, Translation 

regulation, mRNA stability Yes NK, Likely Pull-down,IVT RNA, 
Mass-spec [91] 

hnRNP A1 Host Splicing and RNA synthesis Yes NK, Likely Pull-down, IVT RNA, 
Mass-spec [91] 

hnRNP 
A2/B Host RNA trafficking Yes NK, Likely Pull-down, IVT RNA, 

Mass-spec [91] 

Mov34 16 Host RNA transcription and 
translation, Proteasome Yes, 3′SL NK, Likely IVT RNA [92] 

NF90 17 Host 
RNA export, RNA 

stabilization, Negative 
regulation of miRNA 

Yes, 3'SL NK, Likely Pull-down, IVT RNA [93] 

RHA 18 Host Assist NF-κB signaling, Sense 
dsRNA, Unwind dsRNA 

Yes, 3'SL, Maybe 
in vitro only NK, Possibly Pull-down, IVT RNA [93] 

XRN1 Host PB component, 5'–3' 
exoribonuclease Yes Yes Infected cells,Pull-down [35] 

1 IVT = in vitro transcribed; 2 IFN = interferon signalling pathway; 3 NK = not known; 4 EF1α = elongation 
factor 1α; 5 PABP = poly(A) binding protein; 6 PTB = polypyrimidine tract-binding protein;  
7 DDX6 = DExD/H-box helicase 6; 8 Caprin1 = cytoplasmic activation/proliferation-associated protein 1;  
9 G3BP1/2 = GTPase-activating binding proteins 1 and 2; 10 USP10 = ubiquitin-specific peptidase 10;  
11 FBP1 = far upstream element (FUSE)-binding protein 1; 12 IGF2BP1 = Insulin-like growth factor-II  
mRNA-binding protein 1; 13 RBMX = RNA-binding motif gene on the X chromosome; 14 YB-1 = Y box-binding 
protein 1; 15 hnRNP = heterologous nuclear ribonucleo-protein; 16 Mov34 = Moloney murine leukaemia provirus 
insertion-disrupted protein of 36 kDa; 17 NF90 = nuclear factor 90; 18 RHA = RNA helicase A. 
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8. Conclusions and Future Directions 

Given their limited genome size, viruses naturally have to contain a high density of encoded 
information/activities. The sfRNA produced by flaviviruses certainly does not disappoint in this regard 
as it clearly serves multiple and highly biologically-relevant roles in virus-host interactions. The 
sfRNA is involved in: (i) generation of miRNA, (ii) repression of a major player in cellular RNA 
decay, XRN1, and (iii) binding and perhaps usurping the functions of a variety of other cellular RNA 
binding proteins. Collectively, these functions assist the virus in evading IFN-α/β and RNAi responses 
and likely contribute to the replication success as well as pathogenicity of the virus in both the 
arthropod vector and the vertebrate host. Based on available data, the putative models of the roles of 
sfRNA in virus replication (Figure 4A) and in modulating the host response (Figure 4B) can thus be 
proposed. Three potential mechanisms of how sfRNA may modulate different processes in the 
flavivirus replication (Figure 4A) include: 

(1) Inhibition of antigenome synthesis: sfRNA may bind to the 5'UTR of gRNA, outcompeting 
intermolecular interactions with the 3'UTR and thus preventing genome cyclisation and the initiation 
of antigenome synthesis [20,94]. This would potentially act as a switch to increase the translation of 
newly synthesised positive-strand gRNA and/or packaging of gRNA into virions. 

(2) Assistance in unwinding dsRNA replicative form: During the replication cycle the 5'-end of  
the newly completed positive gRNA must be displaced from its negative-sense partner within the 
double-stranded replicative form (RF). This allows the NS5 polymerase access to the 3'-end of the 
template antigenome [15,95]. sfRNA may assist in improving the efficiency of this event by exerting 
base-pairing interactions analogous to genome cyclisation to bind to the 5'UTR of positive-sense gRNA 
within the RF, thus displacing the completed strand and facilitating formation of the replicative 
intermediate [15]. As sfRNA is also likely to bind to elements of the viral replication complex  
(RC) (Table 1), sfRNA binding to 5' end of (+)gRNA could assist in the correct positioning of RC on 
the antigenome. 

(3) Inhibition of translation and/or replication: sfRNA may compete with the 3'UTR of gRNA for 
binding to proteins of the viral RC [20,71,79,81], and/or host translation machinery [23–25,96]. As sfRNA 
accumulates over the course of an infection it may outcompete the 3'UTR and thus act as a switch late in 
infection that slows replication/translation to promote gRNA packaging and viral particle assembly. 

The proposed model of modulation of host response by sfRNA (Figure 4B) incorporates three so far 
demonstrated functions of sfRNA in (i) suppression of XRN1 activity and resultant changes in stability 
of cellular mRNAs which leads to disruption of cellular mRNA homeostasis, (ii) subversion of IFN-α/β 
signalling by an unknown mechanism leading to inhibition of anti-viral response, and (iii) suppressing 
the utility of cellular RNAi response likely by acting as a decoy for dicer. 
The crosstalk between these three cell response pathways is of particular note (Figure 4B). XRN1 
inhibition may increase the half-lives of proteins that act as negative regulators of the IFN-α/β and 
RNAi pathways [35]. Extensive co-regulation between the IFN-α/β and RNAi pathways has also been 
described, with miRNAs demonstrating control over IFN-β expression [92,97] and IFN signalling in 
turn modulates the profiles of cellular miRNA expression [98,99]. Therefore, the incomplete rescue of 
sfRNA-deficient mutants in a particular knock-out cell and/or mouse line may be the result of certain 
redundancies and/or cross-talk between various cell response pathways affected by sfRNA. Indeed it is 
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likely that the observed decrease in the replication of sfRNA-deficient WNV and YFV mutants in 
mammalian and (especially) mosquito cell lines [18,19,30] is due to an absence of the downstream effects 
of sfRNA antagonism of the host response (Figure 4B) leading to better cellular control of the viruses. 
Any intrinsic influence of sfRNA on viral replication (Figure 4A) may play a lesser role in this phenotype. 

Figure 4. Proposed models of sfRNA interactions in viral replication and the host 
response. (A) Potential influences of sfRNA on viral gRNA replication: (i) sfRNA may 
prevent gRNA cyclisation, inhibiting (–) strand synthesis; (ii) sfRNA may interact via 
cyclisation sequences to assist in unwinding dsRNA in the replicative form at the (+) strand 
5' end, this may promote increased (+) strand synthesis; (iii) sfRNA may competitively 
bind and sequester translation and/or replication factors, inhibiting translation and replication 
of gRNA; (B) Different host response pathways inhibited by sfRNA: sfRNA interaction 
with XRN1 disrupts host mRNA decay; sfRNA suppresses host RNAi pathways likely 
through interaction with Dicer; sfRNA inhibits the IFN-α/β response via an unknown 
mechanism. Each of these pathways cross-communicates and may influence the activities 
of the others. 

 
 
Despite rapid recent progress in identifying and characterising the mechanism of generation and 

functions of sfRNA, a number of interesting questions remain. The role of the sfRNA in viral interactions 
with the arthropod (e.g., mosquito, tick) vector needs to be investigated in more detail. Which 
particular nucleotide interactions in the RNA structure(s) that stalls and represses the cellular XRN1 
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enzyme are essential? Is this structure unique to flaviviruses or do other viruses—or even cellular 
RNAs—use a similar structure to stall this exonuclease to improve mRNA stability? In addition to IFN-α/β 
and RNAi, can sfRNA influence other RNA-related responses in the cell? Perhaps, for example, 
sfRNA can serve as a sink for various cellular RNA-binding proteins during infection, dysregulating a 
variety of pathways in which they function. The dramatic dysregulation of cellular mRNA stability due 
to XRN1 repression is likely to have various pathogenic consequences that need to be elucidated. From 
an applied perspective, sfRNA generation may represent an interesting target for the development of 
broad spectrum anti-flavivirus therapeutics and attenuated phenotype of sfRNA-deficient viral mutants 
may prove to be very useful in developing live attenuated flavivirus vaccines. Finally, with the rising 
appreciation of the prominence of RNA biology and post-transcriptional gene regulation in the cell, these 
studies also strongly suggest that the 3'UTRs of other RNA viruses be re-examined for potentially 
novel functions. 
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