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Abstract

The demand for long-term continuous care has led healthcare experts to focus on develop-

ment challenges. On-chip energy consumption as a key challenge can be addressed by

data reduction techniques. In this paper, the pseudo periodic nature of ElectroCardioGram

(ECG) signals has been used to completely remove redundancy from frames. Compressing

aligned QRS complexes by Compressed Sensing (CS), result in highly redundant measure-

ment vectors. By removing this redundancy, a high cluster of near zero samples is gained.

The efficiency of the proposed algorithm is assessed using the standard MIT-BIH database.

The results indicate that by aligning ECG frames, the proposed technique can achieve supe-

rior reconstruction quality compared to state-of-the-art techniques for all compression ratios.

This study proves that by aligning ECG frames with a 0.05% unaligned frame rate(R-peak

detection error), more compression could be gained for PRD > 5% when 5-bit non-uniform

quantizer is used. Furthermore, analysis done on power consumption of the proposed tech-

nique, indicates that a very good recovery performance can be gained by only consuming

4.9μW more energy per frame compared to traditional CS.

Introduction

Real-time remote tracking of physiological signals such as ElectroCardioGram(ECG) has

become an important topic in wireless healthcare [1]. Realization of long-term ubiquitous

monitoring confronts multiple challenges, such as device size, cost and computational effi-

ciency [2]. However, the major problem is the considerable amount of data to be aggregated

and the limited battery life of sensors [3]. Studies have confirmed that sensors consume energy

mostly through data transmissions [4]. So a variety of data reduction techniques assorted into

lossy and lossless techniques can be used to improve the energy efficiency of sensors. Lossless

compression techniques, as its name implies, reduces the amount of transmitted data without

affecting the quality of the signal. In these methods, intra-beat redundancies existent in the

frames are removed. With lossless methods, a limited amount of compression is gained com-

pared to lossy methods. Lossy signal compression methods are segregated into three distinct

techniques with their own advantages and disadvantages: Direct, transform and parameter

extraction methods. The first two methods extract redundancy from the main domain and
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transform domain respectively and the former one extracts the parameters from an ECG signal

and transmits them. Lossy methods are not suitable for many clinical applications because of

the lossy nature. So In 2006, Donoho [5] proposed a compression method(transform method)

called Compressed Sensing(CS) that solves mathematical algorithms for data reconstruction

on the server from a received linear projection of a sparse or compressible signal with a ran-

dom sensing matrix at the sensor. Despite the performance improvements made by CS tech-

niques, they still have a persistent gap from the most beneficial transform-based compression

methods such as Set Partitioning in Hierarchical Trees(SPIHT) when energy-based distortion

metrics such as Percent Root-mean-square Difference (PRD) are considered. This motivates

interest in new CS-based approaches that will improve performance in terms of signal quality.

The core of this paper is aligning frames in order to make use of its existence similarity to

remove redundancy from measurement vectors. Authors previous work also focuses on

removing redundancy from similar frames but in this study, the idea of using high similarity

between aligned ECG frames is utilized for redundancy removal of measurement vectors. The

proposed method aligns ECG frames according to the detected peaks, so after CS, there would

be high redundancy available in measurements. Removing this redundancy results in nonuni-

form distribution of values with zero mean.

In order to study the ability of this technique for improving the performance of CS-based

ECG signal compression, it was tested over various ECG records at different compression

ratios. The experimental outcome of this study proves that the added stages to the plain CS

increase sensors processing time a little, with the advantage of reducing the number of bits per

sample in each frame and superior efficiency over various compression ratios. Despite the per-

formance improvements made by the proposed techniques, very noisy ECG signals which

make the R-peak detection technique error prone, remains challenging.

The unique contributions made in this work than the existing state-of-art research are:

• Aligning ECG segments in order to increase their existing similarity

• Framing each heart-beat

• Applying CS to each frame

• Using 5-bit quantizer

In the rest of this paper, after a brief literature review a description of CS, ECG signals and

dictionary learning is given in background section. Proposed scheme section describes the

proposed work.Simulation and results section presents an evaluation of the proposed work

and compares it with several state-of-the-art techniques.

Related work

The energy consumption of physiological sensors, particularly ECG sensors, has always been a

challenging issue, so a variety of lossy and lossless techniques that reduce the energy expended

in the transmission of ECG frames have been introduced. Lossless compression techniques,

mostly extract static redundancies existence in the signal to reduce the total bit length. Code-

book-based approaches are a popular format of these techniques, where values according to

their frequency of occurrence, are assigned a short or longer binary code word [6]. Techniques,

including Arithmetic or Huffman coding and Lempel-Ziv (LZ), are examples of lossless tech-

niques [7]. In addition to dictionary-based implementations, Li et al. managed to classify real-

time ECG waveform into four regions and use an adaptive prediction method for different

regions. Later in order to simplify the transmit format, they used a modified variable length

code to encode the prediction difference [8]. The work done in [9, 10] are also prediction-
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based lossless methods. The former work consists of an adaptive predictor based on fuzzy deci-

sion control, and the later one uses a linear slope predictor for data compression and incorpo-

rates a novel low-complexity dynamic coding-packaging scheme. Block-sorting techniques

proposed by Arnavut et al. are also lossless ECG compression techniques which made use of

Burrows-Wheeler Transformation and Inversion Ranks of Linear Prediction for ECG com-

pression [11]. In terms of data compression performance, lossless methods gain smaller level

of compression compared to lossy ones. Still, the lossy methods may lose some clinically signif-

icant information so they should be used in applications where certain degree of distortion is

tolerable [12]. Lossy signal compression methods are divided into three groups: direct, trans-

form and parameter extraction methods. Direct techniques, extract redundancies within the

time domain signals. The advantage of these techniques is their low complexity operation [13],

but its main disadvantage is that most biomedical signals are not sparse in the time domain.

Transform methods typically concentrate on the energy distribution of the signal in a domain

other than the time domain. Transforms such as the Discrete Cosine Transform (DCT), Dis-

crete Wavelet Transform (DWT) and the Fourier Transform(FT) are commonly used with

ECG signals. Among the transform methods, wavelet transform-based methods provide the

most promising technique for ECG signal compression [14]. Examples of this technique are

the work done by Benzid et al. which they compressed ECG signals by zeroing a fixed percent-

age of wavelet coefficients [15, 16] (SPIHT) which the authors extracted the inherent similari-

ties across the sub-bands in a wavelet decomposition of ECG signals to compress signals.

Despite the very good reconstruction quality, the main disadvantage of the wavelet transform

is that its operation is computationally intensive. Parameter extraction methods only extract

significant characteristics of the signal and are used for classification purposes. Examples of

such methods include peak picking [17] and a long-term prediction approach [18]. Authors in

[19] in order to resolve limitations of previous approaches, proposed a model that is based on

Hermite and sigmoid functions combined with piecewise polynomial interpolation for exact

segmentation and low-dimensional representation of individual ECG beat segments. These

techniques are not suitable in many clinical scenarios. In 2006, Donoho [5] was the first to pro-

pose a compression method(transform method) called CS that transferred computational load

from the sensor (encoder) to the server (decoder). This technique computes a small number of

compressed samples before transmission by linear projection of a sparse or compressible signal

with a random sensing matrix. ECG signals, like most biological signals, are not sparse in the

time domain, so they can be made sparse like the work done by [20] and authors previous

work [21] or using a deterministic or Adaptive Dictionary(AD) to sparsify the signals [22, 23].

The wavelet basis or Gaussian dictionaries are examples of deterministic sparsifying matrices.

A Gaussian dictionary is based on the ECGs morphology to sparsify the signal [24]. Polania

et al. [25] used wavelet transform to sparsify the frame in order to use CS, then to increase the

performance of past CS techniques, they incorporated prior knowledge about wavelet depen-

dencies across scales into the reconstruction algorithms and utilized the high fraction of com-

mon support of wavelet coefficients of consecutive ECG segments [26]. The proposed

approach in [27] uses an over complete wavelet dictionary, which is then reduced by means of

a training phase. Moreover, the alignment of the frames according to the position of the R-

peak is proposed, such that the dictionary optimization can exploit the different scaling fea-

tures of the ECG waves. The work done in [28] improves the signal sparsity through the extrac-

tion of signals significant features from each frame in order to use CS. DWT dictionaries are

used in the mentioned technique. The main problem with deterministic dictionaries is their

poor CS recovery quality. In [29], an iterative learning process from the test signals is used to

generate a multiscale dictionary for the recovery of ECG signals. In order to increase the per-

formance, Craven et al. [30] utilized two different patient-specific learned dictionaries for the
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recovery of ECG signal components: without QRS complex and with QRS complex. AD,

according to signal characteristic, is employed for sparse recovery and signal reconstruction.

Results show that learning dictionaries instead of using deterministic ones improves the per-

formance and quality of the signal [31, 32]. It is worth mentioning that craven et al. used an

analog-CS in their work. Despite the performance improvements made by CS techniques, they

still have a persistent gap from the most beneficial transform-based compression methods

such as SPIHT when energy-based distortion metrics such as PRD are considered. This moti-

vates interest in new CS-based approaches that will improve performance in terms of signal

quality. Considering the constraints mentioned above, in this work with the help of frame

alignment, a redundancy removal technique is used to remove high variance between samples

in the measurement vector before transmission.

Background

This section begins by covering some important features of the theory of CS. Then, a brief

introduction to ECG and dictionary learning is provided. Throughout this paper, bold lower-

case letters are used to denote a vector. e.g., x, and bold upper-case letters for matrices, e.g., X.

Scalar values are indicated by italic symbols, such as x. Additionally, x̂ means the estimated/

recovered value of vector x and �x, means the average of vector samples. The list of all notations

and symbols used for the following discussions of the proposed architecture are illustrated in

Table 1.

Compressed Sensing(CS)

Contrary to the Shannon-Nyquist sampling theory in the Compressed Sensing(CS) frame-

work, the number of samples taken from the signal is not determined by its maximum fre-

quency, but by the content or information contained in the signal. Around 2004, CS pioneers

Emmanuel Candès, Justin Romberg, Terence Tao, and David Donoho proved that recon-

structing a sparse signal could be done by fewer samples than sampling theory requires [5, 33].

In particular, many signals are sparse, that is, they contain many coefficients close to or equal

to zero, when represented in some domain [34]. CS as shown below takes a weighted linear

combination of samples also called compressive measurements in a basis (F) incoherent from

Table 1. Definitions of some frequently used symbols in this paper.

Symbol value Meaning

N - Number of samples in a frame

M - Number of measurements

B 11 ECG bit resolution

Ymean - Mean Measurement vector

fs 360 HZ ECG sampling frequency

VDD 0.6V CS sampling integrator operating voltage

FOM 10fj Figure-Of-Merit for Analog to Digital Converters(ADC) per conversion

IDD 15mA Blackfin baseline dynamic current

ASF 1 Blackfin Activity Scaling Factor

VBF 0.8V Blackfin operating Voltage

AEC - Average Execution Cycle in visual Digital Signal Processor(DSP)++

CLK 100MHZ Blackfin core clock frequency

BT - Number of bits transmitted per frame

https://doi.org/10.1371/journal.pone.0262219.t001
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the basis in which the signal is known to be sparse(C) Ψ 2 Rn�n.

y ¼ Φxþ nnoise ð1Þ

x ¼ Ψα ð2Þ

Where, x 2 Rn or Cn
is an input signal of length n, y 2 Rm or Cm

is the measurement vector of

length m, α 2 Rn is the sparse coefficient vector of length n and Φ 2 Rm�n or Cm�n
(m< n) is

a m × n random measurement matrix.

Incoherency between these two bases (C and F) is one of the important conditions under

which recovery is possible. For constructing measurement or sensing matrix, independent-

identically distributed (i.i.d) entries formed by sampling a Gaussian distribution is used. With

this matrix, one could be sure that its coherence with any sparsifying dictionary is small

enough. The results found by [5, 33] showed that the number of these compressive measure-

ments is proportional to the sparsity of the input signal and can be far smaller than the length

of the signals and still contain nearly all the useful information. Therefore, the task of recover-

ing the signal involves solving an underdetermined matrix equation. However, adding the con-

straint that the initial signal is sparse enables one to solve this underdetermined system of

linear equations. To enforce the sparsity constraint when solving the underdetermined system

of linear equations, one can minimize the number of non-zero components of the solution

using ℓ0-norm. When measurements may contain a finite amount of noise, basis pursuit

denoising algorithm is used at the destination:

min kαk0 s:t ky � ΦΨαk2 < �; ð3Þ

Where � is the bound on noise energy. The equation above can be solved by various methods

like, convex relaxation, such as basis pursuit denoising and greedy algorithms such as match-

ing pursuit and orthogonal matching pursuit [35].

ElectroCardioGram (ECG) signal

Each time the heart beats, an electrical impulse (wave) travels through the heart, causing

squeezing and pumping blood from the heart. This electrical activity, which is detected by sen-

sors attached to the skin, is called ElectroCardioGram (ECG). ECG shows two kinds of infor-

mation, first the rhythm of the heartbeats (steady or irregular) and second the strength and

timing of the electrical impulses as they move through different parts of the heart [36]. This

signal is characterized by five peaks and valleys represented by the letters P, Q, R, S, T and

Sometimes U wave is also present. In Fig 1, an ideal ECG wave is shown. As the heart experi-

ences depolarization and repolarization, the electrical currents that are generated, spreads

within the heart. The depolarization wave that spreads throughout the atria is called P and

when the depolarization reaches the ventricular and spreads through them, QRS complex is

produced. The T wave at the end represents the recovery of the ventricles. Changes in ECG

morphology can be a sign of many cardiac arrhythmias. Although 15 various types of arrhyth-

mias exist, AAMI classifies them into five super classes: Normal (N), Ventricular Ectopic Beat

(VEB), SupraVentricular Ectopic beat (SVE), Fusion beat (F) and Unknown beat (Q) [37].

VEB is occurrence of an extra heartbeat in one of the two lower pumping chambers resulting

in exclusion of p wave and unusual-shaped (wide) QRS complex that could be in multiform

[38]. Atrial irritability with signs of premature beat, narrow in width but slightly different

shaped than patients “normal” beats [39] is called SVE. F occurs when a supraventricular and a

ventricular impulse overlap to produce a hybrid complex with an intermediate width and mor-

phology [40]. It is worth mentioning that cardiac arrhythmias are not the only reason causing
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ECG morphology changes, rather different persons have their individual and unique heart-

beats. A pictorial illustration of different beats from different patients and different classes are

shown in Fig 2, as one could see, some ECG beats are pseudo similar.

Dictionary Learning(DL)

As stated earlier, CS enables sub-Nyquist rate sampling of signals if the signal has a sparse illus-

tration in a specific dictionary [5, 34, 35]. Using the standard wavelet dictionary as a sparsify-

ing matrix offers acceptable signal quality at the receiver but fails to recover the original signal

when fewer number of measurements is received. So an overcomplete dictionary of signal

components known as atoms, built from a set of training signals has shown to provide a signif-

icant performance improvement [41]. Dictionary learning (DL) is an iterative learning which

uses a set of t training signals XT ¼ ½x1; x2; x3 . . . xt� 2 R
N�t

. The purpose of this process is to

iteratively improve the dictionary Ψ 2 RN�p by reaching sparser representations of the train-

ing signals and revising the dictionary based on the current sparse representations β 2 Rp�t
.

For constructing the dictionary, an optimization problem must be solved:

min
C;b
fkXN;t � ΨN;pβp;tkFg

subject to kβik0
< Sði ¼ 1; :::; tÞ;

Where ℓF-norm is the Frobenius norm and the process is bound by a sparsity constraint, such

Fig 1. A normal ECG beat.

https://doi.org/10.1371/journal.pone.0262219.g001
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that the sparsity level S is the maximum number of non-zero entries in each sparse representa-

tion β. Aharon et al. [42] proposed a DL algorithm called K-SVD, which is used in this paper.

Proposed scheme

The objective of this study is to enhance energy efficiency while preserving the performance of

the recovered signal in terms of signal quality. So in order to improve performance, the redun-

dancy could be removed from two stages, either before CS like the authors’ previous work [21]

(Fig 3a) or after CS. The workflow of the proposed scheme is reviewed in Fig 3b. The workflow

of the proposed technique segmentize the digitized signal into 512 samples, enough to contain

at least one cardiac cycle. By detecting R-peaks on every segment, a frame of aligned R-peak

with previous R-peaks is constructed. In this stage, despite the work done in [21] compressed

sensing is applied directly to the aligned frames, resulting in high redundant measurement vec-

tors. By removing the mean measurement vector from the measurements, samples clustered

near 0 are produced, ensuring reduced bits per sample for quantization. The workflow consists

of the following stages. A description of each step is presented in detail in the following

subsections.

1. Segmentation

2. R-peak detection

3. Heartbeat Framing

4. Redundancy removal of compressed measurements

5. Quantization and Huffman coding

6. Signal reconstruction

Fig 2. Various ECG beats (a) normal beat from record 217 (b) VEB from record 215 (c) SVE from record 220 (d)

normal beat from record 100 (e) VEB from record 102 and (f) Unknown beat from record 217.

https://doi.org/10.1371/journal.pone.0262219.g002
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Fig 3. The workflow of the a) scheme in [21], b)proposed scheme.

https://doi.org/10.1371/journal.pone.0262219.g003
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Segmentation

Fig 4a shows a continuous ECG signal from the MIT-BIH arrhythmia database. In order to be

able to detect beats correctly and to keep the acquisition time sufficiently short for real-time

monitoring, each segment should contain at least one beat. So as shown in Fig 4b, a 512-sam-

ple segment is defined as an observation window equal to approximately 1.5s at 360 HZ. This

segment should in general cover important features(P-QRS-T) of at least one beat.

R-peak detection

A complete cardiac cycle detected by lead II consists of a local maxima(R-peak) which changes

significantly compared to the other peaks and valleys of the cycle [43]. Previous work done by

the authors contends an energy-efficient peak detector that used the slope and amplitude dif-

ference along with the peak interval of candidate samples to detect R-peaks [21].

For performance evaluation of the proposed peak detection, the information of true R-

peaks is collected from the MIT-BIH database. In Table 2 the performance of the QRS

Fig 4. ECG signal. (a) Continuous ECG signal. (b) Consecutive ECG frames.

https://doi.org/10.1371/journal.pone.0262219.g004
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detection using the proposed technique for various records is compared with the records

annotation. The performance metrics shown in Table 2 are the True Positive (TP)-which

shows the true detected beats—and False Negative(FN)- which shows undetected true beats.

Sensitivity (Se), which measures the percentage of true positives among the identified and

unidentified QRS complexes: Se(%) = (TP� (TP + FN)) × 100(%).

As one could see, the ability of the proposed technique to correctly detect annotated R-

peaks is higher than 99.95%.

Heartbeat framing

Frames of equal duration are created from detected R-peaks in the midpoint, covering other

parts of a complete heartbeat, as can be seen in Fig 5. The technique used to align R-peaks is

relevant to the method defined in [44]. In the mentioned technique, in order to locate a com-

plete heartbeat, three consecutive R peaks are used. To be able to further process a frame with

a complete heartbeat, its duration has to be fixed. According to the previous work done by

authors [21], this value(D) is set to 360. The process of heartbeat alignment is vital to the high

performance of the proposed technique. Since CS measurement vectors of aligned heartbeats

Table 2. Performance of QRS detection technique.

ECG data TP FN Sensitivity (SE)

100 2273 0 100%

101 1864 1 99.94%

202 2115 2 99.90%

230 2256 0 100%

Additive all 3 99.96%

https://doi.org/10.1371/journal.pone.0262219.t002

Fig 5. An example of aligned ECG segments.

https://doi.org/10.1371/journal.pone.0262219.g005
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are highly correlated and similar, without the R-peak alignment, the R peaks could be in any

possible locations, causing variability in the measurement vectors.

Redundancy removal of compressed measurements

As shown in Fig 2, ECG frames seem highly similar in most of the classes except when a beat

represents a VEB. In order to prove this impression, Table 3 represents the correlation between

different classes shown in Fig 2. It can be seen that one kind of VEB is less correlated to the

other classes, compared to other pairs.

In one form of VEB, known as Premature Ventricular Contraction (PVC), the QRS com-

plex has greater width and higher-than-normal amplitude and is usually opposite in polarity to

a normal QRS complex [45]. Hence, before applying a random sensing matrix to a frame, the

existence of the mentioned beat type should be verified by comparing its peak amplitude with

the mean value of the frame. If the peak amplitude is less than the mean value, the existence of

a PVC is detected. There are several dedicated methods in the literature for frame classification

[46–49]. Though these methods accurately classify ECG frames, their processes require inten-

sive mathematical operations.

For the performance evaluation of this approach, it was verified if a QRS complex is genu-

inely a PVC or not. The annotations of the QRS complexes were collected from the MIT-BIH

database and were compared with the proposed technique. In Table 4, the performance of the

proposed PVC detection procedure is shown in terms of the misclassification rate.

However, as the operation of this algorithm depends on a simple comparison, for noisy

environments, this method doesn’t outperform state-of-the-art techniques. So by considering

the trade-off between the energy consumption and performance, this algorithm was used.

After beat identification, a measurement vector was produced by applying a Gaussian random

sensing matrix to the frame.

As mentioned earlier, because ECG beats are pseudo-periodic and R-peaks are aligned,

there exists a high redundancy in measurement vectors. Fig 6 plots the samples standard

Table 3. Correlation matrix.

Normal beat(217) 100%

VEB 60% 100%

SVE 44% 57% 100%

Normal beat(100) 79% 59% 81% 100%

VEB (PVC) −68% −62% −46% −66% 100%

Normal beat(217) VEB SVE Normal beat(100) VEB (PVC)

https://doi.org/10.1371/journal.pone.0262219.t003

Table 4. Percentage of misclassification.

ECG data Misclassification Rate(%)

100 0%

106 5%

107 10%

109 9%

114 2%

124 6%

205 0%

Average 4.5%

https://doi.org/10.1371/journal.pone.0262219.t004
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deviation (around each entry) of multiple consecutive measurement vectors that resulted from

applying CS to aligned and non-aligned ECG frames of record number 100. As can be seen,

the standard deviation of each entry is lower when ECG segments are aligned, indicating the

significant amount of redundancy existent in the data.

Hence, a redundancy removal method using a mean measurement vector, computed off-

line and trained using 90% of measurement vectors [22], was applied to remove the redun-

dancy from the measurement vectors. Here, according to the presence of a PVC beat in the

ECG frame, the corresponding mean measurement vector �Y was subtracted from the current

measurement vector and the difference vector was processed. The mean measurement vectors

are generated as follow:

yiðPVCÞ ¼
PT

j¼1
YðPVCÞt<i;j>

T
ð4Þ

yiðNPVCÞ ¼
PT

j¼1
YðNPVCÞt<i;j>

T
ð5Þ

Here �yðPVCÞ and �yðNPVCÞ are the mean measurement vectors of M entries, correspond-

ing to ECG frames with PVC beat and other pseudo similar beats, respectively. yt is the train-

ing measurement vectors, T is the number of measurement vectors used in training, i indexes

through each vector and j indexes through all training frames from 1 to T. This mean measure-

ment vectors are created off-line and is existent at both source and destination.

Removing the corresponding redundancy from the remaining 10% of measurement vec-

tors, eventuates in samples to be clustered near 0 as shown in Fig 7a. It is concluded from Fig 7

that when ECG frames are aligned, the chance of using lower than 9 bits for representing each

sample increases.

Fig 6. Standard deviation(around each entry) of the measurement samples over multiple consecutive measurement vectors.

https://doi.org/10.1371/journal.pone.0262219.g006
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Quantization and Huffman coding

Without redundancy removal, 11 bit is desirable to represent compressed sensed records from

the MIT-BIH database. Mamaghanian et al. managed to reduce this amount to 9 bits via

removing static redundancy [22]. To reach an 8-bit quantizer, the LloydMax algorithm, which

is a non-uniform quantization technique, is used by polania et al. [26]. The proposed method

will tackle the previous works by aligning frames, therefore, it would be able to reach smaller

quantizer. It is evident from Fig 7a that the distribution of redundancy removed measurements

has more mass near zero. So in this situation, choosing smaller quantization intervals in high

mass regions and larger intervals away from the origin would be a right choice [50]. This kind

of quantizers are called non-uniform quantizers because of non-uniform intervals. Step sizes

for high and low mass regions are chosen according to the technique defined in [51].

Dh �
L

ð2qÞ � ð0:7Þ

Dl �
L

ð2qÞ � ð0:3Þ

Craven et al. choose 0.7 and 0.3 as the optimal ratio between high and low resolution reigns.

L is the limit measurement value and q is the bit resolution, which in the proposed technique

is 5. The quantizer and Huffman dictionary are created off-line from the training data related

to the non-uniform nature of the redundancy removed measurements [50].

In order to choose an optimal value for L to cover the redundancy removed measurements

and to reach minimum granular and overload quantization error, analyses have been done on

training signals. As shown in Fig 8, the ranges that cover the redundancy removed measure-

ment vectors entirely, are from [-64, 64] to [−256, 256]. To choose the optimal limit, different

scenarios are tested, and according to them [-64, 64] is the optimal range that can satisfy the

mentioned goals.

Signal reconstruction

The received signal in this stage consists of 2 fragments. First comes the Huffman coded data

and then a bit indicating the presence of PVC in the sent frame. As noted earlier, Huffman dic-

tionary, mean measurement vectors, sparsifying dictionaries and sensing matrix are created

Fig 7. PDF curves of difference values of redundancy removed a)aligned and b)not-aligned frames.

https://doi.org/10.1371/journal.pone.0262219.g007
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offline and are existent at the destination. After decoding the received Huffman coded data,

the corresponding mean measurement vector is added to the decoded frame. Then for recov-

ery of each frame type (PVC beats and non-PVC beats), basis pursuit denoising algorithm and

corresponding patient-specific dictionary is used.

Though the employment of patient-specific dictionaries requires adequate training signals

from an individual patient, as shown in Fig 2a and 2d each patient may have unique ECG mor-

phology for each beat type. So training a dictionary with patients’ own ECG signals improves

the recovered signal quality compared to situations where patient-agnostic dictionaries are

used.

Simulation and results

All the ECG records from the MIT-BIH arrhythmia database (MITDB) containing normal

and abnormal beats with time-varying QRS morphology were used [52]. The database includes

48, half an hour ECG records, digitized with a sampling rate of 360 HZ with an 11-bit resolu-

tion. In order to compare the proposed technique with the existing literature, the modified

limb lead II channel is used.

Performance evaluation metrics

To quantify the performance of the compression algorithms, Compression Ratio(CR) metric is

used. An energy-based distortion metric known as PRD is used for evaluating the quality of

the reconstructed signal. Sensitivity (Se) and SPecificity (SP) of QRS detection is also used.

The proposed method was evaluated based on the recommendation of the American National

Standard for ambulatory ECG analyzers (ANSI/AAMI EC38–1994) [37].

• Compression Ratio (CR) is a measure of the reduction in the number of bits needed to repre-

sent the original signal:

CR≜
N � Bo

BT
;

Fig 8. Different non-uniform distributions.

https://doi.org/10.1371/journal.pone.0262219.g008
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where N is the number of samples of the original signal with Bo-bit resolution and BT is the

number of transmitted bits.

• Percent Root-mean-square Difference (PRD) measures the quality of the reconstructed sig-

nal:

PRD ð%Þ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nðxðnÞ � x̂ðnÞÞ2
P

nðxðnÞ � �xÞ2

s

� 100%:

• Sensitivity (Se), which measures the percentage of true positives among the identified and

unidentified QRS complexes:

Se ð%Þ≜
TP

TP þ FN
� 100%:

• Specificity (SP), which measures the ability to correctly identify non-QRS complexes:

SP ð%Þ≜
TN

TN þ FP
� 100%:

The compared algorithms

With the help of different state-of-the-art methods, we demonstrated the performance

improvement of the proposed technique. These methods include the work done in [27, 31,

32], which we used to compare the acquired PRD, energy consumption, Se and SP.

Experimental results and discussion

In this section, the experimental setup used to qualify the performance of the implemented

technique is introduced first, then validation of the proposed method using a series of experi-

ments is started. The quality of the reconstructed signal is compared with the state-of-the-art

techniques. In the end, the power profile of the sensor is shown for different CRs.

Experimental setup. Choosing an appropriate sensing matrix in order to satisfy the key

restricted isometry property (RIP), selecting proper sparsifying dictionary (ψ) size, building

suitable quantizer and associated Huffman dictionary and train/testing partition sizes for cal-

culating both mean measurement vectors and ψ affects the PRD. In order to make the coher-

ence between the sparsifying dictionary and sensing matrix low enough, random values with

Gaussian distribution are selected for the sensing matrix. Usually, for all learning processes,

90% of the data is used for training and the rest of the data is used for testing. In the proposed

work, a patient-specific sparsifying dictionary is used for each patient, denoting that 90% of

the past saved ECG frames of the patient are used for training the dictionary and calculating

the mean measurement vectors. Hopefully, different training partition sizes have a shallow

effect on PRD, indicating that the DL method can still work in scenarios where less training

data is available [31].

As indicated earlier, for defining high and low resolution regions in the utilized non-uni-

form quantizer, a limit value is used. This value will determine the maximum value for the

quantizer, and to simplify implementation, the same value is used for both positive and
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negative limits. initial offline testing, in the training phase on the suitable limiting values and

corresponding bit resolution, shows that the optimal value for limit is 64 with q = 5.

Signal quality assessment. Since ECG signals carry multiple important clinical features,

the reconstructed signal has to preserve these information. PRD, as shown in Fig 9 is used for

assessing the performance in terms of recovered signal quality. In order to compare the pro-

posed technique with the state-of-the-art techniques, the MIT-BIH Arrhythmia Database is

used. As previously stated, after aligning ECG frames, the calculated measurement vectors

become highly similar. So reducing the corresponding mean measurement vector lowers the

data range in a way that smaller quantizer related to the work done in [31] can be used. Fig 9,

shows that how aligning the ECG frames can improve the performance in terms of PRD in all

the scenarios for all CRs. By focusing on using 5-bit non-uniform quantizer, Fig 10 proves that

by aligning ECG frames, more compression could be gained for PRD> 5% compared to [32]

(beat_type) where beat type dictionaries are trained with not aligned frames. When ECG

frames are not aligned, the QRS complexes could be in any possible location, making the spar-

sifying dictionaries hard to cope with and in most of the cases, leading to poor signal recovery

especially for higher CRs. For example, in order to reach PRD = 9%, Craven et al. [31] reach a

CR = 11.28% and CR = 13.68% when standard and AD respectively are used. While by aligning

ECG frames, the proposed technique can reach higher CR equal to 24. Compared to SPIHT,

the proposed technique only has a higher quality for CRs> 10 but managed to reduce the gap

from that technique. By comparing the proposed technique with the work done in [27](Dictio-

nary Optimization) which aligns the frames just for dictionary optimization, one could realize

that redundancy removal on the quantizer has an striking effect on compressing the ECG

frames and acquiring an optimal PRD value.

To show how well the proposed technique can preserve relevant signal characteristics, a

well-known detection algorithm called Pan-Tompkins algorithm is used for the reconstructed

signals. Although the primary focus of this experiments was the PRD metric, Sensitivity (Se)

and Specificity (SP) are also included to indicate the accuracy of QRS detection of each algo-

rithm as the CR is increased. In Table 5 the proposed technique is compared with the analysis

done by Craven et al. [31] and the state-of-art technique SPIHT. Craven used adaptive

Fig 9. Comparison of PRD for different scenarios.

https://doi.org/10.1371/journal.pone.0262219.g009
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dictionary in order to sparsify frames with QRS complexes. In his analysis he compared two

different dictionaries: patient-specific and patient-agnostic. Our proposed technique provides

superior performance to the work done by Craven and SPIHT across the tested metrics for dif-

ferent compression ratios and can maintain a high rate of QRS preservation.

Evaluation of energy consumption. The proposed architecture assumed in this paper is

detailed in Fig 3. In this section, the energy consumed for i)acquisition, ii) performing digital

signal compression on a Blackfin (BF537) DSP [53] as an example platform, and iii)wireless

transmission of the ECG frame using the Texas Instruments CC2540 BLE wireless transceiver

[54] is considered. The variables used in the power analysis are defined in Table 1. Different

operating characteristics associated with the Blackfin BF537 DSP were derived from [55]. Ana-

log Devices Visual DSP++ code execution profiling tool for BF537 has been used to generate

the firmware binary code and calculate the number of clock cycles.

1. Acquisition

The ADC power for the proposed technique is expressed as below. According to [56] suc-

cessive approximation register ADCs are the most energy-efficient ADCs, which can pro-

vide a FOM of<10fj per conversion.

PADC ¼ N � 2B � FOM � Fs: ð6Þ

Fig 10. Comparison of PRD for different compression ratios.

https://doi.org/10.1371/journal.pone.0262219.g010

Table 5. Comparing the ability for QRS-detection.

CR Proposed SPIHT [31]

3 Se = 100%,SP = 100% Se = 97.9%,SP = 99.8% Se = 99.3%,SP = 99.8%

7 Se = 99.8%,SP = 100% Se = 98%,SP = 99.8% Se = 98.9%,SP = 99.5%

12 Se = 99.6%,SP = 99.8% Se = 97.6%,SP = 99.8% Se = 98.7%,SP = 99.3%

https://doi.org/10.1371/journal.pone.0262219.t005

PLOS ONE Redundancy cancellation of compressed measurements by QRS complex alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0262219 February 8, 2022 17 / 24

https://doi.org/10.1371/journal.pone.0262219.g010
https://doi.org/10.1371/journal.pone.0262219.t005
https://doi.org/10.1371/journal.pone.0262219


2. Digital signal compression

The execution power consumption is evaluated by specifying the average number of clock

cycles consumed to compress 1s of the ECG frame. The number of clock cycles (AEC) was

calculated using the Analog Devices Visual DSP++ code execution profiling tool. The

power required (PDSP) to process 1s of ECG frame was calculated as follows [55],

PDSP ¼ IDD � ASF � VBF �
AEC
CLK

�
Fs

N
: ð7Þ

As described before, the proposed technique detects peaks, then it aligns frames according

to the detected peaks, resulting in consuming more energy in the processing part compared

to the work done in [31, 32]. Table 6 shows the average clock cycle of each operation at

varying CRs. As one could see, the average execution cycle and obviously energy consump-

tion of peak detection and framing stages are not proportional to CR.

To understand the effect of the added stages on the total energy consumption, the energy

consumption breakdown of the processing part was further characterized. In particular, Fig

11 depicts the breakdown of the total energy consumption between the six main processes.

As shown in Fig 11, the proposed technique does not seem expensive in terms of energy

consumption in the peak detection and framing stages.

Table 6. Average Clock Cycle count of each stage.

N/M 2 5 10 20

Peak detection 35980 35980 35980 35980

Framing 5375 5375 5375 5375

Sensing 201567 94212 60765 42458

Redundancy removal 4518 1818 793 468

Quantization 404354 187524 158000 41254

Huffman coding 52518 20688 9820 5557

https://doi.org/10.1371/journal.pone.0262219.t006

Fig 11. Breakdown of the energy consumption in processing part.

https://doi.org/10.1371/journal.pone.0262219.g011
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Because of the new stages added to the traditional CS, the proposed technique has about

4.96μW higher energy consumption in the processing part. In Fig 12, this difference in

energy consumption is shown graphically. Compared to the traditional CS and the work

done in [32], the proposed work consumes 4.96μW and 3.54μW more energy in the pro-

cessing part, respectively. So far, AD-Q6 has the less energy consumed because of the ana-

log-CS used in their technique [31]. This shows that the extra stages of the proposed

technique compared to plain CS are not so energy-consuming.

3. Wireless transmission

The power consumption of Texas Instruments CC2540 BLE transceiver is 84mW during

wireless transmission of one byte of data for the period of 8μs. Therefore, the required

energy for transmitting one bit of data with the assumption that transceiver is turned off

between transmissions is 84nJ. Consequently, the power consumed per transmission (PTX)

is dependent on the level of compression, upcoming equation shows the calculation:

PTX ¼ ð84njÞ � BT �
Fs

N
: ð8Þ

As it is obvious from Eq 8, by increasing the number of measurements, that results in an

increased number of bits per frame, the energy consumed for transmitting a frame is

increased, that implies the correlation between CR and transmission energy consumption. As

one could see in Fig 13 because of high redundancy removed from aligned frames, the pro-

posed technique is able to reduce power consumption in the transmission part compared to

situations where ECG frames are only compressed (traditional CS [22]) and techniques in

which redundancy is removed (RR) from measurements without any peak alignment (CS+

(RR)) [31, 32]. It is obvious that the proposed technique will highly reduce power consumption

compared to situation where the ECG frame is going to be sent as is, without compression.

Fig 12. Processing power consumption (PDSP).

https://doi.org/10.1371/journal.pone.0262219.g012
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Fig 13 Shows that the proposed technique is able to save 45μW for transmission a single

compressed frame with N/M = 2 compared to the work done in [32]. Because there is going to

be a continuous transmission, for example, transmitting ECG frames of a patient for about 30

minutes, a total of 72mW would be saved by the proposed technique.

Finally in Fig 14, the energy-performance trade-off of the proposed technique is compared

with the methods which improved the trade-off without aligning the ECG frames. As referred

Fig 13. Transmission power consumption (PTX).

https://doi.org/10.1371/journal.pone.0262219.g013

Fig 14. Trade-off comparison of Beat type dictionary [32], the AD-Q6 [31] and proposed work for different PRD

values.

https://doi.org/10.1371/journal.pone.0262219.g014
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to earlier, Rakhshit et al. proposed a bit type dictionary in order to improve the performance,

resulted in consuming 1.46μW more energy in the processing part compared to the traditional

CS. Because the mentioned technique doesn’t align ECG frames before compression, like

other state-of-the-art techniques, they use an 8-bit quantizer. The proposed technique, despite

using a 5-bit quantizer, is able to keep the performance in an acceptable range by increasing

the total energy consumption by only 3.28μW. As shown in Fig 14, for PRD values>5.2%, the

proposed technique is the best performing algorithm. However, [32]performs best in terms of

power consumption for PRDs less than 5.2%. It is clear that the efficiency of the proposed

method is better than the CS techniques tested and this superiority appears to increase as the

level of PRD increases.

Effect of missed R-peak detection

Before random sensing of ECG frames, R-peaks are detected according to a technique men-

tioned in R-peak detection section. The peak detection technique has to be simple enough to

be used in the sensor side, so the proposed peak detection technique has some errors while

detecting the R-peaks. Since frames are aligned according to the detected peaks, if any peak is

undetected, then the quality of the recovered ECG frame will be reduced because of the

improper dictionary used. However, according to the Table 2, the percentage of R-peak detec-

tion error is very low(< 0.05%). Hence, while estimating the average quality for a long dura-

tion signal the overall quality of the recovered signal will not be affected severally.

Conclusion

In this paper, the pseudo periodic nature of ECG signals is used to remove the hidden redun-

dancy between measurement vectors after CS. More specifically, by canceling the redundancy

from each measurement vector, a smaller quantizer could be used. An important goal of the

proposed technique was reducing sensors’ energy consumption as a development challenge.

The ECG records of the MIT-BIH arrhythmia database was used for simulation. The proposed

work was compared with three different CS-based techniques and a wavelet-based method.

The results indicate that this technique surpasses traditional CS, analog-CS and beat type dic-

tionary in terms of PRD for CR> 6 and manages to reduce the gap from SPIHT and outper-

forms it for CR> 10. The proposed technique reduces power consumption in the

transmission area compared to state-of-the-art techniques and only consumes 4.96μW more

energy in the processing part compared to traditional CS. The acquired results suggest that the

proposed technique is very suitable for improving the Energy-Performance trade-off of sensors

for the transmission of physiological signals. Despite the performance improvements made by

the proposed techniques, it has a main drawback. In wearable devices where ECG signal is

highly contaminated by noise redundancy removal technique doesn’t have an effect on trans-

mission energy consumption.

Supporting information

S1 File.

(RAR)

Author Contributions

Conceptualization: Fahimeh Nasimi, Mohammad Reza Khayyambashi, Naser Movahhedinia.

Data curation: Fahimeh Nasimi.

PLOS ONE Redundancy cancellation of compressed measurements by QRS complex alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0262219 February 8, 2022 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262219.s001
https://doi.org/10.1371/journal.pone.0262219


Formal analysis: Fahimeh Nasimi.

Investigation: Fahimeh Nasimi.

Methodology: Mohammad Reza Khayyambashi.

Project administration: Mohammad Reza Khayyambashi, Naser Movahhedinia.

Resources: Fahimeh Nasimi.

Software: Fahimeh Nasimi.

Supervision: Fahimeh Nasimi.

Validation: Fahimeh Nasimi.

Visualization: Fahimeh Nasimi.

Writing – original draft: Fahimeh Nasimi.

Writing – review & editing: Fahimeh Nasimi, Mohammad Reza Khayyambashi, Naser

Movahhedinia.

References
1. Xie L, Li Z, Zhou Y, He Y, Zhu J. Computational diagnostic techniques for electrocardiogram signal anal-

ysis. Sensors. 2020; 20(21):6318. https://doi.org/10.3390/s20216318 PMID: 33167558

2. Mamdiwar SD, Shakruwala Z, Chadha U, Srinivasan K, Chang CY, et al. Recent advances on IoT-

assisted wearable sensor systems for healthcare monitoring. Biosensors. 2021; 11(10):372. https://doi.

org/10.3390/bios11100372 PMID: 34677328

3. Milenković A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and

an implementation. Computer communications. 2006; 29(13-14):2521–33. https://doi.org/10.1016/j.

comcom.2006.02.011

4. Cao H, Leung V, Chow C, Chan H. Enabling technologies for wireless body area networks: A survey

and outlook. IEEE Communications Magazine. 2009; 47(12):84–93. https://doi.org/10.1109/MCOM.

2016.1600320CM

5. Donoho DL. Compressed sensing. IEEE Transactions on information theory. 2006; 52(4):1289–306.

https://doi.org/10.1109/TIT.2006.871582

6. Antoniol G, Tonella P. EEG data compression techniques. IEEE Transactions on Biomedical engineer-

ing. 1997; 44(2):105–14. https://doi.org/10.1109/10.552239 PMID: 9214790

7. Welch TA. A technique for high-performance data compression. Computer. 1984;(6):8–19. https://doi.

org/10.1109/MC.1984.1659158

8. Li K, Pan Y, Chen F, Cheng KT, Huan R. Real-time lossless ECG compression for low-power wearable

medical devices based on adaptive region prediction. Electronics Letters. 2014; 50(25):1904–6. https://

doi.org/10.1049/el.2014.3058

9. Chen SL, Luo GA, Lin TL. Efficient fuzzy-controlled and hybrid entropy coding strategy lossless ECG

encoder VLSI design for wireless body sensor networks. Electronics Letters. 2013; 49(17):1058–60.

https://doi.org/10.1049/el.2013.1692

10. Deepu CJ, Zhang X, Liew WS, Wong DLT, Lian Y. An ECG-on-chip with 535 nW/channel integrated

lossless data compressor for wireless sensors. IEEE Journal of Solid-State Circuits. 2014; 49

(11):2435–48. https://doi.org/10.1109/JSSC.2014.2349994

11. Arnavut Z. ECG signal compression based on Burrows-Wheeler transformation and inversion ranks of

linear prediction. IEEE transactions on biomedical engineering. 2007; 54(3):410–8. https://doi.org/10.

1109/TBME.2006.888820 PMID: 17355052

12. Mukhopadhyay SK, Ahmad MO, Swamy M. An ECG compression algorithm with guaranteed recon-

struction quality based on optimum truncation of singular values and ASCII character encoding. Bio-

medical Signal Processing and Control. 2018;44:288–306. https://doi.org/10.1016/j.bspc.2018.05.005

13. Dipersio DA, Barr RC. Evaluation of the fan method of adaptive sampling on human electrocardio-

grams. Medical and Biological Engineering and Computing. 1985; 23(5):401–10. https://doi.org/10.

1007/BF02448926 PMID: 4068775

PLOS ONE Redundancy cancellation of compressed measurements by QRS complex alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0262219 February 8, 2022 22 / 24

https://doi.org/10.3390/s20216318
http://www.ncbi.nlm.nih.gov/pubmed/33167558
https://doi.org/10.3390/bios11100372
https://doi.org/10.3390/bios11100372
http://www.ncbi.nlm.nih.gov/pubmed/34677328
https://doi.org/10.1016/j.comcom.2006.02.011
https://doi.org/10.1016/j.comcom.2006.02.011
https://doi.org/10.1109/MCOM.2016.1600320CM
https://doi.org/10.1109/MCOM.2016.1600320CM
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/10.552239
http://www.ncbi.nlm.nih.gov/pubmed/9214790
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1049/el.2014.3058
https://doi.org/10.1049/el.2014.3058
https://doi.org/10.1049/el.2013.1692
https://doi.org/10.1109/JSSC.2014.2349994
https://doi.org/10.1109/TBME.2006.888820
https://doi.org/10.1109/TBME.2006.888820
http://www.ncbi.nlm.nih.gov/pubmed/17355052
https://doi.org/10.1016/j.bspc.2018.05.005
https://doi.org/10.1007/BF02448926
https://doi.org/10.1007/BF02448926
http://www.ncbi.nlm.nih.gov/pubmed/4068775
https://doi.org/10.1371/journal.pone.0262219


14. Rajoub BA. An efficient coding algorithm for the compression of ECG signals using the wavelet trans-

form. IEEE transactions on biomedical engineering. 2002; 49(4):355–62. https://doi.org/10.1109/10.

991163 PMID: 11942727

15. Benzid R, Marir F, Boussaad A, Benyoucef M, Arar D. Fixed percentage of wavelet coefficients to be

zeroed for ECG compression. Electronics Letters. 2003; 39(11):830–1. https://doi.org/10.1049/

el:20030560

16. Pooyan M, Taheri A, Moazami-Goudarzi M, Saboori I. Wavelet compression of ECG signals using

SPIHT algorithm. International Journal of signal processing. 2004; 1(3):4.

17. Imai H, Kiraura N, Yoshlda Y. An efficient encoding method for electrocardiography using spline func-

tions. Systems and Computers in Japan. 1985; 16(3):85–94. https://doi.org/10.1002/scj.4690160310

18. Nave G, Cohen A. ECG compression using long-term prediction. IEEE transactions on Biomedical

Engineering. 1993; 40(9):877–85. https://doi.org/10.1109/10.245608 PMID: 8288278
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