
Biophysical Analysis of Potential Inhibitors of SARS-CoV‑2 Cell
Recognition and Their Effect on Viral Dynamics in Different Cell
Types: A Computational Prediction from In Vitro Experimental Data
Lenin González-Paz,* Carla Lossada, María Laura Hurtado-León, Joan Vera-Villalobos, José L. Paz,
Yovani Marrero-Ponce, Felix Martinez-Rios, and Ysaías. J. Alvarado

Cite This: ACS Omega 2024, 9, 8923−8939 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various
proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using
different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs,
anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike
protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2
infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection,
potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed
susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike
protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of
thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-
mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the
identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and
their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is
expected to inspire future quantitative experiments.

1. INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a single-stranded, positive-sense RNA virus that belongs to
the betacoronavirus genus of the Coronaviridae family.1 The
spike protein of SARS-CoV-2 is highly conserved among human
coronaviruses, including SARS-CoV-1 and MERS-CoV.1 The
spike protein is important for mediating infection by binding to
host cell receptors through the receptor-binding domain
(RBD).2 The susceptibility of cells to the SARS-CoV-2 infection
can be influenced by a variety of factors. These include the
presence of proteins capable of binding to the virus, the level of
expression of receptors on the host cell, and the ability of
proteases to cleave the spike protein.2−5

For instance, the angiotensin-converting enzyme 2 (ACE2)
receptor plays a vital role in the entry of SARS-CoV-2. ACE2 is
expressed in various organs, but its expression levels differ across

different human tissues. This variability in expression levels may
contribute to varying levels of cellular susceptibility to SARS-
CoV-2 infection.6 Post-translational regulation of ACE2 can
occur through another potential receptor called Basigin2
(CD147). Another candidate receptor, Neuropilin 1 (NRP1),
has been found to increase cell susceptibility to SARS-CoV-2
infection by enhancing the virus’s infectivity. NRP1 facilitates
greater viral entry into cells, rather than simply increasing the
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binding of the virus to the cell membrane.2,3 Although other
potential receptors for SARS-CoV-2 have been identified, they
have not been studied as extensively as ACE2. These include
glucose-regulated protein 78 or heat shock protein A5 (HSPA5)
angiotensin II receptor type 2 (AGTR2) and the receptor for
advanced glycation end products (RAGE).3

After binding to the ACE2 receptor, the spike protein of
SARS-CoV-2 must undergo proteolytic cleavage for a successful
viral entry. There are several proteases that can activate SARS-
CoV-2 entry, including transmembrane serine protease 2
(TMPRSS2), FURIN protease, and cysteine proteases such as
L-type cathepsins (Cathepsin L).3,4,7 The addition of a FURIN
cleavage site to the spike protein of SARS-CoV-2 is one of the
key differences between this virus and the SARS-CoV-1 virus.
The FURIN cleavage site makes it easier for SARS-CoV-2 to
enter cells, which is one reason why this virus is more infectious
than SARS-CoV-1.8 Interestingly, sequential passaging of SARS-
CoV-2 in Vero cell lines causes a loss of the FURIN cleavage site.
This results in a viral strain that is less infectious, but it is also
more fit and can replicate more efficiently in cells.9 There has
been some research suggesting that cathepsin L inhibitors could
be used as therapy for COVID-19. Cathepsin L inhibitors block
the activity of cathepsin L, which could prevent the cleavage of
the spike protein and the entry of SARS-CoV-2 into cells.
However, more research is needed to confirm the effectiveness
of this approach.10

It has been reported that the presence of multiple receptors
can further enhance the susceptibility of cells to infection. The
SARS-CoV-2 virus can utilize various receptors, such as the
ACE2 receptor and the TMPRSS2 protease, to enter cells. When
multiple receptors are present, blocking the virus from entering
cells becomes more challenging.3 Consequently, inhibiting only
one of these proteins may not be sufficient to prevent the entry
of SARS-CoV-2 into cells.8 Moreover, the differential expression
levels of these receptors can contribute to the observed
variations in the cell line susceptibility to SARS-CoV-2. For
instance, certain cell lines may exhibit higher ACE2 receptor
expression levels than others, rendering them more vulnerable to
SARS-CoV-2 infection.11−13 Therefore, the choice of cell line
becomes crucial when studying the infectivity of SARS-CoV-2,
particularly in drug-related investigations.14,15

Viral entry is the first step in the SARS-CoV-2 infectious cycle.
Blocking viral entry into cells is a promising therapeutic target
for COVID-19 treatment.16,17 Many repurposed compounds
have been investigated for their ability to prevent viral entry,
including the serine proteases nafamostat18 and camostat,16 the
nonsteroidal inflammatory drug ibuprofen,19,20 the antimalarials
chloroquine17,21 and hydroxychloroquine,17 and the ACE
inhibitors captopril and telmisartan.22 The ACE inhibitors
captopril and telmisartan were found to decrease ACE2 protein
expression in kidney-isolated membranes. This suggests that
patients taking these drugs may not need to stop treatment for
the COVID-19 protection. Although these compounds act as
competitive inhibitors to other host receptors, they have also
been implicated in interacting with the ACE2−SARS-CoV-2
spike protein complex. This interaction may be responsible for
their antiviral activity.23

To gain a deeper understanding of the viral particle’s
biological cycle, researchers have proposed predictive mathe-
matical models. These models not only describe the dynamics of
various viral infections but also simulate the effectiveness of
potential repurposed drugs against the virus.24 In this study, we
employed well-established and recommended mathematical

models to investigate viral dynamics. By utilizing data obtained
from in vitro assays involving different cell lines, we calculated
parameters associated with the SARS-CoV-2 viral infection. This
approach allowed us to model and predict the potential efficacy
of different drugs, taking into account the specific cell
type.15,24−27 In our study, we focused on considering the
expression values that are deemed more favorable for the most
relevant proteins, namely, NRP1, CD147, FURIN, TMPRSS2,
and ACE2.2−4,6,7,28 Additionally, we also considered other less
studied proteins, such as HSPA5, AGTR2, RAGE, and
Cathepsin-L.3,8,29 These evaluations were conducted using
recommended cell lines for SARS-CoV-2 research, including
Vero E6, HEK293T, and Calu-3.2,14,15,30−32 As a negative
control, we selected the HeLa cell line, which is not
recommended for SARS-CoV-2 research.30

The objective of this research is to forecast the vulnerability of
different cell lines employed in in vitro assays to SARS-CoV-2.
This is accomplished through theoretical modeling of the
expression patterns of a cluster of proteins known to serve as
potential receptors for the virus.3 Additionally, we simulate the
infection of these cells under both drug-treated and untreated
conditions, aiming to inhibit the virus’s binding to its
receptors.16,17,22,23 Our primary aim of this work is to contribute
to the advancement of suitable cellular models for in vitro
replication assays of SARS-CoV-2.

2. MATERIALS AND METHODS
2.1. Search for Cell Lines and Proteins in Databases.

Based on a comprehensive analysis of multiple studies,2,14,15,31,32

we carefully selected the following cell lines for our SARS-CoV-2
research. To identify these cell lines, we utilized the “browser by
cell line group” feature of the Cellosaurus server, developed by
Amos Bairoch of the CALIPHO group at SIB - Swiss
Bioinformatics Institute [https://web.expasy.org/cellosaurus/
browse_by_group]. First, we chose the Vero E6 cell line,
derived from African green monkey kidney epithelial cells, as it is
specifically recommended by Cellosaurus for culturing SARS-
CoV-2. In addition, we included the HEK293 cell line, derived
from human embryonic kidney cells, and the CaLu3 cell line,
derived from human epithelial cells found in lung adenocarci-
noma. Cellosaurus designates these cell lines as valuable for
investigating SARS-CoV-2. Furthermore, we incorporated the
CaLu3 cell line due to its high expression levels of most of the
receptors considered in this study, as indicated by the Human
Protein Atlas database. This added perspective enhances the
comprehensiveness of our analysis. Lastly, we included the HeLa
cell line, derived from human cervix - cervical adenocarcinoma,
as a control. Cellosaurus classifies this cell line as unsuitable for
culturing SARS-CoV-2 [https://web.expasy.org/cellosaurus/
sars-cov-2.html].30

In order to identify the proteins that could potentially act as
receptors for SARS-CoV-2, we conducted an extensive analysis
of various studies.2−5 Additionally, we examined the presence
and expression levels of a total of nine proteins associated with
SARS-CoV-2 infection using data from the Human Protein Atlas
database [https://www.proteinatlas.org/]. Specifically, we
focused on five proteins that have been identified as particularly
significant in this context: NRP1, CD147, FURIN, TMPRSS2,
and ACE2.2−5,28 Furthermore, we considered four less
extensively studied proteins: HSPA5, AGTR2, RAGE, and
Cathepsin-L.3 For cell lines where data were not available in the
Human Protein Atlas server, we conducted a search in the
NCBI/GenBank database to determine the taxonomic group to
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which the cell line belongs. Subsequently, we performed a
protein−protein BLAST search between the potential receptors
of the cell line of interest and the receptors expressed in the cell
lines present in the Human Protein Atlas, focusing on genomic,
proteomic, and functional relationships within the specific
tissue/region/cell type.
2.2. Design of Hypothetical Cellular Expression

Systems from Experimental Data. We have developed a
collection of four hypothetical multiexpression systems to mimic
the simultaneous involvement of multiple proteins in four
different cell lines: Vero E6, HEK293, HeLa, and CaLu3. These
systems incorporate a set of nine proteins, namely, NRP1,
CD147, FURIN, TMPRSS2, ACE2, HSPA5, AGTR2, RAGE,
and Cathepsin-L (see Table 1).2−4 Simulating the expression of

all of these proteins simultaneously in each cell line is justified by
the fact that it is a plausible occurrence. Single-cell studies have
revealed significant variations in protein expression among cells,
including instances where certain genes are not expressed
individually.33 Consequently, it is essential to consider
heterogeneous coexpression patterns. By simulating these
group expression scenarios (systems), we can explore how the
susceptibility of cells may be influenced by the type, number, and
level of expression of proteins that potentially act as receptors.33

To assess the susceptibility of cell lines to SARS-CoV-2
infection, we employed the expression levels of potential
receptors as a baseline. Utilizing transcriptomics data sourced
from The Human Protein Atlas, we classified genes based on
their expression patterns in specific tissues, individual cell types,
brain regions, blood cells, and cell lines. The RNA expression
values were obtained by normalizing the transcription values per
million (nTPM) for each gene in tissue culture cell lines. The
nTPM value represents the highest expression level found in
The Human Protein Atlas transcriptomics database. An nTPM
value of ≥1 indicates expression in at least one tissue, region, or
cell type. Conversely, an nTPM value of <1 suggests a lack of
expression.28

To mitigate potential errors stemming from database
limitations and detection methods for expression levels, it has
been proposed to assign minimum expression values.15

Following this recommendation, we considered an nTPM

value of 0.0 to be equivalent to 0.01. This is because values of 0.0
or less may be attributed to data constraints rather than a lack of
protein expression. For a comprehensive understanding of
transcriptomic data normalization, classification, and data
sources, we encourage referring to The Human Protein Atlas’
essays and annotations section.30

2.3. Simulation of Viral Dynamics from Experimental
Data. To depict our findings, we utilized an in vitro data set of
SARS-CoV-2 virus infection in cell lines specifically recom-
mended for culturing the virus. In order to assess the virus’s
theoretical infectivity based on the susceptibility level mediated
by protein expression associated with virus receptors, we held
the viral titer constant, with a multiplicity of infection (MOI) set
to 1. This approach aligns with previous studies.14,34−40 The
purpose of this MOI value is to ensure a consistent probability of
infection and to consider the recommended viral load necessary
for inducing cytopathological effects postinfection (pi).35 In
addition, we assumed an initial cell concentration of
approximately 1 × 105 cell/mL, which is in line with previous
research.2,14,15,38 The infection measurement was scheduled at
24 h postinfection (hpi), a time frame consistent with prior
investigations.14,37,39−41 Notably, earlier reports suggest that
several cell lines can reach their maximum infectious SARS-
CoV-2 titer in plaque assays within 24 hpi.37,42

To calculate the hypothetical concentration of target or
susceptible cells based on the type and level of protein
expression, the following steps were undertaken:

1. The same initial total number of cells/mL (approximately
1 × 105) as previously described for each cell line was
assumed.

2. Given the low expression levels of certain crucial receptors
in specific cell lines, minimum expression values were
assigned on a percentage scale. This was done to estimate
the hypothetical number of cells and the percentage of
expressed receptors, following a suggestion put forth.15

To determine the effective infection rate (β), a value of 2 was
assumed, taking into account the reported basic reproduction
number, 0.12

In this sense, each nTPM value was assumed to represent the
percentage value of susceptible cells. To do this, we considered
the mean of the nTPM values reported for the potential
receptors and for each cell line. To address the hypothesis
regarding cell susceptibility based on receptor expression levels,
a constrained model of target cells was employed. This model
relies on available data and aims to estimate infection rates
among susceptible cells. Specifically, we utilized a well-
established viral infection model known as the limited target
cell model.15,26 This model encompasses three compartments:
susceptible cells (U), infected cells (I), and viral titers (V). The
applied model is represented by the following set of differential
equations:

U
t UVd

d = (1)

I
t UV Id

d = (2)

The equations’ left-hand side represents the rate of change of
the variables over time. The parameters β and δ denote the
effective infection rates and the number of deceased infected
cells, respectively. In this model, the virus (V) is assumed to
infect susceptible cells (U) at a rate of β, while infected cells are
eliminated at a rate of δ. Using this framework, we calculated the

Table 1. Summary of the RNA Expression Levels of the
Receptors Studied in Different Cell Lines Analyzed in the
Atlas of Human Proteinsa

protein(s) Vero6 HEK293 HeLa CaLu3

NRP1 5.8 1.7 3.9 33.8
CD147 72.9 88.7 72.4 85.6
FURIN 9.7 10.3 15.8 8.8
TMPRSS2 11.9 0.01 0.01 0.01
ACE2 1.0 0.1 0.01 0.01
HSPA5 35.2 14.3 30.1 24.0
AGTR2 0.01 0.01 0.01 0.01
AGER 1.7 4.9 0.1 0.2
Cathepsin-L 75.7 37.8 100 100

aThe generated RNA sequencing results are reported as normalized
Transcription Values Per Million (nTPM). Numerical values and a
pie chart representation of the expression levels of angiotensin-
converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2),
basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1), heat
shock protein A5 (HSPA5), angiotensin II receptor type 2 (AGTR2),
receptor for advanced glycation end products (RAGE) and
Cathepsin-L.
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basic reproduction number, R0. This value represents the
average number of cells that a single infected cell can infect at the
beginning of an infection:

R p U
c U( )0 = + (3)

Virions are actively released from infected cells at a productive
rate of p per day. These virions are either cleared from the
circulation at a rate of c or lost upon infecting a target cell. For
the virus clearance rate, c, we adopted a value of 10 days−1, as
recommended elsewhere.15 The rate p, which is approximately
equal to 22.7 copies days−1 cell−1, is suggested to be dependent
on the susceptible cell population (U). Therefore, to estimate
the actual rate p, it is necessary to calculate the product of p and
U, as proposed elsewhere.15

2.4. Drugs with Potential Antiviral Activity Aimed at
Blocking the SARS-CoV-2 Receptor-Binding Domain
(RBD) Interactions with Host Receptors. In this study, we
considered the crystal structure of the RBD complex (PDB:
6M0J) that facilitates the interaction between SARS-CoV-2 and
cellular receptors, such as ACE2. The structure was obtained
from the RCSB protein database, as suggested.19 To gather the
pharmacokinetic/pharmacodynamic properties of drugs with
reported potential antiviral activity, specifically targeting the
SARS-CoV-2 spike protein or viral entry through host receptors,
we relied on the literature sources. These sources provided
kinetic models and parameter values for drugs like camostat,16

hydroxychloroquine,17 nafamostat,18 ibuprofen,19,20 chloro-
quine,17,21 captopril,22,23 and telmisartan.22 Additionally, we
searched for reported in vitro EC50 values, which can be found in
Table 2. Likewise, pyronaridine was included as a positive

control for docking, as it is a ligand tested with AutoDock-based
algorithms under similar blind docking conditions to those
considered in this study and targeted to the RBD-ACE2
complex. Furthermore, pyronaridine also exhibits thermody-
namically favorable binding, as confirmed experimentally by
enzyme-linked immunosorbent assay and biolayer interferom-
etry.43

2.5. Prediction of the Affinity and Theoretical Stability
of Compounds Targeting the SARS-CoV-2 Receptor-
Binding Domain (RBD). Due to the limitations described
associated with molecular dockings such as variations in the
performance of each method and the inherent limitations of
crystal structures to accurately reflect the dynamic nature of
protein structures in their biological state, a comparative analysis
was performed using various popular molecular docking models
to ensure consistent quality for the majority of the targets as
suggested.44 The complexes were built using the DINC server
(https://dinc.kavrakilab.org/), which offers a version for the
analysis of structures associated with COVID-19 with the
docking algorithms AutoDock Vina (Vina), AutoDock Vina
RaDii Optimized (Vinardo), and AutoDock 4 (AD4). Addi-

tionally, the DockThor server (https://www.dockthor.lncc.br/)
was also used, which is a sophisticated machine learning
algorithm that utilizes the refined PDBbind data set for training,
similar to Vina. These programs were selected due to their
advanced and enhanced features, making them improved
versions of molecular docking tools. They are based on the
efficient AutoDock algorithm, which has been previously
recommended.43 To ensure accuracy, a minimum of 10 runs
per program were performed, resulting in approximately 1 × 106

evaluations per run. The default parameters were used for the
rest of the settings. As part of the preparation, all water
molecules were removed, and the PDB files were separated into
two distinct files: one containing the protein and the other
containing the ligand structure. During the sampling process,
only the three runs with the most favorable binding poses were
considered. This approach allowed us to focus on the most
feasible and thermodynamically favorable positions in the
complexes. Based on this criterion, the selected complexes
underwent further analysis, including potential theoretical
inhibition and molecular dynamics. The binding constant K,
derived from the binding free energy, was calculated using the
equation described:19,20

K e G RT( / )= (4)

And the inhibition constant for binding of ligand to proteins (Ki)
(in units of M) was obtained as

K K ei
G RT1 ( / )= = (5)

In the provided equation, ΔG represents the binding affinity
in kcal mol−1, R denotes the universal gas constant (1.987 cal
K−1 mol−1), and T represents the absolute temperature (298.15
K). According to the equation, a higherKi value indicates weaker
binding between the inhibitor and the protein. Consequently,
the protein−inhibitor complex is more likely to dissociate.45−47

To determine the IC50 values, the Dixon plot was employed,
assuming competitive inhibition, as recommended.47 This plot
offers a reliable estimation of IC50 values for competitive
inhibition of a specific substrate.48 In this study, we considered a
hypothetical substrate-inhibitor relationship (1:1) to avoid
concentration-driven preferential associations, assuming struc-
tural similarities between the ligand and the substrate.
Additionally, the IC50-to-Ki web tool was utilized to predict
theoretical inhibition potential following the considerations for
competitive inhibition with the following equation:

IC P K PL L( / )I50 50 50 50= = [ ] (6)

The variables in the equation include P50, which represents
the protein concentration at 50% inhibition; KI, denoting the
affinity constant of the ligand to the protein; [PL50], indicating
the protein concentration divided by the ligand concentration at
50% inhibition; and [L50], representing the ligand concentration
at 50% inhibition. To predict the concentration of the inhibitor
required to achieve 50% inhibition (IC50), we utilized the IC50-
to-Ki web tool. This tool utilizes the provided values of [P], [L],
and Ki (all units in μM) to generate the IC50 value. All
calculations were performed using the IC50-to-Ki web tool,
accessible at https://bioinfo-abcc.ncifcrf.gov/IC50_Ki_
Converter/index.php.19,46 On the other hand, the experimental
inhibitory concentration values were obtained in molar
expression, as described later for each of the compounds
considered.43,49−60

Table 2. Estimates of the Number of Susceptible Cells (U),
Dead Infected Cells (δ), Productive Release Rate of Virions
from Cells (p), and Basic Reproduction Number (R0)

system U (cell/mL) p (copies-cell−1 day−1) δ (cell/mL) R0

Vero E6 2.4 × 104 5.4 × 105 1.3 × 104 20.5
HEK293 1.8 × 104 4.0 × 105 9.8 × 103 20.3
HeLa 2.5 × 104 5.6 × 105 1.4 × 104 20.6
CaLu3 2.8 × 104 6.4 × 105 1.5 × 104 20.7
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Simulations were conducted on docking hits for two main
purposes:

1. To examine the relative stability of the ligand within the
binding pocket.

2. To sample the minimum energy conformations and assess
the perturbation of thermodynamic and structural
stability in the complexes.

For each protein−ligand complex, a series of minimization
procedures were performed to relax the MD system. This
process involved three phases: relaxation, equilibrium, and
sampling, as recommended.19,61,62 The MD simulation was
carried out in an explicit water system. Specifically, the system
was solvated in a cubic water box with dimensions of 80 Å for
each axis (X, Y, Z). The system consisted of 12424 water
molecules, 58 Na+ ions, and 34 Cl− ions, resulting in a molar
density of Na/Cl = 2.76 × 10−3. Each MD system included one
copy of the protein system and one copy of the docking ligand.
The topology files for the ligands and proteins were automati-
cally generated by using myPresto. The Amber99SB-ILDN force
field and the TIP3P water model were employed. The entire
system was neutralized, and water molecules were treated as
rigid bodies in all models. The simulation time interval was set to
2 fs, and periodic boundary conditions were applied. Temper-
ature and pressure control were achieved using the Berendsen
algorithm. After an initial energy minimization phase, which
involved steepest descent (5,000 steps) and conjugate gradient
(5,000 steps) methods with positional restraints on the solute, a
100 ps simulation was conducted. During this simulation, the
positions of the solute atoms were restrained by a force constant
of 10 kcal mol−1 Å−2. This allowed the water molecules to diffuse
around the molecule and to equilibrate the system. The particle
mesh Ewald (PME) method was used to calculate the
electrostatic contribution to nonbonded interactions with a
cutoff distance of 14.0 Å and a time step of 1 fs. The van der
Waals interaction cutoff distance was also set to 14.0 Å.
Following the equilibration run, a production run was
performed at a constant temperature of 300 K using the NVT
(particle numbers, volume, and temperature) ensemble. The cell
size remained the same, and the SHAKE algorithm was applied
to the system. The time step for this run was set to 2 fs. Ten
structures were extracted from a 100 ns trajectory, with each
structure obtained every 10 ns. These structures served as target
structures for further analysis. The root mean square deviation
(RMSD) calculations were performed using the following
equation:

n
RMSD

1

i

n

i
1

2=
= (7)

where δi is the distance between atom i and either a reference
structure or the mean position of the n equivalent atoms. The
neutralization of this type of system as well as the final
production run of 100 ns with a subsequent molecular
mechanics/Poisson−Boltzmann surface area (MM/PBSA)
calculation has already been widely proposed by other specialists
for the study of ligand-protein systems associated with COVID-
19. In addition, diverse MD simulation analyses were
incorporated including RMSD, RMSF, and Rg, as well as
comparisons with positive controls as suggested.43,64 For the
calculation of the root-mean-square fluctuation (RMSF) the
algorithm of Calculations and Analysis of Normal Modes
WEBnm@ (http://apps.cbu.uib.no/webnma3/) was used.63 All
MD simulations and additional adjustments were carried out

using COSGENE/myPresto.19,61,62 As part of the simulations,
binding affinities were predicted based on the force constant
relative to the initial frame for each complex during the 100 ns
MD simulation. The WebPSN algorithm (accessible at http://
webpsn.hpc.unimo.it/wpsn.php) was employed to calculate the
binding force using two alternative versions of Elastic Network
Models (ENM). These models were utilized to evaluate the
cross-correlation of the motion of Cα atoms and the pairwise
interactions between Cα atoms. The two versions of ENM used
were linear cutoff-ENM and Kovacs-ENM.65

To reevaluate the complexes and determine the free energy
binding (ΔGbind) of the MD trajectories, we employed the
widely used MM/PBSA method66−69 as a thermodynamic
integration approach. The final snapshots of the minimized
system were subjected to MM/PBSA rescoring, which was
implemented in AMBER16. As suggested,43,64 2500 frames
extracted from the last 10 ns of molecular dynamics were used to
compute the solvation free energy and molecular mechanics
potential energy for estimation of total binding affinity of the
complexes of interest. The formulas for the MM/PBSA binding
free energy estimation are shown in eqs 8 and 13:

G G G G( )bind complex receptor ligand= + (8)

H T S= (9)

E G T SMM solv+ (10)

E E E EMM bonded ele vdw= + + (11)

G G Gsolv polar nonpolar= + (12)

G SASA( )nonpolar = + (13)

The total binding free energy (ΔGbind) represents the
difference in free energy between the bound state (Gcomplex)
and the free state (Greceptor + Gligand). It can also be expressed as
the sum of the enthalpy (ΔH) and entropy part (−TΔS). In this
study, the enthalpy changes were computed using the MM/
PBSA approaches, while the entropy changes were neglected
due to their computational cost and lower accuracy. The
enthalpy part can be further divided into the molecular
mechanical energy (ΔEMM) and the solvation free energy
(ΔGsolv). The ΔEMM term includes the intramolecular energy
(ΔEbonded), the electrostatic energy (ΔEele), and the van der
Waals energy (ΔEvdW). The ΔGsolv term encompasses both the
polar contribution (ΔGpolar) and the nonpolar contribution
(ΔGnonpolar). The polar contributions are accounted for using the
Poisson−Boltzmann (PB) model, while the nonpolar contribu-
tions are assumed to be proportional to the solvent-accessible
surface area (SASA).70 To calculate the energetic components
and predict electrostatic solvation and free binding energies, we
utilized the size-modified Poisson−Boltzmann equation
(SMPBE) available at https://web.uwm.edu/smpbs/ and the
APBS program accessible at https://server.poissonboltzmann.
org/.66 The ΔGbind of the complexes was determined based on
frames extracted after a 100 ns cycle. For visualization and
analysis, we employed Molegro Molecular Viewer, version 7.0
(MMV_7.0). Detailed parameters for the MM/PBSA calcu-
lation procedures can be found in the Supporting Information
Table S1.
2.6. Prediction of Theoretical Antiviral Effectiveness of

Ligand from Experimental Data. As mentioned in previous
studies,15,72,73 we assume that compounds exhibiting antiviral
properties with a constant effectiveness ε can reduce R0 by a
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factor of (1 − ε). In eq 14, ε can take values ranging from 50% to
99%:

C
Kd C

n

n n=
+ (14)

In the equation, C represents the concentration of the ligand
in molar units, ε denotes the effect caused by the ligand at
concentration C, and Kd stands for the equilibrium dissociation
constant. In classical dose−response curves, Kd is referred to as
EC50 (dose for 50% effect), while in inhibition screens, it is
known as IC50 (50% inhibition). The Hill coefficient, denoted as
n, is a measure of the ligand’s response or efficacy ε, which can
range from 0 (no drug effect) to 1 (maximum effect). The Hill
coefficient can be greater or less than 1, with values of n < 1,
indicating negative cooperativity, and n > 1, indicating positive
cooperativity. Typically, small molecules that bind to a target
with a single drug-binding site exhibit an uncooperative dose−
response curve with a slope parameter of n = 1, representing the
fraction of bound ligand. For the purposes of this study, we
assumed this value.15,71 The Hill equation describes the
relationship between the fraction of bound ligands and the
ligand concentration. The dimension ofKd (IC50 or EC50) in this
inhibition approximation of the Hill equation is M (molar), as
suggested.72,73 Additionally, due to limitations in determining
the concentrations of active pharmaceutical ingredients (APIs)
within the cellular medium of the compounds considered in this
study, as they are not approved drugs for the inhibition of SARS-
CoV-2, and given the incompatibility in the Hill equations to
establish the relationship between the administered drug doses
and the API concentrations at the cytoplasmic level, it was
theoretically assumed that the reference values for ligand
concentration corresponded to the experimental molar inhib-
itory concentration values reported for each of the com-
pounds,43,49−60 in order to illustrate the potential application of
the Hill mathematical model. In this regard, the predictions of ε
made in this study are only demonstrative, and further studies
considering precise API values are recommended. On the other
hand, it has been described that antiviral drugs that reduce viral
infectivity β by a factor (1 − εβ) reduce the basic reproductive
number, R0, by a factor:

f
c

c U
1 ( ) 1

(1 )
=

+ (15)

If (1 − f(εβ))R0 is less than 1, the virus will almost surely go
extinct.74 The relationship (1 − f(εβ))R0 to describe the
theoretical antiviral efficacy after treatment was designated in
this work with the letter “ϕ” for illustrative purposes.
2.7. Prediction of Theoretical Drug Toxicity. Designed

to predict potential toxicity, eMolTox is a web server (http://
xundrug.cn/moltox) that can assess the likely toxic properties of
a given molecule. By leveraging advanced machine learning
methodologies, eMolTox not only forecasts but also presents
comprehensive information about the potential toxic character-
istics of a molecule. It also provides comparative data on known
toxic compounds, thereby aiding safety analysis in the process of
drug development.75 Furthermore, the obtained data was cross-
referenced with ProTox-II, a server available at https://tox-new.
charite.de/protox_II/index.php?site=home. ProTox-II utilizes
molecular similarity, fragment propensities, and machine
learning techniques to predict a range of toxicity end points.
These end points include acute toxicity, hepatotoxicity,
cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity,

adverse outcome pathways, and toxicity targets.76 It is important
to note that these comparative analyses were conducted despite
the fact that most of the compounds considered in this study are
FDA-approved, indicating their safety for humans (https://
pubchem.ncbi.nlm.nih.gov/). Therefore, they far exceed the
preclinical judgment provided by computational tools. The
purpose of this is to demonstrate their potential toxicity at the
cellular level due to limitations in determining the concen-
trations of the Active Pharmaceutical Ingredients (APIs) within
the cellular medium of the compounds considered in this study.
This is particularly because they are not FDA-approved drugs for
the inhibition of SARS-CoV-2, and it was theoretically assumed
that the experimental inhibitory concentration values serve as
the theoretical concentrations of the APIs at the cytoplasmic
level.

3. RESULTS AND DISCUSSION
3.1. Theoretical Susceptibility to SARS-CoV-2 Infec-

tion Depending on the Type and Expression Level of
Potential Receptors in Cells of Interest from Exper-
imental Data.A statistically significant difference was observed
between the consensus normalized expression levels (nTPM) of
proteins associated with SARS-CoV-2 infection in the cell lines
studied (F(8, 27) = 29.524, p < 0.00001, α = 0.01). No correlation
was found between the nTPM levels of any of the proteins
studied, regardless of the cell line type. The only exception was a
moderate negative correlation between the CD147 protein, and
all potential receptors tested (r ≈ −0.50). A similar correlation
was observed between NRP1 and AGTR2, Cathepsin-L, and
HSPA5 (r ≈ −0.50 and r ≈ −0.60, respectively). As expected, a
perfect and positive correlation was observed between the ACE2
receptor and the TMPRSS2 protease (r = 0.99). On the other
hand, very high and negative correlations were observed
between the AGTR2 protein and Cathepsin-L (r = −0.99)
and between CD147 and HSPA5 (r = −0.92). The results of the
principal components analysis (PCA) showed that the ACE2
and TMPRSS2 receptors, together with the possible CD147 and
HSPA5 receptors, are responsible for most of the observed
variability (Cp1 ≈46%). The positive correlation between the
ACE2 receptor and the TMPRSS2 protease as well as its
relevance as they are expressed simultaneously has been
previously reported.77

Under the conditions of this study, all multiple theoretical
expression systems were predicted to have a similar suscepti-
bility (U) of up to ≈30% cells/mL, with a mean of ≈2.4 × 104

and range of 1.8 × 104−2.8 × 104 potentially susceptible cells/
mL. Specifically, the CaLu3 system was predicted to have the
highest theoretical susceptibility, mediating a susceptibility of
≈2.8 × 104 cells/mL, followed by the Vero E6 and HeLa
systems, with a theoretical susceptibility of ≈2.4 × 104 cells/mL.
The HEK293 system was the least susceptible to infection under
the conditions of this study (≈1.8 × 104 cells/mL). Although the
susceptibility values are very close, the difference in terms of
percentage susceptibility between the CaLu3 system and the rest
of the systems was between 11 and 37% (see Table 2). These
results are consistent with what has been reported because,
although all the cell lines tested in this study have shown
susceptibility to SARS-CoV-2, it has been reported that SARS-
CoV-2 pseudovirions can significantly increase in CaLu3 cells as
well as in Vero E6 cells (the cell line most used to replicate and
isolate SARS-CoV-2). Meanwhile, HEK293 cells have been
characterized as showing modest viral replication.78
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According to the primary variables considered in this study,
the difference in susceptibility is due to the simulated
contribution of the possible receptors in each cell line. In the
CaLu3 system, CD147 and Cathepsin-L receptors could
contribute more than 90% of the observed susceptibility.
HeLa and Vero E6 followed, with contributions of more than
80% and 70% of the observed susceptibility by the same
potential receptors, respectively. It is important to note that the
receptors with the highest correlation in terms of nTPM (ACE2
and TMPRSS2) had a significant contribution in the Vero E6
model (≈6%), while in the rest of the cellular models, their
average contribution was low (≈0.05%). These results allow us
to infer that the higher propensity to infection in CaLu3-type
systems could also be associated at a statistical level with the
contribution of other potential receptors other than ACE2 and
TMPRSS2, as has been reported.2

Relative to the number of virions that could theoretically be
released from productively infected susceptible cells, the systems
tested were predicted to have a mean (p) release rate of 5.3 × 105

copies/cell/day. Specifically, the CaLu3 system was predicted to
have the most favorable release rate (p) with a value of 6.4 × 105

copies/cell/day. The least favorable release rate (p) was for
HEK293 with 4.0 × 105 copies/cell/day. The theoretical
number of dead infected cells (δ) was also predicted, and it was
calculated that the tested systems could generate dead cells with
a mean of 1.3 × 104 cells/mL. The minimum and maximum
values were 9.8 × 103 and 1.5 × 104 cells/mL, respectively, in the
HEK293 and CaLu3 cell lines (see Table 2). This behavior in
terms of the virions that could be released from infected cells has
already been reported.78

In order to validate the susceptibility of the cell lines used in
this study, the basic reproduction number (R0) was calculated.
R0 represents the average number of susceptible cells that
become infected from a single infected cell at the beginning of
the infection. A mean R0 ≈ 20 was predicted in all systems. In all
cell lines, a R0 ≥ 20 was predicted, with a minimum of R0 = 20.3
and a maximum of R0 = 20.7, for the HEK293 and CaLu3
systems, respectively. When comparing the predicted values of
R0 for the group of renal cell lines (Vero E6 and HEK293)
against the group of nonrenal cell lines (HeLa and CaLu3), it
was found that the difference is not significant (t = −1.543, p =
0.183, α = 0.01) under the conditions of this study, assuming
equal variances with a normal distribution of the basic

reproduction number. This suggests that the considered cell
lines show similar viral kinetic behavior (see Table 2). The
absence of difference between the values of R0 for the studied
cell groups is important because it corresponds to the spectrum
of cell lines susceptible to viral infection by coronavirus, which
has been reported as similar for the spike protein of SARS-CoV-
2, with confirmed entry in CaLu3, HEK293, and Vero E6 cells.79

Viruses are considered to infect susceptible cells (U) at an
effective infection rate (β) according to eqs 1 and 2 (see section
materials and methods). It was assumed that the normalized
transcriptional values per million (nTPM) represent the
percentage value of U. To do this, the average of the nTPM
values reported for potential receptors and each cell line was
considered. To calculate the basic reproduction number (R0),eq
3 was used, where virions are released from infected cells
productively at a rate per day (p), generating a number of dead
infected cells (δ).

However, under the conditions of this study, the predictions
made differ from those of other reports. These reports indicate
that virus production tends to be higher in Vero cells than in
CaLu3 cells after SARS-CoV-2 infection. These reports suggest
that in Vero cells, SARS-CoV-2 entry is mediated by cathepsin L
rather than TMPRSS2 due to low or rare expression of
TMPRSS2.80 However, RNA expression analysis from normal-
ized cell line transcript values reported in The Human Protein
Atlas differs from these statements and points to higher
TMPRSS2 expression in Vero cells than in CaLu3 cells.28

These discrepancies could affect predictions in terms of cell
susceptibility and hence estimates of viral replication.
3.2. Theoretical Affinity of Targeted Drugs for

Disruption of SARS-CoV-2 Receptor-Binding Domain
(RBD). Table 4 shows the results of the molecular docking
methods and scoring functions used to predict the relative
binding energies of the considered drugs to the SARS-CoV-2
spike system. All drugs showed thermodynamically favorable
binding, with a mean of −8.30 kcal mol−1. Telmisartan showed
the most favorable thermodynamic mean, with an energy of
≈−9.45 kcal mol−1. Followed by the anticoagulant nafamostat
(≈−9.15 kcal mol−1) (see Figure 1). The rest of the analyzed
compounds showed a thermodynamically favorable binding
energy of ≈−7 kcal mol−1. In all cases, captopril was the
compound with the least favorable binding energy (≈−5.56 kcal
mol−1), very similar to the control drug used (see 3).

Figure 1. To illustrate, we present the most stable conformation of two compounds: (a) nafamostat (PubChem CID_4413) and (b) pyronaridine
(control) (PubChem CID_107771) within the binding pocket of the interface connecting the ACE2 receptor and the receptor-binding domain
(RBD). The position and orientation of the nafamostat and pyronaridine structures are indicated within a circle, while the closest residues are displayed
in the lower right corner. These interactions were predicted by using the BIOVIA Discovery Studio Visualizer tool. In the context of this study,
nafamostat exhibited the most favorable pose within the interface formed between the RBD of SARS-CoV-2 and ACE2.
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These results correspond to reports that compounds such as
nafamostat and camostat have very favorable binding energy
values against the coronavirus spike glycoprotein. Indeed,
nafamostat has shown the most favorable interactions and
inhibitory power in previous experiments.81 Moreover, the
results garnered with Vinardo carry a significant weight. This is
because Vinardo is an algorithm that boasts superior docking,
scoring, classification, and virtual evaluation capabilities,
consistently outperforming both Vina and AD4. It can classify
active compounds over inactive ones. Vinardo (Vina RaDii
Optimized) is a scoring function that incorporates component
terms similar to those of the Vina scoring function. These
component terms include steric interactions, hydrophobic
interactions, and nondirectional hydrogen bonds. However,
Vinardo distinguishes itself from Vina through several
modifications. It features a modified steric interaction term,
utilizes new atomic radii, and employs simplified interactions.82

In terms of the theoretical inhibitory kinetics of each ligand−
protein complex, which was calculated from the respective
relative energies of binding, a mean Ki = 14.50 μM was
predicted, with a minimum and maximum inhibition constant
for the compounds telmisartan (Ki = 0.13 μM) and captopril (Ki

= 88.55 μM), respectively. Approximately 70% (5/7) of the
tested compounds (targets of this study) showed a theoretical
inhibition constant Ki < 3 μM. Only a value close to 28% (2/7)
of the compounds had a Ki < 0.5 μM (telmisartan and
nafamostat), similar to what was described for the control drug
(Ki ≈ 0.4 μM) (see Table 4). Additionally, binding affinities
based on the relative force constant and free energy binding
calculation (ΔGbind) considering the MM/PBSA method on the
final lowest energy structures after MD predicted thermody-
namically favorable docking. In the case of the force constant
calculation, a mean of ≈9 kcal mol−1 Å−2 was predicted, with a
minimum and maximum of 8.96 and 9.78 kcal mol−1 Å−2 for the
compounds telmisartan and hydroxychloroquine, respectively.
While with MM/PBSA, a mean of ≈ −9 kcal mol−1 was
predicted, with a minimum and maximum of ≈ −15 kcal mol−1

Å−2 and ≈ −4 kcal mol−1 for the camostat and telmisartan
compounds, respectively (see Table 3).

As the relevance of the ACE2 receptor in mediating infection
has been confirmed, its interaction with the SARS-CoV-2
receptor-binding domain (RBD) was studied.83 The interface
formed between the RBD and ACE2 was explored for illustrative
purposes only. Of the compounds tested and under the

Table 3. Comparative Analysis of Various Affinity Parameters of the Drugs and Controls Considered in This Study against the
Receptor-Binding Domain (RBD) of SARS-CoV-2

kcal mol−1

druga types DockTb Vinac Vinardoc AD4c
Ki

(uM)d
Binding forcee

(kcal.mol−1 Å−2)
MM/PBSAe
(kcal.mol−1)

Interface
RBDg

telmisartan (CID_65999) ARBs −8.71 −9.65 −9.70 −9.72 0.13 8.96 −4.03 −
nafamostat (CID_4413) anticoagulant −7.47 −9.75 −9.94 −9.45 0.23 9.18 −10.38 +
camostat (CID_2536) serine protease

inhibitor
−7.38 −8.18 −8.00 −7.72 1.99 9.31 −15.24 −

hydroxychloroquine
(CID_3652)

antimalarials −7.97 −6.84 −7.84 −7.84 2.79 9.78 −8.72 −

chloroquine (CID_2719) antimalarials −7.76 −7.04 −7.77 −7.77 2.98 9.20 −13.79 −
ibuprofen (CID_3672) NSAID −7.24 −7.35 −7.93 −6.65 4.85 9.34 −9.75 −
captopril (CID_44093) ARBs −6.40 −5.95 −4.77 −5.13 88.55 9.26 −7.61 −
pyronaridine

(CID_107771) (control)
antimalarials −7.60 −5.31 −5.09 −4.22 0.36f* 7.78 −3.27 +

aAll compounds were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). bScore calculated from DockThor (https://
dockthor.lncc.br/v2/). cScore calculated from DINC (http://dinc.kavrakilab.org/). dTheoretical inhibitory kinetics of each ligand-protein complex
calculated from the mean energy. eForce constant and Molecular Mechanics/Poisson−Boltzmann surface area (MM/PBSA) calculations from the
minimum energy structures of the complexes after an MD of 100 ns. ARBs, angiotensin II receptor blockers; NSAID, nonsteroidal anti-
inflammatory drugs. fExperimental values (see section materials and methods). gThe negative sign (−) is used to designate the docking outside the
interface established by the RBD with receptors like ACE2, and the positive sign (+) to indicate the docking that occurs within the interface.

Table 4. Results of the Predicted Kinetics and Inhibitory Potency of the Drugs Considered in This Study in Terms of IC50 and
pIC50 on the SARS-CoV-2 Receptor-Binding Domain (RBD)

druga EC50(M)b pEC50
b IC50(M)c pIC50

c IC50(M)d pIC50
d

telmisartan (CID_65999) 1.0 × 10−7 5.0 1.9 × 10−8 7.7 6.9 × 10−8 7.2
nafamostat (CID_4413) 1.0 × 10−7 7.0 3.5 × 10−8 7.5 1.0 × 10−7 7.0
camostat (CID_2536) 1.0 × 10−6 6.0 3.0 × 10−7 6.5 3.1 × 10−7 6.5
hydroxychloroquine (CID_3652) 4.2 × 10−6 5.4 4.2 × 10−7 6.4 3.4 × 10−7 6.5
chloroquine (CID_2719) 4.4 × 10−6 5.4 4.5 × 10−7 6.3 3.5 × 10−7 6.5
ibuprofen (CID_3672) 2.5 × 10−5 4.6 7.3 × 10−7 6.1 3.9 × 10−7 6.4
captopril (CID_44093) 1.0 × 10−5 5.0 1.3 × 10−5 4.9 4.9 × 10−7 6.3
pyronaridine (CID_107771) (control) 4.5 × 10−5e 4.3e 1.0 × 10−8d 8.0d

aAll compounds were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). bValues calculated in molar expression from
the experimental data (see section materials and methods). cValues calculated in molar expression from theoretical binding kinetics and relative
energies using the Dixon plot method. dValues calculated in molar expression from theoretical binding kinetics and relative energies using the
IC50-to-Ki web tool (https://bioinfo-abcc.ncifcrf.gov/IC50_Ki_Converter/index.php). EC50, half maximal effective concentration; pEC50, negative
logarithm of the EC50 value; IC50, concentration at which the drug is capable of inhibiting activity by 50%; pIC50, negative logarithm of the IC50
value eExperimental values (see section materials and methods).
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conditions of this study, only nafamostat showed favorable poses
in the interface formed between the receptor-binding domain
(RBD) of SARS-CoV-2 and ACE2 after 24 runs with a total of
106 evaluations per run, similar to what was described for the
pyronaridine control (see Figures 1−3 and Table 3). The poses
presented by nafamostat turned out to be the most statistically
likely to be among the top three thermodynamically most
favored scores out of a total of 2.4 × 107 possible positions,
which were guided by blind docking. In all cases, the interactions
of the compounds with the spike were dominated by
hydrophobic interactions, with the greatest diversity of types
of interactions observed for the compound camostat. All
compounds mediated interactions with a relative binding
strength of ≈9 kcal mol−1 Å−2.

In relation to the inhibitory potency calculated from the
reported experimental EC50 values, a mean potency was
predicted in terms of pEC50 = 5.5. Specifically, nafamostat was
predicted to be the compound with the highest theoretical
inhibitory potency calculated from the reported experimental
EC50 values, with a value of pEC50 = 7.0. While ibuprofen was the
compound with the lowest inhibitory potency calculated from
the data reported for NSAIDs, with a pEC50 = 4.6 (see Table 4).

Additionally, the predictions based on EC50 were validated
applying the Dixon method and the IC50-to-Ki web tool using
the theoretical values of IC50. In all cases, the inhibitory potency
calculated in terms of pIC50 was reproducible regardless of the
compound and predictive method used (Dixon plot and IC50-
to-Ki web tool) for the calculation of IC50, showing an overall
difference between methods with a mean of ≈0.1, and a
difference between the mean of pEC50 (experimental data
reported) and pIC50 ≈ 1 (see Table 4).

Studies have shown that nafamostat exhibits strong inhibitory
effects on coronavirus-mediated membrane fusion in HEK293

and CaLu3 cells.18 Compared to other compounds such as
camostat, nafamostat has demonstrated more favorable
inhibitory activity. This superiority has been attributed to
nafamostat’s ability to readily form a stable covalent enzyme−
substrate intermediate, which effectively explains its high
potency. These findings align with in vitro experiments and
are consistent with previous virus cell entry assays.84

Molecular dynamics simulations showed that upon ligand
binding, all complexes exhibited conformational fluctuations
with an RMSD of ≤3.2 Å. These results in terms of RMSD
indicate that the junctions are stable throughout the simulation
period of 100 ns. This is in addition to being thermodynamically
favorable (as previously predicted). These observations together
with the predictions in terms of RMSF and Rg allow us to infer
that all the tested compounds form stable complexes (see Figure
2). It is important to note that both nafamostat and the
pyronaridine control were compound-guided by blind docking
and showed interactions with the RBD interface that were
predicted to be stable over time according to the molecular
dynamics (MD) simulation analysis at 100 ns and in terms of
RMSD, RMSF, Rg, and the number and type of interactions (see
Figure 3). Despite these standard theoretical approaches
showing promising favorable and stable interactions over time
for the complexes considered in this study, it is recommended to
validate the predictions of such systems through lead compound
similarity analysis in order to better understand the behavior of
each selected drug against the target protein, as suggested.85,86

3.3. Prediction of Theoretical Antiviral Effectiveness of
Drugs from Experimental Data. Table 5 shows the
prediction of the theoretical antiviral effectiveness of each of
the compounds considered based on the susceptibility of the cell
type. Predictions made from reported experimental EC50 (μM)
and IC50 (μM) values calculated in this study from relative

Figure 2. MD simulation for each complex (total time 100 ns). (a) Root mean squared deviations (RMSD) of Cα during each 10 ns, (b) root means
square fluctuation (RMSF), and (c) radius of gyration-guided motions (Rg). RBD, receptor-binding domain; HCQ, hydroxychloroquine.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c06968
ACS Omega 2024, 9, 8923−8939

8931

https://pubs.acs.org/doi/10.1021/acsomega.3c06968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06968?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c06968?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


binding energies and theoretical inhibitory kinetics are
presented. In terms of antiviral effectiveness calculated from
the EC50, similar mean drug efficacy was predicted as a function
of cell type susceptibility (F(3,24) = 0.002, p = 0.999, α = 0.01)
with an effect in percentage terms of ≈68%.

However, a statistically significant difference was predicted
between the individual antiviral effectiveness of each of the
compounds tested (F(6,21) = 4088.756, p < 0.00001, α = 0.01).
From the EC50 values, it was predicted that ≈42% (3/7) of the
considered drugs may show a theoretical antiviral effectiveness
≥80%. Specifically, the compound nafamostat was predicted to
have the highest theoretical antiviral effectiveness, regardless of
the type of simulated cell susceptibility, with ≈99% effectiveness,
followed by camostat (≈86%) and chloroquine (≈80%).

While ibuprofen presented the lowest predicted theoretical
antiviral effectiveness (≈28%). In the HEK293 cell line, the
theoretical antiviral effect of approximately 42% (3/7) of the
tested compounds (telmisartan, captopril, and ibuprofen) was
slightly less favorable followed by a similar behavior in the Vero
E6 and HeLa lines. On the other hand, and in a strict (but not
significant) sense, the lowest theoretical antiviral response was
predicted in the CaLu3 system under the conditions of this
study.

For illustrative purposes, we sought to predict and compare
the theoretical antiviral effectiveness of the compounds from the
IC50 values calculated in this study. The predictions with the
Dixon plot model reproduced the trend calculated from the
EC50 values (although with a greater magnitude of the values)
showing a similar mean response of the cells (F(3,24) = 0.020, p =

0.996, α = 0.01) and also a statistically significant difference
between the antiviral effectiveness of each of the compounds
tested (F(6,21) = 196.708, p < 0.00001, α = 0.01). It is important
to note that, just like the values of binding free energy (ΔG) and
Ki, the values in terms of IC50 and pIC50 presented by the control
are also within the predicted values for each compound
considered in this study. Therefore, a similar behavior would
be expected in terms of theoretical antiviral activity (see Table
4).

It is important to point out that after applying the Dixon
method and the IC50-to-Ki web tool to estimate the IC50 values,
an increase in the theoretical antiviral effectiveness of all of the
compounds was observed. This decreased the discriminatory
capacity of the model proposed here by using the EC50
experimental values. However, regardless of the method applied
to calculate the IC50, nafamostat presented the highest
theoretical antiviral effectiveness in each case (see Table 5). It
is important to note that one of the limitations of this study is
that the predictions of antiviral efficacy, made from the kinetic/
dynamic properties reported for the drugs studied, only consider
a single initial dose of each drug for 24 h. This is consistent with
the findings of previous studies of other drugs, such as
hydroxychloroquine,17 nafamostat,51,52 camostat,53 telmisar-
tan,54 chloroquine,55 ibuprofen,56 and captopril.57,58 With this
in mind, we suggest conducting an analysis under the same
conditions as this study but with variations in concentration
taken into account as well as extending the exposure time to the
drugs under investigation. This approach has been recom-
mended in other studies.15

Figure 3. MD simulation of compounds with the most favorable pose in the interface formed between the RBD of SARS-CoV-2 and cellular receptors
like ACE2 under the conditions of this study (total time of 100 ns). (a) Root mean squared deviations (RMSDs) of Cα during each 10 ns, (b) root
means square fluctuation (RMSF), (c) radius of gyration-guided motions (Rg), (d) number and type of interactions of nafamostat, and (e)
pyronaridine. RBD, receptor-binding domain.
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The findings of this study regarding the antiviral activity and
the impact of drugs on the viral kinetics of SARS-CoV-2 have
previously been reported in cell lines such as CaLu3 and
HEK293 with other coronaviruses. Nafamostat has been shown
to possess superior antiviral activity compared to camostat
against MERS-CoV.17,18 Conversely, the camostat has demon-
strated activity against the TMPRSS2 receptor, partially
inhibiting spike-driven entry into Caco-2, Vero E6, and CaLu3
cells against MERS-CoV, SARS-CoV-1, and SARS-CoV-2.
However, it has been suggested that the spread of SARS-CoV-
2 relies on the activity of multiple receptors, which could explain
the partial inhibition of viral activity in CaLu3 cells when
exposed to camostat.16,17

While chloroquine and hydroxychloroquine are currently
used for the treatment of malaria and amebiasis, studies have
reported their potential to block the interaction between the
SARS-CoV spike protein’s receptor-binding dDomain (RBD)
and ACE2 under cell culture conditions in Vero E6 cells. Both

chloroquine and hydroxychloroquine have the ability to increase
the endosomal pH, which is necessary for the conformational
changes in the spike protein during virus-cell fusion. Addition-
ally, these compounds can affect the terminal glycosylation of
the cellular receptor ACE2, thereby reducing the affinity of
SARS-CoV/SARS-CoV-2 for ACE2.17,21

Although there is affinity in energetic terms, a generalized
effect of inhibitory activity of captopril and telmisartan was not
observed. This could be because these compounds have more
affinity for the ACE2 cell receptor than for viral spike regions
without compromising the activity of ACE2. This has been
reported previously.22,23 Although the predicted results with
ibuprofen correspond to a potential ability to interact favorably
with the spike protein, as has been reported,19,20,59 no significant
inhibitory activity was observed under the conditions of this
study. Ibuprofen has been extensively studied in cell lines,
including CaLu3. It has been shown that this drug has no effect
on ACE2 modulation, despite hypotheses earlier in the
pandemic. This has led to the conclusion that there are no
risks associated with the use of nonsteroidal anti-inflammatory
drugs (NSAIDs) like ibuprofen during a SARS-CoV-2
infection.59

The theoretical susceptibility previously predicted for each of
the cell lines considered was used as a control of the tests to
evaluate the theoretical antiviral activity of the drugs (Table 2
and Figure 3). For illustrative purposes, the effect of drugs on the
number of susceptible cells and the effect of their potential
antiviral activity on the number of cells to be infected were
simulated. Specifically, antiviral drugs that reduce viral
infectivity in terms of the effective radius of infection (β) by
the factor (1 − εβ) reduce the basic reproductive number, R0, by
a factor (1 − f(εβ)). If (1 − f(εβ))R0 is <1, the virus will almost
certainly become extinct.

In this sense, the relationship (1 − f(εβ))R0 to describe the
theoretical antiviral efficacy of drugs after in vitro treatment for
24 h was designated as ϕ. In all the cell lines tested, a mean of the
relationship ϕ ≈ 0.065 was predicted, indicating that in all the
cell models considered, a decrease in total viral particles is
predicted. This effect was simulated for a period of 24 h exposure
to drugs, with the HEK293 system being the cell line where the
greatest inhibition effect was predicted, but without a statistically
significant difference (F(3,24) = 0.003, p = 0.999, α = 0.01) (see
Table 6).

In relation to the individual activity of the drugs, it was
predicted that under the conditions of this study, all the
compounds could theoretically have the capacity to reduce viral
infectivity by different magnitudes in terms of the effective radius
of infection (β) and reduce the basic reproductive number, R0,
(ϕ ratio) in all cell lines tested. Specifically, in relation to the
individual drug activity, nafamostat was predicted to be the
compound with the highest ability to reduce β-viral infectivity
and to reduce the R0 number (ϕ = 0.002) in all considered cell
lines. It was followed by camostat (ϕ = 0.029) and chloroquine
(ϕ = 0.041), with ibuprofen being the least favorable compound
(ϕ = 0.147) (Table 6).

Given that renal and pulmonary cell systems were simulated, it
is important to note that all the compounds considered in this
study are widely known drugs approved by the FDA with known
kinetic and dynamic characteristics (all compounds were
obtained from the PubChem database: https://pubchem.ncbi.
nlm.nih.gov/). Therefore, the prediction of potential toxicities
was also carried out using the latest generation of machine
learning analysis applied to experimental data in vitro and in vivo

Table 5. Results of the Predicted Antiviral Efficacy (ε) of the
Drugs Considered in This Study from the EC50 and IC50
Values and in Relation to the Types of Cell Lines Studied

drug(s)a EC50 (μM)b
antiviral efficacy (%)e

Vero E6 HeLa HEK293 CaLu3

nafamostat 0.1 99 99 99 99
camostat 1 86 86 86 86
chloroquine 4.4 80 80 80 80
hydroxychloroquine 4.2 72 72 72 72
telmisartan 10 57 57 59 56
captopril 10 57 57 59 56
ibuprofen 25 28 28 29 28

drug(s)a IC50(μM)c
antiviral efficacy (%)

Vero E6 HeLa HEK293 CaLu3

nafamostat 0.03 99 99 99 99
camostat 0.3 95 95 95 95
chloroquine 0.45 97 97 97 97
hydroxychloroquine 0.42 97 97 97 97
telmisartan 0.02 99 99 99 99
captopril 13.28 89 89 91 88
ibuprofen 0.73 94 94 94 94

drug(s)a IC50(μM)d
antiviral efficacy (%)

Vero E6 HeLa HEK293 CaLu3

mafamostat 0.1 99 99 99 99
camostat 0.31 95 95 95 95
chloroquine 0.35 98 98 98 98
hydroxychloroquine 0.34 97 97 97 97
telmisartan 0.07 98 98 98 98
captopril 0.49 88 88 88 88
ibuprofen 0.39 97 97 97 97
aAll compounds were obtained from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). bValues calculated in molar expression
from the experimental data (see section materials and methods).
cValues calculated in molar expression from theoretical binding
kinetics and relative energies using the Dixon plot method. dValues
calculated in molar expression from theoretical binding kinetics and
relative energies using the IC50-to-Ki web tool (https://bioinfo-abcc.
ncifcrf.gov/IC50_Ki_Converter/index.php). EC50, half maximal
effective concentration; pEC50, negative logarithm of the EC50
value; IC50, concentration at which the drug is capable of inhibiting
activity by 50%; pIC50, negative logarithm of the IC50 value.
ePercentage expression of the reduction in viral infectivity (ε) in
terms of the effective radius of infection (β) by the factor (1 − εβ).
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and related to toxicology and the analysis of the toxic
substructure. Around 77% (7/9) of the tested compounds
may be potentially toxic in at least one type of organ or tissue,
with a statistical significance of more than 99%. Specifically,
≈55% (5/9) of the compounds may be potentially toxic at the
renal level, while ≈22% (2/9) may be potentially toxic at the
respiratory level. It is important to note that only nafamostat and
camostat did not demonstrate any toxic action from data-driven
models (https://tox-new.charite.de/protox_II/index.php?site=
home). These predictions hold significance due to the utilization
of the eMolTox method (http://xundrug.cn/moltox), which
incorporates a comprehensive set of 174 in vitro/in vivo
experimental data sets pertaining to toxicology for model
development (Supporting Information Tables S2−S8). The
method further employs Mondrian’s conformal prediction
(MCPs) to estimate the confidence level associated with the
generated predictions.75

As shown in Figures 4 and 5, the most favorable drugs such as
nafamostat and camostat mediated a theoretical decrease in the
number of infected cells (I) and the number of dead infected
cells (δ) despite the mock susceptibility (U). The theoretical
activity presented by compounds like nafamostat can be
attributed to the impact of the reduction in the effective radius
of infection (β) by the factor (1 − εβ), which in turn translates
into a reduction in the basic reproductive number, R0, by a factor
(1 − f(εβ)). Specifically, the effective infection ratio was
calculated as β ≈ 0.31, which represents an overall theoretical
reduction of the simulated daily rate of infection by ≈15% with
respect to reported values used as control (β = 2).12

Consistently, nafamostat was the compound predicted to reduce
the daily effective infection rate the most (β = 0.01) in all
simulated cell models (see Figure 4B, Supporting Information
Figures S1−S6). Followed by camostat in HEK293 (β = 0.14)
(see Figure 5B) and chloroquine in CaLu3 (β = 0.20), with
ibuprofen being the compound with the least effect on viral
kinetics (see Supporting Information Figures S1−S6). These
predictions based on theoretical models of cell lines correspond
with the reports of the usefulness of nafamostat administered for
the prevention of SARS-CoV-2 infection, above camostat.60

The predictions made in this study indicate that at a
theoretical level, it is likely that the infection of cell lines such
as CaLu3 may be slightly more favored than in Vero E6 if it is
mediated by the contribution of receptors other than ACE2 with
a higher level of expression. In a previous work,78 in which a
smaller number of potential receptors was considered, and
without studying the antiviral activity of drugs, our predictions
also found that the ACE2 receptor probably does not contribute
by itself to explain the theoretical mechanism of infection in
CaLu3. However, the limitations reported when measuring the
active replication of the virus at a significant level in diverse
samples associated with the respiratory tract87 do not
correspond to the hypothesis of an exclusive participation of
potential receptors that exhibit a high level of expression in cells
such as CaLu3. This could suggest the involvement of other
ACE2-independent cooperative or coupled effects that may
mediate theoretical CaLu3 infection, as has been suggested.88,89

On the other hand, the differential behavior of drugs with
possible antiviral properties against SARS-CoV-2 was observed

Table 6. Predicted Antiviral Efficacy of the Drugs Considered
in This Study in Terms of theϕRelationship Calculated from
the Reduction in the Effective Radius of Infection (β) and the
Reduction in the Basic Reproductive Number, R0 with
Respect to the Cell Lines Studied

antiviral efficacy (ϕ = (1 − f(εβ))R0)
b

drug(s)a Vero E6 HeLa HEK293 CaLu3

nafamostat 0.002 0.002 0.002 0.002
camostat 0.029 0.028 0.029 0.029
chloroquine 0.041 0.041 0.041 0.041
hydroxychloroquine 0.057 0.057 0.058 0.058
telmisartan 0.088 0.087 0.084 0.091
captopril 0.088 0.087 0.084 0.091
ibuprofen 0.148 0.146 0.146 0.149

aAll compounds were obtained from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). bThe relationship (1 − f(εβ))R0
designated in this study as ϕ describes the theoretical antiviral
efficacy of drugs after in vitro treatment for 24 h. Antiviral drugs that
reduce viral infectivity in terms of the effective radius of infection (β)
by the factor (1 − εβ) reduce the basic reproductive number, R0, by a
factor (1 − f(εβ)). If ϕ = (1 − f(εβ))R0 is <1, the virus will almost
certainly become extinct (see section materials and methods).

Figure 4. Mechanistic model is employed to estimate the rates of uninfected cells (U), infected cells (I), and death of infected cells (δ). For illustrative
purposes, a representative graph of the expression systems mentioned in the text is provided for each cell line studied using the limited target cell model.
Additional graphics can be found in Supporting Information Figures S1−S6. (A) Vero E6 cell line and (B) Vero E6 + nafamostat.
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depending on the type of simulated cell line, as has been
reported.90 In fact, it has been pointed out that CaLu3 cells tend
to be more sensitive to inhibitors than HEK293 cells, even with
the use of compounds such as nafamostat and camostat.18 As an
instance, camostat, which functions as an inhibitor of the plasma
membrane protease TMPRSS2, has exhibited activity in CaLu3
cells while not displaying the same effect in Vero E6 cells, as
anticipated in this study. This reinforces the significance of
comprehending the translatability of a cellular model of
infection,80 especially as camostat has been reported to have
no antiviral effects in vivo in animal models compared to
nafamostat.60

Indeed, studies of this nature are crucial, as they provide
theoretical backing for the impact of the intricate multiple entry
mechanisms associated with SARS-CoV-2. This underscores the
necessity to select optimal cell lines for compound evaluation
and screening, particularly in studies aimed at uncovering broad
antiviral mechanisms.85 Finally, it is important to point out that
these cell line-based predictions contribute to the tracing of
possible routes of infection, the prediction of potentially
susceptible organs, and the investigation of interventions for
the prevention, control, and treatment of infection by
theoretically proposing ideal cell models. These are relevant
aspects considering that it has been found that cell lines grown
under standard laboratory conditions have difficulties in
reproducing the behavior of cells that live in patients.91

4. CONCLUSIONS
Theoretical cellular systems considered and simulated, which
express multiple receptors simultaneously, have demonstrated
susceptibility similar to SARS-CoV-2. Additionally, the
anticipated viral kinetic behavior in the simulated cell lines
aligns with the conditions of this study. Among the cell lines
tested, the CaLu3 system is projected to be the most susceptible
to SARS-CoV-2 infection. This susceptibility can be attributed
statistically to the presence of receptors such as CD147 and
Cathepsin-L, which likely contribute significantly to the
observed susceptibility. Nafamostat, among the compounds
tested, exhibits the most favorable characteristics in terms of
thermodynamics, kinetics, theoretical antiviral activity, and
potential safety (toxicity) associated with SARS-CoV-2 spike

protein-mediated infections in the tested cell lines. This study
provides mathematical and bioinformatic models for identifying
optimal cell lines for evaluating and detecting compounds,
particularly in studies focused on the antiviral mechanisms of
drugs for potential reuse. It is important to note that these
observations must be experimentally validated, and this research
is expected to stimulate future quantitative experiments.
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