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Nanoscale perfluorocarbon expediates bone 
fracture healing through selectively activating 
osteoblastic differentiation and functions
Shunhao Wang1,2†, Jiahuang Qiu1,2†, Anyi Guo3, Ruanzhong Ren1,2, Wei He3, Sijin Liu1,2*   and Yajun Liu3*

Abstract 

Background and rationale:  Fracture incidence increases with ageing and other contingencies. However, the strat-
egy of accelerating fracture repair in clinical therapeutics remain a huge challenge due to its complexity and a long-
lasting period. The emergence of nano-based drug delivery systems provides a highly efficient, targeted and control-
lable drug release at the diseased site. Thus far, fairly limited studies have been carried out using nanomedicines for 
the bone repair applications. Perfluorocarbon (PFC), FDA-approved clinical drug, is received increasing attention in 
nanomedicine due to its favorable chemical and biologic inertness, great biocompatibility, high oxygen affinity and 
serum-resistant capability. In the premise, the purpose of the current study is to prepare nano-sized PFC materials and 
to evaluate their advisable effects on promoting bone fracture repair.

Results:  Our data unveiled that nano-PFC significantly enhanced the fracture repair in the rabbit model with radial 
fractures, as evidenced by increased soft callus formation, collagen synthesis and accumulation of beneficial cytokines 
(e.g., vascular endothelial growth factor (VEGF), matrix metalloprotein 9 (MMP-9) and osteocalcin). Mechanistic studies 
unraveled that nano-PFC functioned to target osteoblasts by stimulating their differentiation and activities in bone 
formation, leading to accelerated bone remodeling in the fractured zones. Otherwise, osteoclasts were not affected 
upon nano-PFC treatment, ruling out the potential target of nano-PFC on osteoclasts and their progenitors.

Conclusions:  These results suggest that nano-PFC provides a potential perspective for selectively targeting osteo-
blast cell and facilitating callus generation. This study opens up a new avenue for nano-PFC as a promising agent in 
therapeutics to shorten healing time in treating bone fracture.
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Background
Fracture is a most common bone morbidity, due to pop-
ulation ageing and increasing traumas caused by indus-
trial activities, transports and physical exercise [1]. The 

fracture healing has been proposed to be a complex 
biological process, including inflammatory reaction, 
cartilaginous callus formation, bony callus formation 
and bone remodeling process [2]. Thereby, accelerating 
fracture healing is critical for clinical therapeutics, but 
the current strategies that are able to promote osteo-
genesis remain rather limited. Intriguingly, biological 
therapies can greatly revolutionize the situation faced 
by traditional stargates, such as nonunion or delayed 
fracture healing after screws fixation, effective improv-
ing the clinical outcome. To date, the biological therapies 
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(e.g., hormones, bone morphogenetic proteins and other 
growth factors) have been burgeoningly applied in thera-
peutics to enhance fracture repair [3]. However, these 
treatment strategies are often accompanied by many 
unfavorable off-target complications (e.g., infusion reac-
tion, palpitations and immune impair) in addition to 
poor drug stability and high healthcare cost [4, 5]. Thus, 
additional edge-cutting, high efficacy and safe-treatment 
approaches are urgently warranted to improve fracture 
healing process.

The current composites or hybrid materials could not 
integrate well into the host tissue, and oftentimes result 
in foreign-body reaction, infection and possible extrusion 
of implanted materials. In this respect, nanotechnology 
provide a new tool to devise the structure of scaffold as 
well as to create drug delivery system with controllable 
release pattern, which has attracted widespread attention 
to date. Compared to traditional administration routes 
and methods, highly efficient nano-based drug delivery 
systems (NDDSs) achieve targeted drug delivery, high 
drug-loading capacity, improvement of drug solubility/
stability and finetuned drug release in numerous bio-
medical indications. For even though the current studies 
on the bone repair applications dependent on nanoma-
terials and nanotechnology are fairly limited, burgeon-
ing evidence hints the promising usage of nanodrugs in 
bone filed. For instance, a fracture-targeted nanoparticle 
delivery system for a GSK-3β inhibitor, a β-catenin ago-
nist, was developed to enhance bone healing, showing 
excellent drug accumulation at the fracture sites with 
sustained release [4]. The agonist expedites fracture heal-
ing via activating Wnt/β-catenin signal and improving 
osteogenesis of osteoblast and mesenchymal stem cells, 
but eliciting no effect on osteoclasts. Such application of 
nanotechnology facilitated the targeted delivery of chem-
otherapeutics, and also enhanced the overall effect of 
drug in bone diseases and bone regeneration [6]. None-
theless, since it is still in the infancy stage, there are still 
great challenges in developing NDDSs for bone fracture 
healing, such as insufficient drug-loading capacity, pre-
mature leakage and low targeting efficacy, which hinders 
the progression of clinical transformation [7, 8]. To this 
end, more desirable nanomedicines should be searched 
for the purpose of bone fracture healing treatment.

PFC, a clinically approved drug, is attracting increas-
ing interest due to their chemical and biologic inertness, 
great biocompatibility, high oxygen affinity and serum-
resistant capability [9, 10]. PFC could be effectively and 
readily eliminated through exhaled breath and reticu-
loendothelial system [11, 12]. Moreover, PFC-based 
research has also been verified to enhance the regenera-
tion of soft tissue through elevated oxygen delivery [13, 
14]. Importantly, PFC emulsion at the micro/nano size 

has been used in clinical practice for ultrasonography 
imaging, organ injury repair and emergency transfu-
sion [15–17]. Recently, PFC emulsion at the nanoscale, 
here named nano-PFC, functioning as the oxygen shut-
tle, effectively relieved hypoxia microenvironment in the 
tumor associated with sensitized radiotherapy or photo-
dynamic therapy [18–20], and also mitigated the hypoxia 
in the diabetic foot ulcer associated with enhanced 
wound healing, as reported in our study [21]. Therefore, 
as a new generation of NDDSs, nano-PFC offers enor-
mous opportunities in enhancing bioavailability of drugs, 
prolonged half-life and targeted delivery for more poten-
tial applications.

The main objective of the current study was to verify 
the concept that nano-PFC could expediate bone frac-
ture healing progression, which would be ascribed to a 
direct targeting of nano-PFC on bone healing microen-
vironment and bone cells. Surprisingly, we uncovered 
that nano-PFC administration increased the soft callus 
formation, collagen synthesis and the levels of beneficial 
cytokines, which were indispensably involved in bone 
healing. Mechanistic studies unveiled that nano-PFC 
targeted osteoblastic precursors to drive their differen-
tiation and functions. Collectively, our results unearthed 
nano-PFC as promising nanomedicines in promoting 
bone fracture healing.

Materials and methods
Preparation and characterization of nano‑PFC
Nano-PFC was prepared by modified micro-emulsion 
method [21]. In brief, 150 μL perfluoro-15-crown-5-
ether (Fluorochem, UK) was added dropwise into 0.01 M 
phosphate-buffered saline (PBS, Solarbio, China) solu-
tion (4 mL) containing 1% Human serum albumin (HSA, 
Sigma-Aldrich, China). The mixed solution was vortexed 
for 10 s and emulsified with ultrasonic homogenizer (Sci-
entz-1200E, China) for 200 s [20]. Then, nano-PFC mate-
rials were obtained through centrifugation (8000 r/min, 
3 min), followed by washing. The size and morphology of 
nano-PFC were characterized by transmission electron 
microscope (TEM) (SU-8020, Hitachi, Japan) after nega-
tive staining using 1.5% phosphotungstic acid and Mal-
vern zetasizer (NANO ZS, UK).

Animal model of radius fracture
All animal experiments were approved by the Animal 
Ethics Committee of the Research Center for Eco-Envi-
ronmental Sciences, Chinese Academy of Sciences. Male 
New Zealand White rabbits (5 months, 2.5–2.9 kg) were 
purchased from the Xinglong Experimental Animal 
Farm (Beijing, China). The rabbit radial fracture model 
was established after anesthesia with 0.1% pentobarbital 
sodium (40 mg/kg). The bone gap in radius was created 
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using an orthopedic microelectric drill (Trauson Medi-
cal Instrument Co. Ltd, China). The diameter of the drill 
was 5 mm. Then, the wound was sutured after treatment 
with antibiotics [22]. The model rabbits were randomly 
divided into treatment group and control group. One 
week after operation, the rabbits were subjected to X-ray 
examination, and thereafter different treatments were 
carried out. The treatment group was intramuscularly 
injected with 5  μg/kg PFC weekly for the first 3  weeks, 
and the control group was injected with same weight 
saline. The intramuscular injection position was right 
within the fracture zones. Follow-up examinations were 
performed for 8 weeks.

H&E and Masson staining
After 8-week treatment, the rabbits were sacrificed, and 
tissue specimens surrounding fracture locations were 
collected for further analyses. Afterwards, specimens 
were subsequently fixed in 10% PBS-buffered formalde-
hyde, followed by decalcification, embedding and sec-
tioning. For H&E staining, the slides were incubated with 
hematoxylin (Solarbio, China) for 10 min and with Eosin 
(Solarbio, China) for 3 min, respectively. Thereafter, the 
slides were fixed with 70% ethanol for 20 s, 90% ethanol 
for 20 s, 100% ethanol for 60 s and xylene for 3 min. For 
Masson staining, the slides were stained with Weigert’s 
iron-hematoxylin (Solarbio, China) for 5  min, phospho-
molybdic–phosphotungstic acid (Solarbio, China) for 
45  s and a solution containing 1% orange G and 0.25% 
aniline blue (Solarbio, China) for 5 min. Next, these slides 
were rinsed with 1% acetate solution (Solarbio, China) 
and stained with 0.12% ponceau xylidine (Solarbio, 
China) for 20  min. After rinsing with 1% acetate solu-
tion, the slides were then incubated with 2.5% phospho-
tungstic acid (Solarbio, China) for 10 min, rinsed with 1% 
acetate solution, and dehydrated in ethanol and xylene. 
Histological images were collected through Pannoramic 
250 Flash III (3DHISTECH Ltd, Budapest, Hungary), and 
were analyzed by CaseViewer 2.3 and Image J software 
(National Institutes of Health, USA) accordingly.

Immunofluorescent staining
Fractured radius specimens were prepared for immu-
nofluorescent staining according to the standard pro-
tocol [23]. Briefly, the deparaffinized tissue sections in 
citrate buffer were heated at 95 °C for 10 min for antigen 
retrieval, followed by blocking for 1 h with 10% normal 
mouse serum. The primary antibodies were used against 
VEGF (dilution 1:50, Abcam, USA), MMP-9 (dilution 
1:100, Abcam, USA) and osteocalcin (10 μg/mL, Abcam, 
USA) at 4  °C overnight. Afterwards, the sections were 
incubated with the goat anti-mouse secondary antibody 
conjugated with FITC for 1  h at the room temperature. 

Finally, all slides were stained with 4′,6-diamidino-2-phe-
nylindole (DAPI). Images of immunofluorescent stain-
ing were collected through Pannoramic 250 Flash III, 
and analyzed by CaseViewer 2.3 and Image J software, 
respectively.

Cytotoxicity assay
Both RAW 264.7 and MG-63 cells were seeded into 
96-well plates (8000 cells/well) overnight. Thereafter, 
nano-PFC at different concentrations was used to treat 
cells for 24  h. Then, the cell viability was immediately 
assessed by Cell Counting Kit-8 (CCK-8, Solarbio, 1000T, 
China) assay following a standard protocol with 3 inde-
pendent experiments.

Osteoblast differentiation in vitro
Human MG-63 cells were obtained from the Ameri-
can Type Culture Collection (ATCC), and cultured with 
Minimum Essential Medium (MEM, GIBCO) containing 
10% fetal bovine serum (FBS, Hyclone) at 37 °C with 5% 
CO2. MG-63 cells were induced to differentiate under 
the conditioned medium with 50  μg/mL ascorbic acid 
(Sigma-Aldrich, China), 10  nM dexamethasone (R&D 
Systems, USA) and 20 nM β-glycerophosphate (R&D Sys-
tems, USA) for 7 days. To determine osteoblast matura-
tion, cells after treatment with different concentrations of 
nano-PFC were stained with alkaline phosphatase (ALP), 
following the instructions provided by the manufacturer 
(Nanjing jiancheng bioengineering institute, China). The 
ALP staining in osteoblasts was quantified by the Image J 
software.

Osteoclast differentiation in vitro
Mouse RAW 264.7 cells were also obtained from the 
ATCC and cultured with Dulbecco’s Modified Eagle’s 
Medium (DMEM, GIBCO), supplemented with 10% 
FBS (Hyclone) and 100 U/mL penicillin/streptomycin 
(Gibco). RAW 264.7 cells were induced towards mature 
osteoclasts by macrophage colony-stimulating factor 
(M-CSF, R&D Systems, USA) and receptor activator of 
nuclear factor kappa B ligand (RANKL, R&D Systems, 
USA) for 7  days, as described [24]. To determine the 
effects of nano-PFC on RAW 264.7 cell differentiation, 
cells after treatment with different concentrations of 
nano-PFC were stained with tartrate resistant acid phos-
phatase (TRAP), following the instructions provided by 
the manufacturer (Solarbio, China).

RT‑qPCR analysis
Total RNA was isolated from cells with Trizol reagent 
(Invitrogen, USA). The RNA concentration was meas-
ured with a nanodrop ND-1000 instrument (Thermo 
Fisher Scientific, USA). Total RNA (in 6 μg) was reversely 
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transcribed into cDNA with M-MLV reverse tran-
scriptase (Promega, USA). The expression levels of tar-
get genes were examined with the standard SYBR green 
qPCR system on a CFX96 real-time instrument (Bio-
Rad Inc., USA), as previously described [25]. Primers 
are listed in Additional file 1: Table S1. Here, β-actin was 
used as a loading control for normalization.

Statistical analysis
Statistical analyses were carried out using the independ-
ent t-test and one-way ANOVA with the SPSS Statistics 
17.0 software. All data are presented as mean ± standard 
error. Statistical significance is defined as P < 0.05 and 
P < 0.001.

Results and discussion
Characterization of nano‑PFC materials
HSA-stabilized nano-emulsion PFC materials, abbrevi-
ated as nano-PFC, were prepared by micro-emulsion 
method under ultrasonication. As the diameter of bone 
sinusoids is roughly 80–100  nm, we deliberately fabri-
cated the size of our nano-PFC to be around 80 nm. As 
characterized by TEM analysis in Fig. 1a, our nano-PFC 
particles displayed a uniform size distribution with an 
average diameter of approximately 80  nm (Fig.  1b). We 
also measured the size distribution profile of nano-PFC 
by DLS, as shown in Additional file  1: Figure S1. This 
hydrodynamic size was calculated to be about 100  nm, 
which was slightly larger than the results determined by 
TEM, which should be ascribed to the formation of the 
hydrodynamic shell, as demonstrated previously [26, 27]. 
The real size of nanoemulsion droplets can be measured 
unbiasedly by TEM and DLS, which together offer a more 
detailed insight into droplet size distribution. Together 
our nano-PFC realized a suitable size for extravasation 
towards bone microenvironment.

Nano‑PFC accelerated bone fracture healing in a rabbit 
model
To interrogate the promoting effects of nano-PFC on 
bone fracture healing, we first established a model using 
rabbits (Fig. 2a), as established in previous reports [28]. 
The rabbit model provides a more accurate system to 
study both phenotype changes and mechanisms, as these 
purposes could be readily reached in the mouse model 
that is limited by operational difficulty and insufficient 
specimens [29]. As shown in Fig.  2b, the X-ray images 
manifested that radius fracture was successfully cre-
ated in our rabbits, where even gaps (~ 5 mm in width) 
were defined in radii. Since nano-PFC could be metabo-
lized through bone sinusoids, animals were therefore 
locally administrated with nano-PFC once a week for 
3 weeks (Fig. 2a). As shown in Fig. 2b, as the treatment 

progressed, significant calluses were gradually gener-
ated in the osteotomized bones over time in all animals. 
Strikingly, a remarkable difference was found between 
nano-PFC-treated rabbits and untreated control (Fig. 2b). 
Compared to untreated rabbits, the callus formation was 
greatly enhanced in treated animals, as reflected by the 
radial radiographs (Fig.  2b), suggesting reinforced bone 
healing in the osteotomized zones upon nano-PFC treat-
ment. Quantitative evaluation, through determining the 
Femandez-Esteve and Lane-Sandhu scores, as established 
previously [30], showed rapid initiation of bone forma-
tion in nano-PFC treated animals within 3  weeks post 
treatment, in that considerable Femandez-Esteve and 
Lane-Sandhu scores were observed in treated group on 
2 and 3 weeks after administration in comparison to no 
score in untreated control (Fig.  2c, d). Moreover, con-
secutively enhanced bone healing was found in the frac-
tured zones over the time course from 6 to 8 weeks after 
nano-PFC administration, compared to control group 
(P < 0.05). Of note, nearly absolute fusion was observed 
in truncated bone ends after 8-week treatment in nano-
PFC-treated animals, as reflected by the X-ray images 
(Fig. 2b).

To corroborate the accelerated bone healing induced 
by nano-PFC, we further probed into the fracture regions 
through histological examination when animals were 
sacrificed after 8-week treatment. As shown in Fig.  3a, 
the H&E staining results showed massive localization of 
bone callus into truncated areas with complete filling of 
the gaps in nano-PFC-treated radii, in contrast to mild 
growth of bone callus into truncated sites with obvi-
ous crevices left between two broken ends in untreated 
control. These morphological differences signified the 
important contribution of nano-PFC to improving bone 
callus formation and growth into broken microenviron-
ments. To substantiate this contribution of nano-PFC, 
the main component of bone callus, type I and type 
Ш collagen [31], was assessed through Masson stain-
ing (Fig.  3b). Our results displayed marked intrusion 
of collagen into fractured sites with dark blue color for 
treated animals; however, only mild collagen accumula-
tion with light blue staining was found in untreated con-
trol (Fig. 3b). Quantitative analysis of the total regions of 
Masson staining determined by Image J software recog-
nized more than twofold elevation of collagen intensity 
for treated rabbits relative to untreated ones (Fig. 3b, the 
right panel, P < 0.001). Noteworthily, nano-PFC-treated 
specimens showed more active bone tissue remodeling 
within the medullary canal with significant formation of 
trabeculae in treatment group, compared to untreated 
group (Fig.  3b). Consistent with the results from the 
radiographs (Fig. 2), these observations revealed that that 
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nano-PFC significantly accelerated the bone repair and 
tissue remodeling in the rabbits with radial fractures.

Increased bone formation activities in fractured zones 
in response to nano‑PFC
In fact, a few studies have documented that nanomateri-
als (such as silica nanoparticles [32], gold nanoparticles 
[33] and nano tantalum implants [34]) could promote 
osteoblast differentiation and mineralization irrespective 
of exogenous growth factors. Inspired by the above find-
ings on enhanced bone healing responding to nano-PFC, 
we intended to investigate the molecular events reflec-
tive of bone formation activities. Matrix metalloproteins 
(MMPs), in particular MMP-9, is closely implicated in 
the modulation of bone formation through finetuning 
the intricate balance between osteoblastic and osteoclas-
tic activities [35]. MMP-9 regulates the bioavailability 
and bioactivity of transforming growth factor-β (TGF-
β), RANKL and parathyroid hormone related protein 
(PTHrP), especially in response to altered conditions of 
bone homeostasis [36, 37]. Moreover, numerous stud-
ies also evidence MMP-9 as a critical regulator for the 
activation of the cascade of various MMPs and result-
antly bone formation due to its regulation on the osteo-
blastic and osteoclastic activities [38]. To determine the 
levels of MMP-9 in repaired zones, immunofluorescent 
staining was performed. As shown in Fig.  4a, largely 
increased fluorescence (in red) was observed in the spec-
imens from nano-PFC-treated animals in comparison to 

untreated control. Quantified data found more than two-
fold increase of fluorescent intensity in nano-PFC treated 
specimens, compared to untreated control (Fig. 4b).

Moreover, vascular injuries coupled to fracture lead to 
an ischemic environment [39, 40]. Whereby, insufficient 
blood supply seriously hinders the healing of the fracture. 
The hypoxic environment at the site of fracture, created 
by ischemia, would provoke cell death, delay chondro-
cyte and osteoblast differentiation, and therefore block 
fracture healing [41–43]. Based on previous reports 
[44, 45], VEGF is secreted by osteoblasts, chondrocytes 
endothelial progenitor cells (EPCs) and mesenchymal 
progenitors, and VEGF has been demonstrated to play 
a crucial role in the progress of fracture healing through 
promoting the invasion of vessels, functioning to allevi-
ate the hypoxic microenvironment [46], and improving 
biogenesis of vascularized osseous tissue [47, 48]. More 
importantly, several research groups demonstrated that 
the highest expression levels of osteoblast-derived VEGF 
were found at the late differentiation stage [49, 50]. 
Moreover, MMP-9-mediated matrix degradation actually 
contributes to triggering the release of VEGF from the 
cartilage matrix, and consequently enhances the vascular 
invasion into growing bone microenvironment [51]. In 
analogy to the change of MMP-9, the level of VEGF was 
also largely induced by nano-PFC compared to untreated 
control, as characterized by immunofluorescent staining 
(Fig. 4a). Approximately twofold induction of VEGF level 
was found in nano-PFC-treated specimens, compared to 

Fig. 1  Characterization of nano-PFC. a A representative TEM image of HSA-stabilized nano-PFC with an insert showing their microstructure. b The 
size distribution profile of nano-PFC based on the TEM analysis with a Gaussian fit curve in the histogram
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Fig. 2  Nano-PFC functions to accelerate bone fracture healing. a A flow chart showing the overall experimental procedure. b The radial 
radiographs of representative animals in each group showing the healing progression over time (n = 3). Red arrowheads point at the fracture 
regions. c Femandez-Esteve and d Lane-Sandhu scores for the quantitative determination of bone healing progression. #P < 0.001, compared to the 
control group at the according time points
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untreated specimens, as reflected by the quantitative data 
(Fig.  4b, P < 0.05). Based on above findings, we specu-
lated that the nano-PFC with high oxygen affinity, upon 
injection into the fracture site, might allow more oxygen 

to be delivered and stored at the site of the fracture, and 
thereby promote osteoblastic differentiation and func-
tions through improving the hypoxic environment [42]. 
To this end, the elevated oxygen would further accelerate 

Fig. 3  H&E and Masson staining of fracture zones after nano-PFC treatment. Radius were harvested from fracture regions from rabbits 8 weeks post 
operation. Representative images of a H&E staining and b Masson staining for each group. Circles indicate the visualization of fractured zones. The 
intensity of Masson staining was quantified for each group (n = 3). The scale bar is 2 cm
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osteoblast differentiation, and then increase the levels 
of osteoblast activity-related proteins (e.g., MMP-9 and 
VEGF), resulting in promoted fracture healing. In a word, 
the oxygen supply, benefiting from nano-PFC with high 
oxygen affinity, played an indispensable role in the pro-
cess of fracture healing.

Further, we attempted to look into the priming state of 
osteoblasts, which could more realistically identify the 
bone formation activity. As a most representative surro-
gate, osteocalcin, as a noncollagenous protein in bone, is 
produced by osteoblasts and is defined to be a marker in 
recognizing bone formation due to its role in mineraliza-
tion and calcium ion homeostasis [52, 53]. Additionally, 
osteocalcin is also necessary in bridging calluses [54]. 
Figure  4a exhibits massive osteocalcin accumulation in 
the healing regions from nano-PFC-administrated ani-
mals, as evidenced by considerable immunofluorescent 

staining, in contrast to slight staining in untreated 
animals. Furthermore, quantitative analysis unveiled 
the increase of fluorescent intensity by nearly 3 times 
(Fig. 4b). To this end, it would be concluded that nano-
PFC greatly elevated the priming state of osteoblasts by 
reinforcing their activities and functions.

Nano‑PFC mechanistically promotes the osteoblastic 
differentiation and functions
Our above results collectively unearthed nano-PFC-
induced strong effects on bone formation, which could 
be ascribed to altered activities of both osteoblasts and 
osteoclasts. These encouraging results incited us to figure 
out the target cells and according molecular mechanisms. 
For this purpose, we studied the likely influences of nano-
PFC on osteoblasts and osteoclasts. Bone formation is 
essential for fracture healing, in which osteoblasts drive 

Fig. 4  Immunofluorescent analysis of fracture zones after nano-PFC treatment for 8 weeks. a Representative immunofluorescent images of 
specimens with staining against MMP-9, VEGF and osteocalcin (in red). Meanwhile, nuclei are counter stained with DAPI (in blue). The scale bar is 
2 cm. b Comparison of relative fluorescent intensity (n = 3). *P < 0.05, compared to the control group
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this process through secreting mineralization-related fac-
tors (e.g., ALP) on the surface of bone tissue [55]. Thus, 
to explore this likelihood in osteoblasts, a commonly 

used cell line, MG-63, representative of osteoblast pro-
genitor, was employed for the study of osteoblastic dif-
ferentiation and functions upon nano-PFC in vitro [56]. 

Fig. 5  Nano-PFC accelerates the differentiation of MG-63 cell-derived osteoblasts. a Schematic illustration of MG-63 cell-induced differentiation 
under conditioned medium. b–f Evaluation of MG-63 cell differentiation towards osteoblasts using representative marker genes including ALP, 
AKT, OPG, OPN and RUNX2 after 7 days induction with or without nano-PFC treatment at various concentrations (n = 6). *P < 0.01 and #P < 0.001, 
compared with the control group
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To initiate osteoblastic differentiation, MG-63 cells were 
induced in the presence of ascorbic acid, dexamethasone 
and β-glycerophosphate (as delineated in Fig. 5a), which 
mimic bone healing microenvironments in vitro [57]. To 
find out the desirable non-toxic concentrations of nano-
PFC in MG-63 cells, we first screened the cell viability 
of MG-63 cells. As shown in Additional file  1: Figure 
S2, nano-PFC did not incur significant toxicity towards 
MG-63 cells even up to 12 μg/mL, as determined by the 

CCK-8 method, indicating marked biocompatibility and 
biosafety of nano-PFC in MG-63 cells. Upon induction of 
MG-63 cells in conditioned medium, successful differen-
tiation of MG-63 cells was identified, as evidenced by the 
signification induction of gene expression for a number of 
osteoblast biomarkers including ALP, bone gamma-car-
boxyglutamate protein (BGLAP), osteoprotegerin (OPG), 
osteopontin (OPN) and runt-related transcription factor 
2 (RUNX2) determined by RT-qPCR (Additional file  1: 

Fig. 6  ALP determination of MG-63 cell-derived osteoblasts with or without nano-PFC treatment. a Representative images of ALP staining after 
nano-PFC treatment at different concentrations for 7 days. Blue arrowheads indicate positive ALP staining in mature osteoblasts. The scale bar is 
100 μm. b Quantified data of ALP staining. #P < 0.001, compared with the control group
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Figure S3, P < 0.001). ALP, a homodimeric protein with 
phosphorylating feature, is a typical marker of osteo-
blast differentiation, which is expressed in 1–2  week of 
osteogenic stage and functions to implement a stimulat-
ing effect on tissue mineralization [58]. Phosphoinositide 
3-kinase and protein kinase B signaling pathway (PI3K/
AKT) can enhance normal skeleton formation through 
regulating osteoblast differentiation and homeostasis 
[59]. BGLAP and OPN represent specific non-collagen 
bone matrix proteins that are synthesized and secreted 
by mature osteoblasts [60, 61]. Among them, OPG is a 

glycoprotein that is primarily synthesized by osteoblasts, 
and it acts to inhibit osteoclastic differentiation and bone 
resorption activity through binding to RANKL [62]. 
Moreover, osteoblast progenitors are induced to differ-
entiate into mature osteoblasts under the driving force of 
transcription factors, in particular RUNX2, followed by 
extracellular matrix deposition and mineralization, which 
is indispensable for the integration of new bone compo-
nents into the fracture site [63]. Of note, oxygen avail-
ability at the fracture site is a key regulator of osteoblast 
differentiation [64]. The elevated oxygen can significantly 

Fig. 7  Evaluation of RAW 264.7 cell differentiation towards osteoclasts. a Schematic illustration of RAW 264.7 cell induction towards osteoclasts 
under conditioned medium. b Morphological characterization of RAW 264.7 cell differentiation towards osteoclasts upon nano-PFC at various 
concentrations for 7 days. The scale bar is 100 μm. Red arrowheads indicate mature osteoclasts
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increase RUNX2 expression, which further promotes the 
local mass of VEGF and thus vascular invasion for the 
fracture repair and new tissue growth [65, 66]. RUNX2 
is a crucial transcription factor in promoting osteoblast 
differentiation by enhancing the expression of impor-
tant osteoblastic genes including ALP, AKT, BGLAP and 
OPN [67]. In analogy to the in vivo findings (Fig. 5), upon 

nano-PFC induction, an overall dose-dependent increase 
of these genes were observed (P < 0.05), and the greatest 
induction was found in cells upon the highest concentra-
tion at 12  μg/mL, with two to fourfold increase relative 
to untreated cells (Fig. 5b–f, P < 0.001). Greater activities 
of osteoblast, together with high expression of differen-
tial biomarker, indicate that nano-PFC expedited fracture 

Fig. 8  Determination of RAW 264.7 cell differentiation towards osteoclasts using representative marker genes. a CA-II, b NFATC, c TRAP, d MMP-9 
and e CTSK were determined using RT-qPCR in induced cells after 7-day treatment with nano-PFC at various concentrations (n = 6)
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healing by improving osteogenesis of osteoblast. To con-
firm these results, ALP staining was carried out at the 
end of induction for 7  days. Figure  6a displays positive 
staining (in brown) of ALP for all cells cultured in condi-
tioned medium; however, even darker color was observed 
in nano-PFC-treated cells, particularly at higher concen-
trations. Quantification showed approximately two and 
threefold increase of ALP staining upon nano-PFC at 
6 and 12  μg/mL, respectively (Fig.  6b). Together, these 
results unveiled the outstanding capability of nano-PFC 
to induce osteoblast differentiation and bone formation 
functions. 

Nano‑PFC elicited no effect on osteoclastic differentiation 
and activity
Next, we also endeavored to interpret the possible 
impact of nano-PFC on osteoclastic differentiation and 
bone resorption. In the process of bone remodeling, 

osteoclasts indispensably account for bone resorption 
by cleaving bone matrix by secreting H+ and enzymes, 
which is also critical for fracture healing [68]. With-
out orchestrated osteoclastic activities, in other words, 
either aggressively overactivated osteoclasts or impaired 
osteoclast would undermine concerned bone recon-
struction program [61, 69]. Under this context, balanced 
interplay between osteoblasts and osteoclasts is of great 
importance in modulating normal bone homeostasis 
and remodeling. Similar to the studies on osteoblasts, a 
widely recognized osteoclast cell line, RAW 264.7, was 
used for the determination of osteoclast differentiation 
under conditioned medium with M-CSF and RANKL (as 
depicted in Fig. 7a) [70]. Consistent with previous stud-
ies [71], RAW 264.7 cells were successfully induced into 
mature osteoclasts under conditioned culture medium, 

Fig. 9  Examination of TRAP activity. a Representative images of TARP staining of nano-PFC-treated cells at different concentrations for 7 days 
in comparison to untreated cells. The scale bar is 100 μm. Red arrowheads indicate mature osteoclasts. b Quantitative analysis of TARP staining 
showing the number of mature osteoclasts. The number of mature osteoclasts were counted in each random field (n = 8)
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as reflected by the remarkable induction of representa-
tive osteoclastic markers including carbonic anhydrase II 
(CA-II) [72], nuclear factor of activated T-cells (NFATC) 
[73] and TRAP [74], as determined by RT-qPCR (Addi-
tional file 1: Figure S4, P < 0.001). Moreover, morphologi-
cal changes also verified the maturation of RAW 264.7 
cells into osteoclasts, such as multinucleated osteoclast-
like cells with larger size, as reported [75], as shown in 
Fig. 7b.

Afterwards, the cytotoxicity of nano-PFC was assayed 
in RAW 264.7 cells through the method of CCK-8. As 
shown in Additional file 1: Figure S5, very different from 
MG-63 cells, cyto-compatibility was demonstrated in 
RAW 264.7 cells at relatively low concentrations. Under 
this setting, low-dose exposure was performed in RAW 
264.7 cells. We further researched osteoclast differen-
tiation in RAW 264.7 cells after Nano-PFC treatment 
through the evaluation of a number of osteoclastic hall-
marks by RT-qPCR. As shown in Fig.  8, no significant 
induction of these osteoclastic hallmarks was observed 
in RAW 264.7 cells upon nano-PFC at various con-
centrations, including CA-II, NFATC, TRAP, MMP-9 
and cathepsin K (CTSK). To substantiate these data, 
TRAP staining was further determined in nano-PFC-
treated cells in comparison to untreated cells. As shown 
in Fig.  9, very clear TRAP+ multinucleated cells were 
observed under induced conditions; however, no differ-
ence was found for the number of TRAP+ multinucleated 
cells upon nano-PFC treatment, compared to untreated 

cells (Fig.  9b). Consistently, phase-contrast micros-
copy unraveled pronounced multinucleated cells upon 
induction, but no significant variation was observed in 
response to nano-PFC treatment at different concentra-
tions (Fig. 9a). Collectively, our data suggested that nano-
PFC did not target osteoclast precursors, but rather acted 
to promote osteoblastic differentiation and activation 
during the process of fracture healing.

Conclusions
Enhanced bone healing is a great challenge in orthope-
dics, coupled with unsolved questions on the strategies 
of targeting drugs towards bone microenvironment or 
osteoblasts with less adverse side effects and clinical 
complications. In this study, PFC, a clinically approved 
drug, was nanosized to nanomedicines in addressing 
this challenge. Our nano-PFC nanomedicines were fab-
ricated to fit the right size of bone sinusoids in order 
for perfect effectively localization within bone frac-
ture sites. Consistent data uncovered that nano-PFC 
greatly accelerated bone fracture healing in a rabbit 
model. Mechanistic studies unraveled that nano-PFC 
functioned to greatly enhance the local concentrations 
of VEGF, MMP-9 and osteocalcin within the fracture 
microenvironment, and these factors acted together to 
stimulate bone repair and remodeling (Fig.  10). More-
over, our results uncovered that nano-PFC targeted 
osteoblasts to induce their differentiation and functions 
that are necessary for new bone formation. An overall 

Fig. 10  A proposed schematic diagram deciphering nano-PFC-promoted bone fracture healing



Page 15 of 17Wang et al. J Nanobiotechnol           (2020) 18:84 	

proposed schematic delineating nano-PFC-promoted 
bone fracture healing is illustrated in Fig. 10. Together, 
this study unearthed a remarkable potential of nano-
PFC in efficiently facilitating bone fracture healing 
progress.
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