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Abstract. The synthetic peptide Gly-Arg-Gly-Asp-Ser 
(GRGDS) mimics the cellular binding site of many 
adhesive proteins in the extraceUular matrix and 
causes rounding and detachment of spread cells. We 
have studied whether its binding affects the associa- 
tions of two major components, alpha-actinin and vin- 
culin, at the adhesion plaque. Living 3T3 cells were 
microinjected with fluorescently labeled alpha-actinin 
and/or vinculin and observed using video microscopy 
before and after the addition of 50 I~g/mi GRGDS. As 
soon as 5 min after treatment, fluorescent alpha- 
actinin and vinculin became dissociated simultaneously 

from the sites of many focal contacts. The proteins ei- 
ther moved away as discrete structures or dispersed 
from adhesion plaques. As a result, the enrichment of 
alpha-actinin and vinculin at these focal contacts was 
no longer detected. The focal contacts then faded away 
slowly without showing detectable movement. These 
data suggest that the binding state of integrin has a 
transmembrane effect on the distribution of cytoskeletal 
components. The dissociation of alpha-actinin and vin- 
culin from adhesion plaques may in turn weaken the 
contacts and result in rounding and detachment of 
cells. 

T 
rtE interactions between the cell surface and the ex- 
tracellular matrix (ECM) ~ affect many fundamental 
properties of the cell, such as shape, locomotion, 

growth, and differentiation (for reviews see Ruoslahti and 
Pierschbacher, 1987; Burridge, 1986; Buck and Horwitz, 
1987). However, it is not clear how the effects of these inter- 
actions are transmitted across the plasma membrane. 

One possible way for the ECM to exert its effect is through 
the cytoskeleton. There is accumulating evidence that the 
ECM may interact with the microfilament system. For exam- 
ple, the distribution of fibronectin bundles on the surface of 
cultured fibroblasts correlates closely with the distribution of 
intracellular actin filament bundles (stress fibers; Hynes and 
Destree, 1978; Singer, 1979). In addition, focal contacts, 
where cultured cells make an extremely close adhesion with 
the substrate, contain not only ECM receptors, but also ac- 
tin, alpha-actinin, vinculin, and talin (Burridge, 1986; Kelly 
et al., 1987). Consistent biochemical observations indicat- 
ing direct associations of fibronectin receptors and talin 
(Horwitz et al., 1986) have also been reported. Thus an at- 
tractive hypothesis is that the binding of the ECM may cause 
changes in their receptors, which in turn affect the organiza- 
tion of membrane-associated cytoskeletal components. 

One approach to this question is to manipulate the associa- 

1. Abbreviations used in this paper: ECM, extracellular matrix; IRM, inter- 
ference reflection microscopy. 

tion of the cell with the ECM and examine the effects on the 
distribution of structural components, such as alpha-actinin 
and vinculin, that are normally enriched at the cytoplasmic 
side of focal contacts (referred to as the adhesion plaque in 
this article). Recent studies indicate that the cellular associa- 
tion of many ECM proteins can be disrupted with a synthetic 
peptide, Gly-Arg-GIy-Asp-Ser(GRGDS), which mimics a 
cellular binding domain of these proteins (Ruoslahti and 
Pierschbacher, 1987; Yamada and Kennedy, 1987). After a 
brief treatment of cultured fibroblasts with this peptide, the 
colocalization of GRGDS-binding receptors, referred to as 
integrins, with extracellular fibronectin fibers becomes pro- 
gressively lost (Chen et al., 1986). However, little is known 
about the organization of cytoskeletal proteins in the adhe- 
sion plaques during this process; specifically, whether they 
remain associated with focal contacts and with each other. 

In this study, we examined the organization of alpha-actinin 
and vinculin at adhesion plaques after a brief treatment of 
GRGDS. To study directly the sequence of events in living 
cells, we have microinjected cells with functional fluorescent 
analogues of vinculin and alpha-actinin. The cells were then 
observed before and after the addition of GRGDS using fluo- 
rescence and interference reflection microscopy (IRM). Our 
data indicated that the peptide induces a rapid, simultaneous 
dissociation of alpha-actinin and vinculin from the sites of 
focal contacts well before the disappearance of the contacts 
themselves. 
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Materials and Methods 

Cell Culture and Protein Preparation 

Swiss 31"3 cells (American Type Culture Collection, RockviUe, MD) were 
grown in DME (KC Biological Inc., Lenexa, KS) supplemented with 10% 
calf serum (Colorado Serum Co., Denver, CO), 50 U/ml penicillin, 50 
i.tg/ml streptomycin, and 2 mM L-glutamine. Cells were plated onto injec- 
tion dishes (Wang, 1984) 2-3 d before experiments. 

Alpha-actinin and vinculin were purified from turkey gizzards as de- 
scribed previously (Meigs and Wang, 1986). Alpha-actinin was labeled with 
tetramethylrhodamine iodoacetamide or with 5-iodoacetarnidofluorescein 
(Molecular Probes, Inc., Junction City, OR; Meigs and Wang, 1986). The 
conjugate had a final concentration of 5.0 mg/ml and an estimated labeling 
ratio of 0.7-1.3 fluorophore per 100,000-D polypeptide. 

Vinculin was labeled with TRITC (10% on celite; Research Organics, 
Inc., Cleveland, OH) by mixing equal volumes of vinculin (1.0 rag) and 200 
mM potassium borate buffer, pH 9.0, and then adding 1.2 nag of TRITC on 
celite. The mixture was stirred at 0°C for 2 h and clarified in a rotor (model 
42.2 Ti; Beckman Instruments, Inc., Palo Alto, CA) at 100,000 g for 20 min 
to remove celite. An equal volume of 100 mM lysine in borate buffer was 
added to the mixture to quench the reaction. The mixture was incubated on 
ice for 2 h before it was applied to a 0.7 x 15-cm column of Bio-Beads SM-2 
(Bio-Rad Laboratories, Richmond, CA) and eluted with 2 mM Tris, pH 8.5. 
Fluorescent fractions were pooled and concentrated in a Centricon-30 
(Amicon Corp., Danvers, MA). The protein solution was then dialyzed 
against 2 mM Pipes, 0.1 mM dithiothreitol (DTT), pH 6.95. The protein 
conjugate had a final concentration of 4.0-5.0 mg/ml and a final dye to pro- 
tein molar ratio of 0.6-1.5 using a molar extinction coefficient of 55,000 at 
555 nm for bound tetramethylrhodamine. 

Microinjection and Microscopy 
Cells were cultured on the microscope stage and microinjected as described 
previously (Wang, 1984). Fluorescence microscopy, IRM, and digital im- 
age processing were performed as in previous studies (Meigs and Wang, 
1986). A Zeiss Neofluar 63x objective (NA 1.25) was used for all experi- 
meats. 

Application of Synthetic Peptides to Living and 
PermeabUized Cells 
All synthetic peptides were obtained from Peninsula Laboratories, Inc. 
(Belmont, CA) and stored lyophilized at -20°C. Before applying the pep- 
tides to microinjected living cells, fluorescence and IRM images were 
recorded. Culture medium was then removed and replaced with medium 
containing 50 Ixg/ml of resuspended peptide without moving the culture dish 
from its initial position on the microscope stage. Subsequent images were 
recorded at various time intervals depending upon how quickly the cell 
responded to treatment. 

Experiments involving permeabilized cells and isolated membranes were 
performed by first microinjecting living cells with fluorescent alpha-actinin 
or vineulin. Cells were then permeabilized by incubating in a buffer of 50 
mM 2-(N-morpholino)ethane sulfonic acid (MES), 3 mM EGTA, 5 mM 
MgCI2, 0.5% Triton X-100, pH 6.0 for 2 min (Avnur et al., 1983). Isolated 
membranes were prepared after the ZnC12 method of Avnur et al. (1983). 
Addition of peptides was performed as described for living cells with the 
exception of resuspending the peptides in the membrane isolation buffer or 
the permeabilization buffer without Triton. 

Results 

Fluorescent analogue cytochemistry (Wang et al., 1982) was 
used to examine the distribution of alpha-actinin and vinculin 
in living cells before and after the treatment of GRGDS. As 
in previous studies (Meigs and Wang, 1986), the fluorescent 
analogues became incorporated into adhesion plaques within 
1 h of microinjection into 3T3 cells. Before treatment with 
GRGDS, there was a close correlation between the distribu- 
tion of focal contacts, as revealed by IRM, and the distribu- 
tions of alpha-actinin and vinculin (e.g., Fig. 1, a and b; see 
Fig. 3, a and b). In addition, most adhesion plaques showed 
no detectable translocation over a period of at least 20 min. 

The addition of GRGDS caused rounding and eventual 
detachment of the cell from the substrate. At a concentration 
of 50 Ixg/ml, GRGDS induced a gradual response and al- 
lowed intermediate steps to be observed. Complete rounding 
generally occurred between 20 and 30 min but varied from 
cell to cell. 

We were first interested in the possible changes of alpha- 
actinin near the sites of focal contacts before cell rounding 
took place. Two major types of response were observed. In 
the first case, alpha-actinin at adhesion plaques moved to- 
ward the center of the cell as discrete structures (Fig. 1, a, 
c and e; see also Fig. 5). As a result, alpha-actinin-contain- 
ing structures appeared separated from the corresponding fo- 
cal contacts (Fig. 1, g and h; see also Fig. 5). The distance 
between the two can reach 3-5 ~tm within 10 min of treat- 
ment. The focal contacts faded gradually. However, many 
remained detectable until the cell rounded up (Figs. 1 f a n d  
2 f ) .  

In a second type of response, alpha-actinin dispersed away 
from adhesion plaques (Fig. 2, a, c and e), while focal con- 
tacts persisted longer (Fig. 2, b, d, and f ) .  As in the first type 
of response, the affected focal contacts lost their characteris- 
tic enrichment of alpha-actinin and faded gradually. By fol- 
lowing the distribution of alpha-actinin in 152 adhesion 
plaques located near the periphery of 14 cells, we found 63 
showing the movement (41%), 24 showing the dispersion 
(16%), 34 showing both responses simultaneously (22%), 
and 31 showing no apparent change (21%). 

We have also examined the distribution of vinculin after 
the addition of GRGDS. Vinculin, like alpha-actinin, either 
moved away from the sites of focal contacts as discrete struc- 
tures (Fig. 3; see also Figs. 4 and 5) or dispersed from adhe- 
sion plaques (Fig. 5). By following 387 vinculin-labeled pe- 
ripheral adhesion plaques in 18 cells, we found 141 showing 
movement (36%), 58 showing dispersion (15 %), 74 showing 
both responses (19%), and 114 showing no apparent change 
(29%). 

Direct correlation of the two proteins was performed with 

Figure 1. GRGDS-induced movement of alpha-actinin-containing structures. Fluorescein-labeled alpha-actinin was microinjected into 3T3 
cells where it became localized in stress fibers and adhesion plaques. Fluorescence images were recorded before (a), and 1 (c) and 8 (e) 
min after the addition of 50 Ixg/ml GRGDS. Corresponding IRM images (b, d, and f )  were taken within 1 min of recording the alpha-actinin 
images. As the cell starts to respond (c), alpha-actinin-containing structures (arrows) move toward the center of the cell, while the corre- 
sponding focal contacts remain virtually unchanged (b and d, arrowheads). As alpha-actinin continues to move away from the cell edge 
(e, arrow), focal contacts remain stationary but appear to fade gradually (f ,  arrowhead). The location of the focal contact is indicated 
on alpha-actinin images (c and e, arrowheads). To facilitate the visualization of the movement of alpha-actinin relative to focal contacts, 
a superimposed image of a and b is shown in g and a superimposed image of e and f is shown in h. Bar, 10 txm. 
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Figure 2. GRGDS-induced dispersion of alpha-actinin from adhesion plaques, Fluorescein-labeled alpha-actinin was micminjected into 
3T3 cells where it became localized in adhesion plaques. Fluorescence images were recorded before (a), and 6 (c) and 20 (e) min after 
the addition of 50 Ixg/ml GRGDS. Corresponding IRM images (b, d, and f )  were taken within I min of recording the alpha-actinin images. 
Alpha-actinin gradually disappears from the adhesion plaques (arrows). Concentration of alpha-actinin at adhesion plaques is no longer 
detected at the last time point, while the IRM patterns undergo little changes (arrowheads). Bar, 10 ~tm. 

cells injected sequentially with fluorescein-labeled alpha- 
actinin and rhodamine-labeled vinculin. As shown in Fig. 4, 
both proteins moved simultaneously away from their original 
sites after GRGDS treatment. Fig. 5 shows both simultane- 
ous movement and simultaneous dispersion of the two pro- 
teins from adhesion plaques. These results suggested that 
vinculin and alpha-actinin molecules probably dissociated 
from focal contacts as a complex. 

To determine whether similar responses can be repro- 
duced in a model system, we applied the peptide to permea- 
bilized cells and isolated membranes, which were prepared 
without disturbing the focal contacts and membrane-asso- 
ciated vinculin and alpha-actinin (Avnur et al., 1983). As 
shown in Fig. 6, no change in alpha-actinin or vinculin orga- 
nization was observed in permeabilized cells after treatment 
with GRGDS, indicating that intact cells or extractable com- 
ponents were required for the responses. An identical result 
was obtained with isolated membranes. 

Control experiments were pert0rmed with related pep- 

tides, Gly-Arg-Gly-Asp and Gly-Arg-Gly-Glu-Ser-Pro, which 
have a much weaker effect compared to GRGDS (Yamada 
and Kennedy, 1987). Little effect on alpha-actinin and vincu- 
lin was detected over the first 20 min when GRGDS usually 
produced dramatic effects (Fig. 7). With prolonged expo- 
sure, slow reorganizations qualitatively similar to those in- 
duced by GRGDS were observed. However, detachment of 
cells did not occur over several hours. 

Discuss ion  

The ability of GRGDS to induce rounding and detachment 
of cultured cells has been described previously (Chen et al., 
1986). The mechanism probably involves a competitive 
binding against a wide spectrum of ECM proteins, including 
fibronectin, laminin, vitronectin, and type I collagen (Yama- 
da and Kennedy, 1987) for their integrin receptors. The per- 
turbation of the binding of these proteins eventually leads to 
the detachment of the cell from the substrate. 
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Figure 3. GRGDS-induced movement of vinculin plaques. Rhodamine-labeled vinculin was microinjected into 3T3 cells where it became 
localized in the adhesion plaques. Fluorescence images were recorded before (a), and 3 (c) and 5 (e) min after the addition of 50 gg/ml 
GRGDS. Corresponding IRM images (b, d, and f )  were taken within 1 min of recording the vinculin images. The fluorescent vinculin, 
which remains in discrete plaques (arrows), moves away from the edge toward the center of the cell, while the focal contacts, as shown 
in IRM images, remain stationary (arrowheads in b, d, and f) .  The position of focal contact is also indicated on the vinculin image (e, 
arrowhead). Bar, 10 I.tm. 

The present results indicate that one of the early responses 
induced by GRGDS is a depletion of  alpha-actinin and vincu- 
lin from the sites of  focal contacts. This was then followed 
by a gradual disappearance of  the contact structures. AI- 

though we have observed two different patterns of  dissocia- 
tion, dispersion and movement as discrete structures, a com- 
mon mechanism may be involved and the pattern may be 
determined by the local environment of  the adhesion plaque. 
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Figure 4. Simultaneous movement of vinculin- and alpha-actinin-containing structures after the addition of GRGDS. Fluorescein-labeled 
alpha-actinin and rhodamine-labeled vinculin were microinjected into 3T3 cells where they became colocalized in adhesion plaques as 
identified by IRM (not shown). Images of alpha-actinin images were recorded before (a), and 1 (c) and 3 (e) min after the addition of 50 
~tg/ml GRGDS. Corresponding vinculin images (b, d, and f )  were taken within 1 min of recording the alpha-actinin images. Alpha-actinin 
(arrows) and vinculin (arrowheads) move together away from their original positions. Bar, I0 lam. 

For example, local tension or contractile forces may cause 
detached structures to move toward the same direction as an 
aggregate. 

Similar dissociations of alpha-actinin or vinculin have 
been observed under other conditions. For example, when 
cells were treated with a tumor-promoting phorbol ester, 
alpha-actinin and stress fibers became dissociated from the 

focal contacts (Meigs and Wang, 1986). However, unlike the 
present case, vinculin stayed with the residual focal contacts 
for a longer period of time. In another experiment, Herman 
and Pledger (1985) observed that platelet-derived growth 
factor induced a rapid depletion of vinculin from adhesion 
plaques, whereas talin, also a component of the adhesion 
plaque, was unaffected. 
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Figure 5. Simultaneous movement and dispersion of vinculin and alpha-actinin after the addition of GRGDS. Rhodamine-labeled vinculin 
and fluorescein-labeled alpha-actinin were microinjected sequentially into 3T3 cells where they became colocalized in adhesion plaques 
as identified by IRM (e and f) .  Images of alpha-actinin were recorded before (a) and 40 min after (b) the addition of 50 ltg/ml GRGDS. 
Corresponding vinculin (c and d) and IRM images (e and f )  were also recorded. Vinculin and alpha-actinin either move simultaneously 
(arrows) or disperse simultaneously (arrowheads) away from adhesion plaques. Changes in IRM images are much less pronounced. Bar, 
10 ~tm. 

Based on the present observations, one may conclude that, 
by binding to the extracellular domain of integrins, GRGDS 
causes the dissociation of cytoskeletal structures from sur- 
face molecules that are directly responsible for creating the 
IRM pattern. Furthermore, our negative results with per- 
meabilized cells and cell models indicate that the process re- 
quires soluble factors and/or structural integrity of the mem- 
brane or cytoplasm. Two possibilities may be considered 
regarding the mechanism of the dissociation. First, the dis- 
ruption of the binding of integrins to ECM may induce a 
transmembrane conformational change in the cytoplasmic 
portion of the integrin molecule, causing alpha-actinin and 
vinculin to dissociate from the membrane. This may involve 
a change in the state of phosphorylation of integrin, which 

has a potential target site for the tyrosine-specific kinases in 
the cytoplasmic domain (Hirst et al., 1986; Tamkun et al., 
1986). Second, GRGDS may cause integrin to dissociate 
from ECM and become mobile on the plasma membrane. 
The molecule may then move away from focal contacts as a 
complex with vinculin and alpha-actinin. This mechanism 
appears consistent with the progressive loss of integrin- 
fibronectin association at the cell periphery after GRGDS 
treatment (Chen et al., 1986). 

At least in the present case and in the experiment with 
phorbol esters (Meigs and Wang, 1986), the dissociation of 
cytoskeletal components was followed by a gradual disap- 
pearance of focal contacts. Therefore, it is possible that 
cytoskeletal elements, while responding to the interactions of 
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Figure 6. Lack of response of alpha-actinin and vinculin to GRGDS in permeabilized cells. 3T3 cells were microinjectexi with fluorescein- 
labeled alpha-actinin and rhodamine-labeled vinculin and permeabilized as described in Materials and Methods. Fluorescence images of 
alpha-actinin (a and c) and vinculin (b and d) were recorded before (a and b) and 20 min after (c and d) the addition of GRGDS. No 
change in fluorescence images is detected during the 20-min period of treatment. Bar, 10 gm. 

surface receptors with ECM, may at the same time play an 
important role in the stability of  the interactions between the 
surface and the extracellular substrate. This is consistent 
with the observations that microinjections of proteins that 
disrupt actin structures induce rounding of  the cell (Fucht- 
bauer et al., 1983; Cooper et al., 1987). A similar conclu- 
sion may be drawn regarding the role ofintegrin in focal con- 
tacts. Since focal contacts were detected well after the 
application of  GRGDS peptides, the association between 
integrins and ECM may not be directly responsible for the 
appearance of the contact structures as detected by IRM. 
However, either through interactions with other surface mol- 
ecules or through interactions with the cytoskeleton as dis- 
cussed above, integrin may nevertheless play an important 
role in the stability of focal contacts. 
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Figure 7. Lack of response of alpha-actinin distribution to the con- 
trol peptide Gly-Arg-Gly-Glu-Ser-Pro. Fluorescence images of 
fluorescein-labeled alpha-actinin were recorded before (a) and 20 
min after (b) applying the peptide. Stress fibers show minor changes 
in arrangement, common in living cells, but responses as seen in 
GRGDS treatment are not observed. Bar, 10 gm. 
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