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Abstract

Emotions unfold over time with episodes differing in explosiveness (i.e., profiles having a

steep vs. a gentle start) and accumulation (i.e., profiles increasing over time vs. going back

to baseline). In the present fMRI study, we wanted to replicate and extend previous findings

on the psychological and neural mechanisms underlying emotion explosiveness and accu-

mulation. Specifically, we aimed to: (a) replicate the finding that different neural mechanisms

are associated with emotion explosiveness and accumulation, (b) replicate the finding that

adopting a self-distanced (vs. self-immersed) perspective decreases emotion explosive-

ness and accumulation at the level of self-report, and (c) examine whether adopting a self-

distanced (vs. self-immersed) perspective similarly modulates activity in the brain regions

associated with emotion explosiveness and accumulation. Participants in an fMRI scanner

were asked to adopt a self-immersed or self-distanced perspective while reading and think-

ing about negative social feedback, and to report on felt changes in negative affect during

that period using an emotion intensity profile tracking approach. We replicated previous find-

ings showing that emotion explosiveness and accumulation were related to activity in

regions involved in self-referential processing (such as the medial prefrontal cortex) and

sustained visceral arousal (such as the posterior insula), respectively. The finding that

adopting a self-distanced (vs. self-immersed) perspective lowers emotion explosiveness

and accumulation was also replicated at a self-report level. However, perspective taking did

not impact activity in the neural correlates of emotion explosiveness and accumulation.
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Introduction

Emotions are dynamic processes that unfold over time. As such, studying the temporal fea-

tures of emotions is a prerequisite to reach a full understanding of how emotions function

[1,2]. Moreover, the fact that many forms of psychopathology (e.g., depression, post-traumatic

stress disorder [3]) are characterized by disturbances in patterns of emotion unfolding only

adds to the importance of research on emotion dynamics.

To study the dynamics of single emotion episodes, Frijda and colleagues [4–6] developed

an intensity profile tracking approach. This approach consists of asking participants to recol-

lect recent emotional episodes and to draw a curve reflecting continuous changes in emotion

intensity during each episode.

In several studies, it has been shown that emotion intensity profiles collected with an inten-

sity profile tracking approach can take a wide range of possible shapes reflecting the inherent

complexity of emotion dynamics [1,2,7,8]. To describe this shape variability, Frijda and col-

leagues used a number of dynamic features, such as the number of peaks and valleys, the inten-

sity of the highest peak, and the area underneath the curve. However, these features were

selected in an ad-hoc fashion. To overcome this limitation, Verduyn and colleagues [2] wanted

to empirically infer dynamic features that would optimally describe variability in emotion

intensity profiles. Using dimension reduction techniques, they found that the two features

which explained most variability are emotion explosiveness and accumulation [2,9,10]. Emo-

tion explosiveness reflects whether the profile has a steep versus a gentle start. Emotion accu-

mulation reflects whether the profile increases over time versus goes back to baseline. To

better understand variability in profile shapes, one should not only examine which features

optimally describe this variability, but also identify the factors influencing these feature [1].

In a recent functional magnetic resonance imaging (fMRI) study, it was found that different

neural regions underlie emotion explosiveness and accumulation [11]. In particular, whereas

explosiveness was found to be related to regions involved in self-referential processing such as

the medial prefrontal cortex (mPFC), accumulation was related to regions underlying sus-

tained visceral arousal such as the posterior insula. These findings are consistent with theoreti-

cal claims in the field of emotion dynamics and emotion regulation that emotion onset and

offset are partially governed by different processes [12–16]. However, as the study reported in

[11] was the first attempt to uncover the neural basis of emotion explosiveness and accumula-

tion, it was largely exploratory in nature and its results need to be replicated, which is also in

line with recent calls for more replication studies in the field of fMRI [17].

A further issue that has been investigated is whether the perspective taken by the emotion-

experiencing person may impact the emotion’s explosiveness and accumulation. Previous

research has indeed found that one way that people deal with emotional events is by reflecting

upon them [18], and that two types of self-reflection can be distinguished: adopting a self-

immersed (i.e., first-person) or a self-distanced (i.e., third-person or external observer) per-

spective [19–21]. In contrast to adopting a self-immersed perspective, self-distancing was

found to lead individuals to experience decreased levels of emotional and physiological reactiv-

ity, intrusive ideation, psychological stress and depressed affects [22–27]. However, previous

research on self-distancing largely disregarded the dimension of time, with a notable exception

being a study by Verduyn and colleagues [28] who found that adopting a self-distanced per-

spective shortens the duration of emotional experience. However, these authors did not exam-

ine the impact of perspective taking on the shape of emotion intensity unfolding. With regard

to this issue, Résibois and colleagues asked participants in a recent study [29] to adopt either a

self-immersed or a self-distanced perspective while reflecting upon negative social feedback.

Adopting a self-distanced perspective was found to lead to reduced levels of both emotion
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explosiveness and accumulation as compared to adopting a self-immersed perspective. Unfor-

tunately, however, this study only relied on self-report data and did not examine the possible

impact of the perspective manipulation on activity in the neural correlates of the two dynamic

features underlying the variability in emotion intensity profiles.

The present study

The present study is set up to contribute to our understanding of emotion dynamics by repli-

cating and extending previous findings on emotion explosiveness and accumulation with

three specific aims. The first aim is to replicate seminal findings on the neural correlates of

emotion explosiveness and accumulation. Consistent with Résibois, Verduyn, and colleagues

[11], we expect explosiveness to be related to activity in the medial prefrontal cortex and accu-

mulation to activity in the posterior insula. The second aim is to replicate the previously found

effect of perspective taking on emotion explosiveness and accumulation at the level of self-

report. Consistent with Résibois and colleagues [29], we expect emotional episodes to be char-

acterized by lower levels of both explosiveness and accumulation when participants adopt a

self-distanced versus a self-immersed perspective. The third aim is to examine the possible

impact of perspective taking on the neural correlates of emotion explosiveness and accumula-

tion. We expect lower activity in the medial prefrontal cortex (associated with explosiveness)

and posterior insula (associated with accumulation) when participants adopt a self-distanced

as compared to a self-immersed perspective.

To test these hypotheses we make use of an fMRI setup in which we induce negative emo-

tions by means of negative social feedback, and ask participants to adopt a self-immersed or

self-distanced perspective while reading and thinking about the feedback. Subsequently, we

ask them to report on felt changes in emotion intensity using an intensity profile tracking

approach. The perspective instructions, feedback form and intensity profile tracking approach

were explained during a short task training. Following the procedure used in Résibois, Ver-

duyn, and colleagues [11], non-negative matrix factorization will be used to decompose the

collected intensity profiles into an explosiveness and accumulation component, which, in turn,

will be used as regressors of the BOLD signal. Next, we will model the effect of the perspective

taking manipulation on emotion explosiveness and accumulation at the level of self-report as

well as at the level of the neural correlates of the two dynamic features under study.

Method

All variables collected in the study are mentioned and we report all experimental conditions.

Sample

A target number of 40 participants was set prior to the beginning of the study and we slightly

oversampled to anticipate participants possibly not showing up at the study. Forty-two French

speaking participants (22 females, mean age = 26.45, SD = 7.77, with ages ranging from 18 to

48 years old, all right handed) were thus recruited a month prior to the study through the

RISC mailing list of the CNRS (France) that contains more than 10 000 people volunteering to

participate in scientific experiments. These 42 participants were screened for any contraindica-

tion for MRI such as claustrophobia, metallic prostheses, neurologic or psychiatric illnesses,

medication or drugs intake. All participants were found to be eligible and provided written

informed consent to participate in the study that took place between May and November

2015. Payment for participation was 45 Euros. A total of ten participants had to be excluded

from the analyses due to (a) technical scanner issues (n = 2), (b) excessive movement (n = 1),

(c) disbelief in the cover story (see also funnelled debriefing below, n = 6), or (d) being that
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upset by the feedback that the experiment had to be stopped (n = 1). This resulted in a final

sample of thirty-two participants (18 females, Mean age = 26.34, SD = 7.67, with ages ranging

from 18 to 48 years old). The study was approved by University Paris VI’s institutional review

board.

Materials

Social feedback paradigm. Following previous studies [30–32], negative social feedback

was used to induce emotions for two reasons: (a) in daily life emotions are often caused by

social stimuli [33,34] and (b) social feedback elicits emotional responses that are long enough

to study emotion dynamics [35]. The social feedback consisted of ratings on desirable (e.g.,

interesting, honest) and undesirable (e.g., stubborn, superficial) personality traits as well as on

an item assessing whether the evaluator would like to have the participant as a friend (an

English translation of the original feedback forms is shown in S1 Supporting Information).

Negative feedback consisted of low (high) ratings on desirable (undesirable) items as well as

on the evaluator’s desire to have the participant as a friend. Neutral feedback consisted of rat-

ings close to the neutral scale midpoint of all items. Feedback was shown in one of two pre-

specified orders, preventing the presentation of more than two consecutive trials of the same

valence (negative or neutral), counterbalanced across participants.

Perspective taking instructions. Participants were asked to adopt a self-distanced or self-

immersed perspective when reading and thinking about the feedback. In the self-distanced

perspective condition, participants were instructed to “read and think about the feedback while
adopting a detached attitude with regard to this feedback, as if you were an impartial observer, a
scientist who analyses the feedback objectively”. In the self-immersed perspective condition,

participants were instructed to “read and think about the feedback while concentrating on what
it implies for you as a person, on what are the specific feelings you are experiencing subjectively at
this feedback”. These instructions were modelled after previous studies manipulating

immersed versus distanced perspective taking [36,37].

Emotion intensity profile tracking approach. Immediately after exposure to social

feedback, participants drew with a trackball a profile reflecting continuous changes in the

intensity of negative affect during the period that they read and thought about the feedback.

For this purpose, a two-dimensional grid was displayed on the screen. The X-axis represented

time and was proportionally divided into two parts corresponding to the period during which

participants read (30s) and reflected upon the feedback (60s). The Y-axis represented the

intensity of negative affect and was divided into seven intervals ranging from ‘none’ to ‘very

high’. The intensity labels on the Y-axis were identical for self-immersed and self-distanced

trials.

Task training. To explain participants what the social feedback would look like, ensure

that they understood the perspective instructions, and familiarize them with reporting on

emotion unfolding using the emotion intensity profile tracking approach, participants were

walked through each screen of a practice feedback trial. First, the experimenter clarified the

meaning of a self-immersed and a self-distanced perspective and answered any possible ques-

tions participants had on these constructs. Next, the items constituting the social feedback

were explained using a blank feedback form, and participants were reminded that they had to

read the social feedback while adopting the instructed perspective. Then, participants were

explained that they had to continue to think about the feedback adopting the instructed per-

spective as long as a fixation cross appeared on the screen. Finally, the emotion intensity profile

tracking approach was explained and participants practiced until they felt capable of drawing

emotion intensity profiles.
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Procedure

The experiment was divided in four phases. In phase 1 (20 min), participants wrote four brief

texts on personal topics such as “Describe what is most important in your life”. Participants

were made to believe that these texts would be read by five evaluators who would use the texts

to assess participants’ personality. In reality, no evaluators were involved and all participants

received the same feedback. To further strengthen the cover story, participants were told that

the supposed evaluators would be misled themselves into thinking that each essay had been

written by a different participant, supposedly allowing the experimenter to assess the stability

of first impressions.

In phase 2 (20 min), participants completed several questionnaires assessing personality

traits, emotion regulation dispositions, and well-being indicators. As these are not directly rel-

evant for our research questions, they will be left aside in the remainder of the manuscript.

In phase 3 (50 min), after a short training, participants entered into the MRI scanner and

were exposed to social feedback across two runs consisting of 10 trials each (see Fig 1 for a

visual representation of the structure of a trial). At the start of each run, participants were

instructed to adopt a self-distanced or self-immersed perspective (manipulated within partici-

pants with the order of perspectives counterbalanced across participants). Both conditions

thus consisted of the same number of trials (10 each).

Finally, in phase 4 (10 min), participants went through a funnelled debriefing consisting of

several questions that offered plenty of opportunities to the participants to express any suspi-

cion they may have had about the veracity of the cover story (for the full list of questions, see

S1 Supporting Information). The funnelled debriefing was followed by a full debriefing reveal-

ing the true purpose of the experiment.

Image acquisition

Stimuli were generated and presented with E-Prime 2.0 and projected on a Plexiglas screen

mounted at the end of the scanner bore. Two functional runs were acquired on a 3T Siemens

MAGNETOM Prismafit Tim MR-scanner VD 13 (Siemens Medical Solutions, Erlangen, Ger-

many) with Siemens standard 32-channel head coil. Participants’ head movements were

restrained by foam paddings inside of the head coil. Functional images covering the whole

brain were acquired using a T2�-weighted gradient echo, echo planar imaging (EPI) sequence,

sensitive to blood oxygen level-dependent signal, employing the following parameters: repeti-

tion time: 2040ms, echo time: 27ms, flip angle: 78˚, bandwidth: 2444Hz, matrix: 66×66, field of

view: 19.8×19.8cm2, GRAPPA acceleration factor: 2. Forty sequential axial slices, with an iso-

tropic voxel size of 3×3×3mm3, were acquired parallel to the anteroposterior commissure

plane. Each run lasted between 1240s and 1838s (mean = 1395s, SD = 107), resulting in

between 608 and 901 images (mean = 684 images, SD = 53) depending on the time participants

Fig 1. Time course of trials (in seconds). Each trial started with a screen announcing that feedback was about to be

shown and reminded participants which perspective (self-immersed or self-distanced) to adopt (Instruct).

Subsequently, while adopting the instructed perspective, participants had to read one of the negative (six trials per run)

or neutral (four trials per run) feedback that was presented (Feedback), and to think about it while adopting the

instructed perspective as long as a fixation cross appeared on the screen (Fixation cross). Immediately afterwards, they

were asked to draw an intensity profile reflecting the changes in negative affect they experienced while reading and

thinking about the feedback using the emotion intensity profile tracking approach (Drawing). To reduce carryover

effects, participants were asked to relax before a new trial started (Relax). sp = self-paced.

https://doi.org/10.1371/journal.pone.0206889.g001
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took to draw emotion intensity profiles. Additional "dummy” volumes were acquired at the

beginning of each run to allow the magnetization to stabilize to a steady state before the first

real volume. High-resolution three-dimensional T1-weighted sagittal images (3D fast gradient

echo inversion recovery sequence, inversion time: 900ms, repetition time: 2300ms, echo time:

2.96ms, bandwidth: 240Hz, flip angle: 9˚, matrix: 256×248, field of view: 25.6×25.6cm2, voxel

size: 1×1×1mm, GRAPPA acceleration factor: 2) were acquired for anatomical localization.

Data analysis

Whereas the first author as well as two co-authors were involved in the analysis of the original

dataset [11], only one of them analysed the present dataset.

Delineating emotion explosiveness and accumulation. Consistent with Résibois, Ver-

duyn, and colleagues [11], each of the obtained 384 self-reported intensity profiles following

negative feedback was first transformed into a function using the linear interpolation function

(interp1) implemented in MATLAB R2016b [38] and then discretised into 44 equally dis-

tanced time points, corresponding to the number of images acquired during the period that

participants read and thought about the feedback. These time series were subsequently decom-

posed into two components using non-negative matrix factorization [39] (as implemented in

MATLAB R2016b [38]). The resulting component loadings depict the dynamic features of the

shape of component profiles, whereas the resulting component scores depict the extent to

which each intensity profile is characterized by each of these dynamic features.

As illustrated in Fig 2 (top panel), the first obtained component has initial high loadings fol-

lowed by a steep decrease, whereas the second obtained component has loadings that increase

over time. To interpret these components [40], reconstructed profiles taking low (i.e., 10th

Fig 2. Two-component solution resulting from NNMF. Yellow (left) and green (right) backgrounds correspond to

reading and thinking about the feedback, respectively. Top: Component loadings of emotional intensity profiles over

time. Bottom: Reconstructed profiles taking a high (90th percentile), average, or low (10th percentile) score on the

component in question and a mean score on the other component, presented according to the order of their peaks in

the temporal process. This figure is based on data obtained in both self-immersed and self-distanced trials. Bottom left

panel: High and low scoring profiles show an explosive and gentle start, respectively. Bottom right panel: High and low

scoring profiles show emotion accumulation and recovery, respectively.

https://doi.org/10.1371/journal.pone.0206889.g002
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percentile), average, and high (i.e., 90th percentile) scores on one component and mean scores

on the other component were constructed (see Fig 2, bottom panel). The first component cor-

responds to emotion explosiveness, with emotion intensity having either a gentle (10th percen-

tile) or an explosive (90th percentile) start. The second component corresponds to emotion

accumulation, with emotion intensity either returning to baseline (10th percentile) or accumu-

lating (90th percentile) over time. Reconstructed profiles taking low, average and high scores

on one component and mean scores on the other component, separately for each perspective

taking condition are available in S1 Fig.

Each intensity profile can thus be reconstructed by summing the component scores multi-

plied by their corresponding loadings (i.e., adding reconstructed subprofiles). A visualization

of the decomposition of intensity profiles into their reconstructed subprofiles is shown in

Fig 3.

Pre-processing of brain images. Functional scans were pre-processed with SPM8 [41],

using slice-time correction, motion correction, spatial normalization to the MNI space, and

spatial smoothing using a 8-mm full-width at half-maximum isotropic Gaussian kernel. Spatial

normalization was performed by first co-registering the high resolution T1-weighted image to

the mean functional image, normalizing the T1 to the MNI template, and applying the normal-

ization parameters to the functional images.

General linear model construction. Statistical analyses were conducted using the general

linear model (GLM) framework implemented in SPM8 [41]. For each run, boxcar regressors

were used to represent the first screen displaying the self-perspective instruction (self-paced).

For each trial within each run, boxcar regressors were also used to represent: (a) the five-sec-

ond screen notifying participants of the forthcoming feedback and reminding them of the per-

spective to take, (b) the ninety-second period during which participants read and thought

about the manipulated negative feedback, (c) the ninety-second period during which partici-

pants read and thought about the manipulated neutral feedback, and (d) the self-paced emo-

tion intensity profile drawing period, with the relaxation period functioning as an implicit

baseline. All regressors were convolved with the canonical haemodynamic response function.

Fig 3. Original drawings (upper panel), explosiveness subprofiles (middle panel) and accumulation subprofiles

(lower panel). Adding the reconstructed subprofiles closely approximates the original intensity profile. Yellow (left)

and green (right) backgrounds correspond to reading and thinking about the feedback, respectively.

https://doi.org/10.1371/journal.pone.0206889.g003
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Similar to Résibois, Verduyn, and colleagues [11], a high-pass filter of 200s was applied, and

the motion realignment parameters were included as regressors of non-interest.

Neural correlates of emotion intensity profile features. To examine the neural basis of

emotion explosiveness and accumulation, we further added the reconstructed subprofiles

derived from the non-negative matrix factorization (as depicted in Fig 3), convolved with the

haemodynamic response function, to the regression equation of the GLM presented above.

This model was used to predict the BOLD signal both in a number of regions of interest and at

the voxel level, and this across the two perspectives.

Two series of region of interest analysis were conducted to try to replicate earlier results on

the neural correlates of emotion explosiveness and accumulation. Specifically, as replicating

our previous findings was one of the key motivations for this study, in the first series of region

of interest analysis we used two global regions of interest that comprised all clusters that were

found to be related with emotion explosiveness (resp. emotion accumulation) in the study by

Résibois, Verduyn and colleagues [11]. The first region of interest with all clusters found to be

related with emotion explosiveness comprised the left mPFC, the left middle and superior

frontal and temporal gyri, the left supramarginal gyrus, the right angular, superior temporal,

lingual, and middle occipital gyri, and the right cerebellum. The second region of interest with

all clusters found to be related with emotion accumulation comprised the bilateral insula

(mid-posterior part) and cingulate cortex (mid-posterior part), the right claustrum and ante-

rior cingulate cortex (dorsal part), the left middle frontal (dorsolateral part of the prefrontal

cortex), pre/post-central, and superior temporal gyri, the left caudate body, and inferior parie-

tal lobule. These were created by first saving all SPM-8’s clusters from the result table of

explosiveness (resp. accumulation) as a binary image, and transforming it into a ROI using the

SPM8-compatible tool MarsBar [42]. In the second series, we used the two specific regions of

interest found by Résibois, Verduyn and colleagues [11] to be correlated with emotion

explosiveness and accumulation, respectively (i.e., the mPFC and insula, respectively). The

mPFC and insula were bilaterally defined using AAL’s [43] entire structural masks included

in the SPM8-compatible tool MarsBar [42], with the insula being divided into an anterior

(y> -10) and posterior (y< -10) sub-region [44]. For each region of interest, we calculated

the mean value of the second-level explosiveness and accumulation BOLD regression weights

by aggregating across all of their voxels, and tested for significance by means of one sample t-

tests with Bonferroni correction.

In addition, voxelwise whole brain analyses were conducted to explore possible additional

correlates of emotion explosiveness and accumulation. Specifically, we created statistical

parametric maps for each participant and entered those into random-effects group analyses

testing for significance using one sample t-tests. Similar to Résibois, Verduyn, and colleagues

[11], statistical parametric maps were thresholded at p<.001 (uncorrected) combined with

an extend threshold of 10 adjacent voxels, which balances Type I and Type II error rates

[45,46]. To test the robustness of our findings, we also provide FWER cluster-corrected and

FDR voxelwise-corrected p-values. Resulting peaks were transformed into the Talairach space

using the SPM8-compatible tool icbm2tal [47,48] and labelled using the Talairach atlas

[49,50].

The effect of perspective taking on emotion explosiveness and accumulation at the self-

report level. To examine the effect of the perspective taking manipulation on emotion

explosiveness and accumulation, we ran multilevel analyses using the nlme package [51] devel-

oped for R [52]. In particular, the two non-negative matrix factorization scores (i.e., explosive-

ness and accumulation) were predicted by a dummy predictor (0 = self-immersion, 1 = self-

distancing) at Level 1. The intercept and slope were allowed to vary randomly across

participants.
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The effect of perspective taking on the neural correlates of emotion explosiveness and

accumulation. To examine whether perspective taking impacts activity in the neural corre-

lates of emotion explosiveness and accumulation, two contrasts were created based on the

parameters obtained from fitting the general linear model described above without the recon-

structed subprofiles (i.e., only containing boxcar regressors). The contrasts compared neural

activity during the period that participants adopted a self-distanced (SD) perspective to the

period that participants adopted a self-immersed (SI) perspective and vice versa. Both con-

trasts were examined at the level of region of interests as well as voxels across the whole brain.

Results

Neural correlates of emotion intensity profile features

The two reconstructed subprofiles (i.e., component loadings multiplied by component scores,

see Fig 3) of explosiveness and accumulation (convolved with the canonical haemodynamic

response function) were used as regressors of the BOLD response across the two conditions.

First, we examined whether we could replicate the findings of Résibois, Verduyn and col-

leagues [11] by conducting region of interest analyses. Next, we explored possible additional

neural correlates by conducting voxelwise whole brain analyses. It is notable that the neural

correlates of explosiveness and accumulation did not depend on the type of self-perspective

adopted. Indeed, contrasts comparing the neural correlates of explosiveness (accumulation)

while adopting a self-distanced perspective to the neural correlates of explosiveness (accumula-

tion) while adopting a self-immersed perspective were not significant, regardless of whether

conducting voxelwise whole-brain analysis or region of interest analyses.

In a first series of region of interest analyses we examined whether the current explosiveness

and accumulation regressors were predictive of neural activity in the global regions of interest

that comprised all clusters identified by Résibois, Verduyn and colleagues [11] to be associated

with emotion explosiveness and accumulation, respectively. This was found to be the case (see

Table 1).

In a second series of region of interest analyses we examined whether the explosiveness and

accumulation regressors were predictive of neural activity in the specific regions identified by

Resibois, Verduyn and colleagues [11] to be associated with emotion explosiveness (mPFC)

and accumulation (posterior insula), respectively. This was found to be the case (see Table 2).

Finally, in line with previous findings [11], voxelwise whole brain analyses revealed that

emotion explosiveness is related to activity in the medial prefrontal cortex, the bilateral middle

frontal and superior temporal gyri, the left middle temporal gyrus, and the right middle

Table 1. Region of interest analyses predicting neural activity in the full set of clusters observed by Résibois, Ver-

duyn & colleagues [11] to be correlated with emotion explosiveness (resp. accumulation).

Region of interest Explosiveness Accumulation

T p T p
Full set of clustersa that appeared to be correlated in [11] with explosiveness 3.54 .001 -.18 .82

Full set of clustersb that appeared to be correlated in [11] with accumulation -4.95 1.00 3.56 .001

p-values are Bonferroni-corrected for multiple testing;
aleft mPFC, left middle and superior frontal and temporal gyri, left supramarginal gyrus, right angular, superior

temporal, lingual, and middle occipital gyri, and right cerebellum;
bbilateral insula (mid-posterior part) and cingulate cortex (mid-posterior part), right claustrum and anterior

cingulate cortex (dorsal part), left middle frontal (dorsolateral part of the prefrontal cortex), pre/post-central, and

superior temporal gyri, left caudate body, and inferior parietal lobule.

https://doi.org/10.1371/journal.pone.0206889.t001
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occipital gyrus. However, a number of regions were additionally identified with explosiveness

also being related to activity in left inferior and right frontal gyri, the right middle temporal

gyrus, the left precentral, middle occipital, and lingual gyri, the bilateral cuneus, and the right

precuneus (See Table 3 and Fig 4).

Likewise, in line with previous findings [11], exploratory voxelwise whole brain analyses

revealed that emotion accumulation is related to activity in the bilateral posterior insula, the

left precentral, cingulate, middle frontal and superior temporal gyri, the left caudate body,

and the right claustrum. However, a number of regions were additionally identified with

accumulation also being related to activity in the left middle temporal, anterior cingulate,

superior and medial frontal gyri, the left precuneus, the right paracentral lobule and caudate

tail, the right middle and superior temporal gyri, and the bilateral angular gyri (See Table 4

and Fig 4).

The effect of perspective taking on emotion explosiveness and

accumulation at the self-report level

Multilevel analysis was used to predict emotion explosiveness and accumulation scores by the

perspective taking manipulation (0 = self-immersed, 1 = self-distanced). Both explosiveness

(B = -174.88, β = -.34, t(351) = -3.79, p< .001, 95% confidence interval [CI] [-265.70, -84.05])

and accumulation (B = -301.46, β = -.33, t(351) = -3.35, p< .001, 95% CI [-478.65, -124.26])

were found to be lower when participants adopted a self-distanced perspective. The manipula-

tion order was not related to either explosiveness (p = .28) or accumulation (p = .97), nor did

controlling for the manipulation order alter any of the reported conclusions.

The effect of perspective taking on the neural correlates of emotion

explosiveness and accumulation

Adopting a self-distanced (vs. self-immersed) perspective did not lead (see Table 5) to altered

levels of activity in the mPFC (associated with explosiveness) or in the insula (associated with

accumulation). Additional exploratory voxelwise whole-brain analyses similarly did not reveal

differential neural activity depending on the self-perspective adopted. An alternative strategy

to examine the neural activity associated with adopting a self-distanced (SD) versus a self-

immersed (SI) perspective would be to use the neutral trials of the corresponding run as refer-

ence categories as reflected by the following two contrasts: (1) [negative trials> neutral

trials]SD > [negative trials > neutral trials]SI and (2) [negative trials> neutral trials]SD < [neg-

ative trials> neutral trials]SI. Yet, similar to the analyses reported above, this did not lead to

any significant result in region of interest or in whole brain analyses.

Table 2. Region of interest analyses predicting neural activity in the specific regions observed by Resibois, Ver-

duyn & colleagues [11] to underlie emotion explosiveness (resp. accumulation).

ROI Explosiveness Accumulation

T p T p
mPFC 2.49 .03 1.90 .10

Insula

Anterior -.71 .99 .73 .55

Posterior -3.19 1.00 3.18 .005

mPFC = medial prefrontal cortex. p-values are Bonferroni-corrected for multiple testing.

https://doi.org/10.1371/journal.pone.0206889.t002
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Discussion

The overall aim of the present study was to replicate and extend previous results on the psy-

chological and neural mechanisms underlying emotion explosiveness and accumulation. First

of all and importantly, our findings provided an independent replication of the existence of

Table 3. Activations associated with explosiveness in whole-brain analysis.

Tal coordinates (mm)

Region of activation BA T value [x;y;z] Vox.

20

L. Medial Frontal Gyrus 6 3.65† [-1;48;34]

193�

L. Inferior Frontal Gyrus 9 6.14† [-57;12;24]

L. Middle Frontal Gyrus 6 4.61† [-40;4;48]

L. Precentral Gyrus 6 3.81† [-35;-2;31]

154�

R. Middle Frontal Gyrus 46 5.04† [54;23;25]

R. Middle Frontal Gyrus 9 4.30† [40;20;32]

R. Middle Frontal Gyrus 6 4.29† [34;4;52]

47

R. Middle Frontal Gyrus 47 4.36† [41;38;-7]

R. Inferior Frontal Gyrus 10 4.01† [44;45;2]

34

R. Superior Frontal Gyrus 8 4.04† [7;35;46]

36

L. Inferior Frontal Gyrus 45 3.99† [-51;34;5]

533�

R. Middle Occipital Gyrus 18 6.65† [26;-93;5]

R. Cuneus 17 6.20† [10;-96;4]

R. Cuneus 18 6.18† [18;-96;7]

951�

L. Cuneus 18 6.46† [-24;-95;-2]

L. Middle Occipital Gyrus 18 5.68† [-29;-91;10]

L. Lingual Gyrus 18 5.42† [-18;-86;-9]

967�

L. Superior Temporal Gyrus 39 5.63† [-46;-58;26]

L. Middle Temporal Gyrus 39 5.12† [-27;-64;28]

R. Precuneus 7 4.99† [23;-59;32]

32

R. Superior Temporal Gyrus 38 4.74† [44;14;-28]

R. Middle Temporal Gyrus 21 4.27† [55;5;-20]

26

L. Superior Temporal Gyrus 38 3.92† [-45;20;-23]

L. Middle Temporal Gyrus 21 3.77† [-51;9;-25]

L. Middle Temporal Gyrus 21 3.71† [-56;5;-17]

All ps<.001 uncorrected, number of voxels>10 per cluster.

BA = Brodmann’s areas. Vox. = Voxels per cluster. L = left. R = right.
†p<.05 voxelwise FDR-corrected.

�p<.05 FWE-corrected at cluster level.

https://doi.org/10.1371/journal.pone.0206889.t003
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distinctive correlates of emotion explosiveness and emotion accumulation with data being

acquired by another experimenter and using another fMRI scanner than in the study of Rési-

bois, Verduyn, and colleagues [11]. Specifically, in the two series of region of interest analyses

and in the voxelwise whole brain analyses, emotion explosiveness appeared again to be associ-

ated with regions of self-referential processing (such as the medial prefrontal cortex), whereas

emotion accumulation appeared again to be associated with regions of sustained monitoring

of visceral arousal and the sensory component of social exclusion (such as the posterior insula).

These findings corroborate that onset- and offset-bound processes have distinct neural corre-

lates, which is consistent with emotion dynamic frameworks distinguishing between two key

emotion unfolding phases [10–14,16]: an onset phase (associated with explosiveness) and an

offset phase (associated with accumulation), which were found in the present study to be the

two main constituents underlying change in emotional experience over time. It further

emphasizes the need to take temporal dynamics into account when studying the neural basis

of emotions, which resonates with recent calls to put time on the research agenda of affective

neuroscience [53–55].

Providing further evidence for an association between emotion explosiveness and self-refer-

ential processing, in the current study explosiveness was additionally found to be associated

with activity in the precuneus and the temporo-parietal junction, which are two regions of the

default-mode network [56–58]. Moreover, as further evidence for an association between emo-

tion accumulation and sustained monitoring of visceral arousal, emotion accumulation addi-

tionally appeared to be associated with activity in the primary sensory cortex [54,59,60]. In

addition, emotion accumulation was also associated with the dorsal anterior cingulate cortex,

providing suggestive evidence for the social feedback having resulted in feelings of social exclu-

sion, even though it should be noted that no significant activity in the anterior insula was

observed [61]. However, future studies using non-social or more basic emotion-eliciting sti-

muli (e.g., emotional pictures as used in [62]) are needed to examine the degree to which the

neural correlates of explosiveness and accumulation generalize across contexts. It is possible

that studies using such more basic stimuli would identify primary emotion areas such as the

amygdala or the anterior insula as key neural correlates of emotion explosiveness and accumu-

lation [63–65]. This is especially likely given the negative association found in the literature

between meaning making regions (associated with explosiveness in the present study), and the

anterior insula and amygdala [62]. Yet, one could alternatively argue that activity in the ante-

rior insula and amygdala is perhaps associated with emotion intensity per se regardless of the

Fig 4. Neural correlates of emotion explosiveness and accumulation. Left panel: mPFC activation associated with

emotion explosiveness. Right panel: Insula activation associated with emotion accumulation. Coordinates in the

Talairach space.

https://doi.org/10.1371/journal.pone.0206889.g004
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Table 4. Activations associated with accumulation in whole-brain analysis.

Region of activation BA T value Tal coordinates (mm) Vox.

[x;y;z]

18

R. Insula 13 4.01† [32;-10;21]

R. Insula 13 3.97† [29;-22;25]

835�

L. Precentral Gyrus 6 5.77† [-43;-7;20]

R. Paracentral Lobule 31 5.10† [4;-29;46]

L. Precentral Gyrus 4 4.72† [-27;-27;48]

42

L. Anterior Cingulate 32 4.54† [-12;33;11]

L. Anterior Cingulate 24 4.29† [-1;31;5]

14

L. Caudate Body 4.15† [-9;16;20]

L. Cingulate Gyrus 24 3.56† [-4;18;26]

16

L. Caudate Body 3.99† [-15;-28;29]

L. Cingulate Gyrus 31 3.96† [-18;-36;26]

12

R. Caudate Tail 4.75† [21;-43;12]

49

L. Superior Frontal Gyrus 8 4.56† [-15;24;45]

L. Medial Frontal Gyrus 8 4.06† [-10;30;46]

27

L. Middle Frontal Gyrus 6 4.50† [-35;13;46]

23

L. Superior Frontal Gyrus 9 4.42† [-15;46;28]

19

L. Angular Gyrus 39 4.33† [-54;-59;34]

30

R. Angular Gyrus 39 4.13† [54;-59;33]

R. Middle Temporal Gyrus 39 4.09† [51;-67;27]

R. Superior Temporal Gyrus 39 3.88† [57;-58;20]

324�

R. Superior Temporal Gyrus 42 5.49† [63;-29;14]

R. Superior Temporal Gyrus 41 4.56† [38;-32;16]

R. Claustrum 4.38† [38;-17;4]

12

L. Superior Temporal Gyrus 22 4.20† [-57;-60;15]

L. Middle Temporal Gyrus 39 3.72† [-54;-66;20]

38

L. Precuneus 19 4.63† [-41;-76;35]

All ps<.001 uncorrected, number of voxels>10 per cluster.

BA = Brodmann’s areas. Vox. = Voxels per cluster. L = left. R = right.
†p<.05 voxelwise FDR-corrected.

�p<.05 FWE-corrected at cluster level.

https://doi.org/10.1371/journal.pone.0206889.t004
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stage of emotion unfolding (i.e., overall levels of intensity rather than specific dynamic fea-

tures) as found in previous research using emotional movies to induce emotion [66,67]. How-

ever, it is notable that, in the present study where we used complex social stimuli, we did not

find an effect of our manipulation on any primary emotion areas despite that self-distancing

was found to overall lower self-reported emotion intensity.

Second, we indeed replicated that adopting a self-distanced (vs. a self-immersed) perspec-

tive decreases both emotion explosiveness and accumulation (i.e., lowering overall emotion

intensity). This demonstrates that perspective taking can modulate how people initially react

to emotional stimuli, at least when being instructed to use this regulation strategy beforehand.

Moreover, it suggests support to psychological therapies that provide people the tools to take

distance, including cognitive-behavioural, acceptance-based, and mindfulness therapies [68],

such that they may be better equipped to deal with potential future stressors. However, future

research including clinical populations and using stimuli eliciting higher degrees of distress

are necessary to justify this conjecture.

Third, unexpectedly, adopting a self-distanced (vs. a self-immersed) perspective did not

lead to altered levels of activity in the mPFC (associated with explosiveness) or in the insula

(associated with accumulation). Although it is difficult to interpret null findings, one could at

least speculate that this result might be due to the fact that perspective taking may recruit

regions that are also correlated with emotion explosiveness and accumulation, cancelling out

the possibility of finding a significant decrease of activity in these regions when adopting a

self-distanced (vs. a self-immersed) perspective. This tentative explanation could be especially

plausible to at least partially explain why adopting a self-distanced perspective was not found

to be associated with a decreased activity in the medial prefrontal cortex (associated with

explosiveness), as this region has been consistently found to underlie processes of reappraisal

[69–72], including perspective taking [73,74]. This interpretation might especially hold given

the use of social feedback as an emotion-eliciting stimulus. The predictive and reactive control

systems (PARCS) framework [75] indeed theorizes that regions of the predictive system,

including the DMN, underlie both (a) adopting an observer perspective and (b) making mean-

ing of negative feedback that challenges internal models about oneself and the world. Thus,

future studies might benefit from using emotional stimuli that do not require extensive self-

referential processing (e.g., emotional pictures) to further explore the role of perspective taking

on the neural correlates of explosiveness and accumulation.

Finally, although intensity levels reported in the present study are similar to other studies

using a negative feedback procedure [10,11,31,32], future research eliciting stronger emotions

are needed to get a better understanding of the neural mechanisms underlying emotion

dynamics.

Table 5. Regions of interest analyses comparing activity while adopting a self-distanced vs. self-immersed per-

spective when exposed to negative feedback.

Label SD > SI SI > SD

T p T p
mPFC 1.61 .17 -1.61 1.00

Insula

Anterior .51 .67 -.51 .97

Posterior .45 .70 -.45 .96

SD = self-distancing. SI = self-immersion. mPFC = medial prefrontal cortex.

p-values are Bonferroni-corrected for multiple testing.

https://doi.org/10.1371/journal.pone.0206889.t005
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