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Purpose: The purpose of this study was to develop models that predict which
patientswith glaucomawill progress to require surgery, combining structureddata from
electronic health records (EHRs) and retinal fiber layer optical coherence tomography
(RNFL OCT) scans.

Methods: EHR data (demographics and clinical eye examinations) and RNFL OCT
scans were identified for patients with glaucoma from an academic center (2008–2023).
Comparing the novel TabNet deep learning architecture to a baseline XGBoost model,
we trained and evaluated single modality models using either EHR or RNFL features,
as well as fusion models combining both EHR and RNFL features as inputs, to predict
glaucoma surgery within 12 months (binary).

Results: We had 1472 patients with glaucoma who were included in this study, of
which 29.9% (N = 367) progressed to glaucoma surgery. The TabNet fusion model
achieved the highest performance on the test set with an area under the receiver
operating characteristic curve (AUROC) of 0.832, compared to the XGBoost fusionmodel
(AUROC= 0.747). EHR onlymodels performedwith an AUROC of 0.764 and 0.720 for the
deep learning model and XGBoost models, respectively. RNFL only models performed
with an AUROC of 0.624 and 0.633 for the deep learning and XGBoost models,
respectively.

Conclusions: Fusion models which integrate both RNFL with EHR data outperform
models only utilizing one datatype or the other to predict glaucoma progression. The
deep learning TabNet architecture demonstrated superior performance to traditional
XGBoost models.

Translational Relevance: Predictionmodels that utilize thewealth of structured clinical
and imaging data to predict glaucomaprogression could form the basis of future clinical
decision support tools to personalize glaucoma care.

Introduction

Glaucoma is a chronic progressive disease of
the optic nerve and is the leading global cause of
irreversible blindness.1 In its initial stages, glaucoma-
tous damage to the optic nerve is often asymptomatic;
however, if left undetected and untreated, glaucoma
can progress to irreversible vision loss.2 Thus, early
detection and timely treatment of glaucoma are crucial
for effective management and preservation of vision.

Notably, some patients with glaucoma remain stable
without progression for extended periods, whereas
others experience progressive disease that eventually
requires invasive interventions like incisional glaucoma
surgery.3 Prediction algorithms that could identify
which patients are most likely to progress could allow
clinicians to tailor treatments to individual disease
profiles and more effectively prevent blindness.

Prior studies have demonstrated the potential of
machine learning and deep learning techniques to
predict glaucoma progression to surgery, highlight-
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ing the importance of this question to glaucoma
care.4–7 Our own prior work has developed promis-
ing models that have leveraged the wealth of electronic
health records (EHRs) data in structured and free-
text formats to outperform glaucoma specialists in
predicting which patients with glaucoma will progress
to require surgery.8–11 However, clinical glaucoma
risk assessment usually also includes imaging and
functional testing of the optic nerve, including retinal
nerve fiber layer optical coherence tomography (RNFL
OCT) scans, which provide detailed structural infor-
mation about the optic nerve and helps clinicians
assess how much glaucomatous damage may have
occurred already. The optimal approach for integrat-
ing these imaging data with existing structured EHR
data to improve the performance of prediction models
is indeterminate. Prior work has applied deep learn-
ing models to data from RNFL OCT to predict
glaucoma outcomes but work fusing data from both
the RNFL OCT and the EHR clinical information is
limited.12

Although deep learning methods have revolution-
ized many tasks involving text and images, its benefits
for structured data have not been as remarkable.
In many prediction models using structured data
from EHRs, traditional machine-learning techniques,
such as tree-based models, have been shown to be
relatively effective.11 The recently developed TabNet
model is a cutting-edge attention-based deep learn-
ing model architecture especially designed for handling
diverse tabular datasets, with minimal preprocess-
ing, and it has been shown to perform exceptionally
well in comparison to traditional machine learning
models on a variety of benchmark tasks.13 TabNet’s
sequential multistep architecture allows for informed
decision making, where each step contributes to the
final outcome based on a robust soft feature selec-
tion. TabNet thus holds great potential for health-
care applications using EHR data. However, the use
of TabNet for building predictive algorithms using
EHR data has been limited, and the integration of
different modalities of data into TabNet models even
more so. Hence, the objective of this study is to
build on our previous work developing and assess-
ing models that predict the progression of patients
with glaucoma to surgery, comparing fusion models
that incorporate EHR and RNFL OCT data to
single-modality models. In doing so, we also compare
the TabNet deep learning architecture to standard
XGBoost modeling on a clinically relevant prediction
task that uses real-world EHR and imaging data, which
may provide insights into its suitability for model-
ing with these data types even beyond the scope of
ophthalmology.

Methods

Data Source and Study Population

We identified patients from the Stanford Research
Repository (STARR) who had encounters in the
Department of Ophthalmology at Stanford University
from 2008 to January 23, 2023. Our glaucoma cohort
included individuals with a minimum of two encoun-
ters associated with a glaucoma-related International
Classification of Diseases tenth revision diagnosis code
(ICD-10 H40, H42, or Q15 and their descendants)
or those who underwent glaucoma surgery based on
Current Procedural Terminology codes (66150, 66155,
66160, 66165, 66170, 66172, 66174, 66175, 66179,
66180, 66183, 66184, 66185, 67250, 67255, 0191T,
0376T, 0474T, 0253T, 0449T, 0450T, 0192T, 65820,
65850, 66700, 66710, 66711, 66720, 66740, 66625, and
66540).14 Patients with only glaucoma suspect codes
(H40.0 and ICD 365.0 and their descendants) were
excluded. This study adhered to the tenets of theDecla-
ration of Helsinki.

Prediction Timeline

The goal was to develop models that could predict
which patients with glaucoma are at the highest risk
of progression to surgery and that could be flexi-
ble enough to be used at any time point during a
patient’s treatment trajectory by incorporating their
latest clinical data. As patients have many encounters
in their treatment trajectory, for training purposes, a
single particular encounter was chosen as the “predic-
tion date” and the models were trained to predict
whether patients with glaucoma would undergo surgi-
cal intervention within the subsequent 12 months
following that specific encounter, consistent with prior
similar studies.8,11 Thus, each patient was included in
the cohort only once. We utilized clinical data from
up to 1.5 years prior to and including the predic-
tion encounter for model training. Thus, the predic-
tion timeline for each patient was developed, defining
a look-forward period over which the model would
predict progression to surgery, and a lookback period
of up to 1.5 years from which the models’ input data
were drawn. The prediction date was randomly chosen
within specific criteria: for surgical patients, the predic-
tion date was chosen to fall on an encounter date
within 12 months prior to glaucoma surgery, ensuring
the prediction timeline captured the period leading to
surgery. For non-surgical patients, the prediction date
was at least 12 months prior to the end of follow-
up, ensuring that enough follow-up had occurred to
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confirm that no surgery occurred during the look-
forward period. This approach to prediction empowers
the models to predict which patients are at the highest
risk of progression to surgery over the next year. This
flexibility maximizes the potential for future deploy-
ment of thesemodels as predictions could continuously
update with each visit. Example timelines for surgery
and non-surgery patients are included in Supplemen-
tary Figure S1.

Feature Engineering

Our dataset encompasses two distinct data modali-
ties: EHR data consisting of an eye examination and
demographics information, as well as data extracted
from RNFL OCT imaging scan reports, providing
structural insights into the optic nerve. Our predictive
models adopt a laterality-agnostic approach, forecast-
ing future glaucoma surgery in either eye, at the patient
level. This design choice accommodates cases where the
decision to proceedwith surgery in one eye is influenced
by the status of the contralateral eye. All EHR and
RNFL data within the lookback period of 1.5 years
before the prediction date were acquired.

EHR Data
Demographic data included patient sex, age at

prediction date, and race/ethnicity. Race/ethnicity and
gender were categorical variables which were dummy
encoded for model input. Structured eye examina-
tion data included visual acuity, intraocular pressure
(IOP), central corneal thickness (CCT), and spher-
ical equivalent from both eyes. Visual acuity was
converted into logMar units and summarized into best
recorded, worst recorded, last recorded, and mean.
Spherical equivalents were calculated from refraction
measurements for each eye. IOP was summarized into
highest, lowest, median, and most recent values for
this feature. The most recent CCT values for each
patient were extracted.Where multiple spherical equiv-
alentmeasurements were available, the highest absolute
value across examinations for right and left eyes were
used as input features for each patient. Continuous
variables were appropriately standardized or scaled:
IOP was standardized to mean 0 and standard devia-
tion of 1; age was scaled by 100; andCCTwas scaled by
1000; and spherical equivalent was scaled by 10. Mean
imputation was performed for missing values of IOP,
CCT, and spherical equivalent.

RNFL Data
Features extracted from the most recent eligible

RNFL OCT scan in the lookback period for each
patient included average RNFL thicknesses, cup-to-

disc ratios, rim and disc areas, and quadrant thick-
nesses (superior, temporal, nasal, and inferior) from
both eyes. Only data from scans with a signal strength
≥ 6 were included. For average RNFL thickness
features, values below 40 or above 160 were consid-
ered extreme and filtered out. Average RNFL thick-
ness and quadrant thickness values were scaled by
dividing by 100. We used a last value carried forward
method to address missing information in RNFL scans
for patients who had multiple scans in the lookback
period. All RNFL scans were captured using Zeiss
Cirrus HD-5000machines, andmacular scans were not
included.

Modeling

Dataset Formation
The cohort was split for model training, model

validation, and evaluation, allocating 66% (N = 972)
for training, 17% (N = 250) for validation, and 17%
(N = 250) for the test set. The data were split using
stratified sampling due to the class imbalance (29.9%
were positive class patients who progressed to surgery).
Three datasets were formed for modeling and evalu-
ation purposes including an EHR-only dataset, an
RNFL-only dataset, and a fusion dataset where the
EHR and RNFL datasets were concatenated. The
inclusion of the single modality datasets allowed for a
comparison against the multimodal fusion approach.
Importantly, the same set of patients were consis-
tent across each modality and data split to ensure
uniformity across dataset configurations. To address
class imbalance, we applied Synthetic Minority Over-
sampling (SMOTE) on the training data.15

TabNet and XGBoost Models
We trained deep learning models based on the

TabNet architecture, utilizing the PyTorch version
1.7.1 package.13,16 TabNet’s architecture leverages
attention mechanisms to focus on important features,
enhancing interpretability. TabNet allows modelers to
specify groupings for related features, enabling the
models to share attention among related features.16
Our model grouped demographic features together,
leaving the rest of the RNFL and eye examina-
tion features ungrouped so as to allow the model to
learn attention across the modalities. Hyperparame-
ters were fine-tuned on the validation set to optimize
the area under the receiver operating characteristic
curve (AUROC). For the TabNet fusion model, train-
ing parameters included using the Adam optimizer
with a learning rate of 0.02, and a step size of 25
with a gamma value of 0.9 for the learning rate sched-
uler, using the StepLR scheduler function. Addition-
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ally, entmax was used as the masking function, and the
maximum number of training epochs was set to 100,
with early stopping implemented through a patience
parameter of 20.17 Batch size was also selected through
hyperparameter tuning on the validation set and each
training iteration involved a batch size of 128 samples,
with a virtual batch size of 32. Baseline tree-based
models (XGBoost) were fit using the Python sklearn
version 1.3.0 package. XGBoost was chosen as a
baseline comparisonmodel due to its high performance
in previous studies using similar EHR data to perform
prediction tasks for glaucoma.8,11 Hyperparameter
tuningwas conducted using a grid search approach and
using a 5-fold cross-validation. Tuned hyperparame-
ters for the XGBoost fusion model included a learn-
ing rate of 0.2, maximum depth of 4, and 150 as the
number of estimators. The classification thresholds for
XGBoost and TabNet were tuned to optimize F1 score
on the validation set. To ensure robust evaluation given
the relatively small dataset, in a sensitivity analysis,
we performed additional model training and evalua-
tion using nested cross-validation, with five-fold cross-
validation for hyperparameter tuning and performance
metrics averaged across the five folds.

Evaluation

Metrics
We used standard classification metrics to evaluate

model performances on the test set including sensitivity
(recall), specificity, positive predictive value (precision),
negative predictive value, F1-score (the harmonic mean
of recall and precision), AUROC, and area under the
precision-recall curve (AUPRC).

Explainability
We performed model explainability studies utilizing

model-agnostic and model-specific techniques. As a
model-agnostic method, we used SHapley Additive
exPlanation (SHAP) values to directly compare
TabNet and XGBoost models.18,19 This method
uses a game theory approach to determine feature
importance by analyzing the magnitude of feature
attributions, thus enhancing interpretability for artifi-
cial intelligence (AI) models. SHAP values represent
the marginal contribution to the model predictions for
each feature, calculated across all possible combina-
tions or feature subsets. We estimated SHAP values on
the test set for both fusion models.

In addition to our Shapley studies, we specially
leveraged TabNet’s model-specific explainability
functions to uncover a more direct understand-
ing of the decision-making process underlying the
deep learning architecture. TabNet’s model-specific

explainability method is derived from the attention
mechanisms of the architecture itself, resulting in
more accurate feature analysis.13 Using these built-in
functions, we calculated overall feature importances as
well as instance-wise feature importance for the test
set. TabNet’s unique instance-wise feature importance
identifies the most relevant features for each individual
in the dataset. By conducting TabNet-specific explain-
ability studies alongside the commonly used SHAP
approach, we can assess differences and similarities
across explainability methods.

Code Availability

Code for this project is available at https://github.
com/akoornwinder4/multimodal-glaucoma-surgery-p
rediction.20

Results

Study Population

Population characteristics for the entire study
cohort of 1472 patients with glaucoma are summa-
rized in Table 1. Of these patients, 29.9% (N = 367)
progressed to glaucoma surgery. The majority of the
cohort was Asian (38.5%, N = 566) and White (28.9%,
N = 425), and the overall mean age was 67.71 years
(standard deviation= 15.43).Mean vCDRwas 0.68 for
both the right and left eye, whereas mean RNFL thick-
ness was 75.86 (OD) and 75.44 (OS). The full distribu-
tion of vCDR and RNFL thickness for this cohort is
shown in Supplementary Figure S2.

Model Performance

Receiver operating characteristic and precision
recall curves for XGBoost and TabNet models are
shown in Figure 1. Fusion models using both EHR
and RNFL modalities of data generally outper-
formed models trained with only EHR data, and
both of these approaches were superior to models
trained with only RNFL data. Overall, the TabNet
fusion model achieved the highest performance with
AUROC of 0.832, and the XGBoost fusion model
achieved AUROC of 0.747. The TabNet fusion
model achieved an AUPRC of 0.541, whereas the
XGBoost fusion model achieved AUPRC of 0.510.
The concavity of the TabNet fusion model precision-
recall curve, in contrast to the decreasing curve of the
XGBoost model, indicates a well-balanced trade-off
between precision and recall across a wider range of
decision thresholds. Additional classification metrics

https://github.com/akoornwinder4/multimodal-glaucoma-surgery-prediction


Predicting Glaucoma Progression With Multimodal AI TVST | March 2025 | Vol. 14 | No. 3 | Article 27 | 5

Table 1. Population Characteristics

No Surgery N = 1105 Surgery N = 367 Total N = 1472

Mean Std Dev Mean Std Dev Mean Std Dev

Age, y 67.24 15.57 69.12 14.94 67.71 15.43
Best logMAR VA, OD 0.15 0.47 0.2 0.52 0.16 0.48
Best logMAR VA, OS 0.18 0.45 0.18 0.45 0.19 0.53
IOP maximum, OD, mm Hg 20.21 6.42 25.19 8.96 21.45 7.45
IOP maximum, OS, mm Hg 20.59 7.65 26.82 10.28 22.14 8.81
Spherical equivalent, OD −1.41 6.69 −1.34 4.87 −1.4 6.28
Spherical equivalent, OS −1.32 5.49 −1.13 4.97 −1.27 5.37
CCT, OD, um 548.33 45.27 545.56 54.51 547.62 47.81
CCT, OS, um 551.11 54.74 546.54 47.73 549.94 53.05
RNFL average thickness, OD 75.86 14.26 75.14 16.78 75.68 14.93
RNFL average thickness, OS 75.44 14.16 74.06 16.18 75.1 14.7
Vertical cup-to-disc ratio, OD 0.68 0.14 0.69 0.15 0.69 0.15
Vertical cup-to-disc ratio, OS 0.68 0.15 0.7 0.16 0.69 0.15

N % N % N %
Female 574 51.95 185 50.41 759 51.56
Race/ethnicity
White 308 27.87 116 31.61 425 28.87
Black 43 3.89 17 4.63 60 4.08
Asian 453 41.00 113 30.79 566 38.45
Hispanic 118 10.68 71 19.35 189 12.84
Other 162 14.66 46 12.53 208 14.13
Declines to state 21 1.90 3 0.82 24 1.63

CCT, central corneal thickness; IOP, intraocular pressure; OD, right eye; OS, left eye; RNFL, retinal nerve fiber layer; VA, visual
acuity.

for TabNet and XGBoost models are summarized
in Table 2. Results from the supplementary sensitiv-
ity analysis using nested cross-validation were closely
aligned with the primary findings (Supplementary
Table S1).

Feature Importance and Explainability

We conducted explainability analyses to investigate
which features from the EHR and RNFL modalities
most impacted model predictions toward surgery or
no surgery. Shapley values were calculated for the test
set for both the TabNet and XGBoost fusion models
(Fig. 2). This is a model-agnostic approach which
calculates the marginal contribution of each feature to
the prediction based on analysis of model outputs with
different combinations of input features. A negative
Shapley value indicates that the feature influences the
model toward predicting no surgery, whereas a positive
Shapley value indicates that the feature influences the
model toward predicting surgery. Vision and IOP-
related features were among the top most important
features for both TabNet and XGBoost models. Race

and ethnicity were also among the important features
for the TabNet model. RNFL features represented 8 of
the top 20 most important features for the XGBoost
fusion model, and 7 for the TabNet model.

We also utilized TabNet’s unique model-specific
explainability methods to further investigate feature
importance for the TabNet fusion model (Fig. 3).
TabNet’s model architecture incorporates feature selec-
tion masks, which can be used to identify which
features have the greatest attention at sequential layers
of the model architecture. Feature selection occurs
at an instance-wise level, which enables identifica-
tion of features most relevant to a specific patient’s
prediction. Instance-wise importance is then aggre-
gated to reveal which features were most important
globally. RNFL features included 9 of the top 20
most important features for the TabNetmodel, whereas
race/ethnicity features do not emerge at all among the
most important features. Average RNFL thickness,
an important global structural measure of the optic
nerve, is among the top features according to TabNet’s
innate feature importance, but not in the Shapley
analysis.
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Figure 1. TabNet and XGBoost area under the receiver operating characteristic curve and precision recall curves.

Discussion and Conclusions

In this study, we developed and evaluated models
that predict whether patients with glaucoma will
progress to require surgery, fusing multiple EHR
and RNFL OCT imaging features and comparing
XGBoost and TabNet model architectures. Models
designed using a single modality of data, either EHR

or RNFL, were compared against those trained using
both data modalities as inputs. We found that perfor-
mance improved when both the RNFL and EHR data
were integrated into the TabNet and XGBoost models,
compared with models using single modalities of data,
which highlights the value of integrating multimodal
data into prediction models for glaucoma. Moreover,
the TabNet fusion model outperformed the conven-
tional tree-based XGBoost fusion model, highlighting
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Table 2. Model Performance Metrics

TabNet XGBoost

Fusion model
AUROC 0.832 0.747
F1 0.587 0.469
Accuracy 0.764 0.728
Sensitivity, recall 0.724 0.517
Specificity 0.776 0.792
Positive predictive value, precision 0.494 0.429
Negative predictive value 0.903 0.844

EHR only model
AUROC 0.764 0.720
F1 0.480 0.323
Accuracy 0.584 0.732
Sensitivity, recall 0.828 0.276
Specificity 0.510 0.870
Positive predictive value, precision 0.338 0.390
Negative predictive value 0.907 0.799

RNFL only model
AUROC 0.624 0.633
F1 0.406 0.343
Accuracy 0.344 0.740
Sensitivity, recall 0.966 0.293
Specificity 0.156 0.838
Positive predictive value, precision 0.257 0.415
Negative predictive value 0.938 0.804

AUROC, area under the receiver operating characteristic curve; EHR, electronic health record; RNFL, retinal nerve fiber layer.

the promise of TabNet as a flexible deep learning archi-
tecture suitable for multiple modalities of healthcare
data.

This study expands upon prior efforts in predicting
progression to surgery in patients with glaucoma. Our
previous models which leverage structured and free-
text EHR data, achieved AUROC values ranging from
approximately 0.70 to 0.90.8–10 However, these models
lacked integration of baseline optic nerve imaging data,
which can provide crucial information on glaucoma
severity and influence surgical decisions. Wang et al.
attempted to bridge this gap by incorporating RNFL
data alongside visual field and EHR data to forecast
future surgeries among patients with glaucoma across
different timelines in the future, achieving AUROCs
ranging from 0.77 for long-term prediction to 0.85
for predictions within the 0.5 to 1 year timeframe.21
Their tri-modality fusion approach involved a custom
deep learning architecture, combining a vision trans-
former and a fully connected neural network. This
method required complex and idiosyncratic prepro-
cessing steps to convert the numerical results from
imaging and visual field tests into resized and color-

coded pixel arrays for input into the vision transformer.
In contrast, TabNet offers a distinct advantage in its
simplicity, as it can be applied directly and intuitively
to diverse tabular datasets without requiring extensive
customization or preprocessing. This enabled robust
performance in predicting glaucoma progression to
surgery, comparable to more complex fusion architec-
tures, making TabNet a compelling choice formodeling
with various healthcare data types structured in tabular
formats.

In ophthalmology and across the broader healthcare
domain, there have been relatively few prior studies
using TabNet, although these have been promising.
TabNet was among the architectures used to predict
stroke mortality using EHR data in Hong Kong,
achieving AUROC of 0.840 for predicting death by
ischemic stroke.22 Additionally, fusion models with
EHR and extracted features from computed tomogra-
phy (CT) data have been found to outperform single
modality models in predicting pulmonary embolism
mortality, demonstrating the potential of using multi-
ple modalities of data with TabNet.23 Our study is
one of the first to explore the applicability of TabNet
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Figure 2. Explainability evaluation using Shapley values for XGBoost and TabNet fusion models. The figure depicts the Shapley
values for predicting whether a patient with glaucoma will progress to require surgery. The top 20 most important features are displayed
for the XGBoost and TabNet fusion models as calculated across the test set. Each point represents an individual observation (patient) in the
test set. The color of each point signifies whether the feature’s value was high or low for that particular patient. If a feature has a positive
Shapley value for a patient, this indicates it influenced the model toward predicting surgery. Conversely, a negative Shapley value indicates
influence toward a model prediction of no surgery. CD, cup-to-disc; IOP, intraocular pressure; OD, right eye; OS, left eye; RNFL, retinal nerve
fiber layer denoting features that come from the retinal nerve fiber layer optical coherence scan results.

Figure 3. Instance-wise feature importance and aggregate feature importance. On the left is the instance-wise feature importance
for the test set, with patients represented on the y-axis and features on the x-axis, and the color corresponding to the magnitude of feature
importance for that particular patient. Columnswith brighter colors correspond to features that are more globally important; the top three
features important across all patients are labeled in red. On the right, is the resultant global importance for each feature. CCT, central corneal
thickness; CD, cup-to-disc; IOP, intraocular pressure; OD, right eye; OS, left eye; RNFL, retinal nerve fiber layer.
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in developing prediction models within the field of
ophthalmology, and the first in glaucoma. A previous
ophthalmic prediction model used TabNet to predict
which patients may benefit from a corneal topograph-
ical scan based on ophthalmic examination informa-
tion, demonstrating superior performance compared
to XGBoost and a fully connected neural network in a
Korean population.24 Another study, which predicted
the presence of sarcopenia based on eye examination
information, showed no substantial differences among
TabNet, XGBoost, and logistic regression models.25
Taken together, these studies suggest a promising role
for TabNet in ophthalmology, while also highlighting
the need for ongoing investigation for how best to
incorporate the diversity of medical data types into
prediction models using TabNet. Our study particu-
larly focuses on this question by using TabNet for the
development of fusion models that integrate data from
EHR alongside results from RNFL imaging studies,
which are important for assessing the health of the
optic nerve.

A strength of this study was our investigation
into model explainability, using both model-agnostic
approaches to compare betweenTabNet andXGBoost,
as well as TabNet-specific approaches that give further
insight into TabNet’s attention-based feature impor-
tance. In general, many features which were important
for our models, such as IOP, age, and visual acuity,
were clinically reasonable features that would influ-
ence the clinicians’ patient care decisions for glaucoma.
In addition, many features from RNFL scans were
also among the top most important features for model
prediction, including global structural metrics of the
nerve such as cup-to-disc ratio, cup volume, rim area,
and disc area, as well as individual quadrant thick-
nesses. These features are fairly consistent with results
of explainability studies on previous work, where IOP,
visual acuity, rim area, and cup volume were highly
important.9,12,24 Shapley values offer a convenient
model-agnostic way to ascertain feature importance,
and can be used across different model architectures.
The relative Shapley importance of RNFL features
differed betweenXGBoost andTabNetmodels, but this
may be expected as two independent models would not
necessarily emphasize all of the same feature inputs to
produce their predictions. Some prior studies have also
suggested that Shapley explainability can sometimes be
inaccurate and misleading, as it does not directly rely
upon information encoded in themodel structure itself,
but merely computes explainability based on observed
patterns of model inputs and outputs.26,27 In our study,
results from the Shapley feature importance analysis
for TabNet did not exactly mirror the TabNet model-
specific feature importance results; race/ethnicity as

a feature was comparatively de-emphasized, whereas
visual acuity and certain RNFL features were more
important in the model-specific feature importance
analysis. This ability for direct interpretability analy-
ses sets TabNet apart from many other deep learn-
ing models. Moreover, TabNet’s instance-wise feature
selection aids efficient learning by fully utilizing model
capacity for the most salient features, leading to an
easily explainable decision-making process.

We acknowledge that this study also has several
limitations. The models developed and validated in
this investigation are based on a dataset from patients
receiving care at a single academic center, which may
reduce generalizability. Furthermore, the cohort was
limited to those patients who did undergo RNFL
OCT scans during their care, limiting the sample size.
A limited cohort size also precludes model perfor-
mance analyses in subgroups, such as by glaucoma
subtype, which would be valuable information, as
well as prediction over longer time horizons, requir-
ing larger numbers of patients with longer periods
of follow-up. Future studies can consider modeling
using multi-institutional registries, such as the newly
established Sight OUtcomes Research Collaborative
(sourcecollaborative.org), after imaging results become
integrated into this registry. Additionally, we recognize
that the criteria for performing glaucoma surgery can
vary among physicians due to differences in practice
patterns, with some opting for earlier intervention
whereas others may delay until later stages. This
variability reflects the lack of universal standards and
the personalized nature of glaucoma care. Incorporat-
ing larger and more diverse datasets in future work
could aid in addressing this limitation by capturing
wider variation in surgical practice patterns. Addition-
ally, future work could also incorporate direct predic-
tion of glaucoma-related findings, such as future
RNFL or visual field progression, which are less depen-
dent on surgical practice patterns. Another potential
limitation is that the present models included only
demographic and eye examination features from the
EHR, and did not include medication or diagnosis
data. In doing so, this study more heavily emphasizes
the clinical measurements obtained from ophthalmic
examinations and the structural features of the eye.
Future work could explore the incorporation of
other elements from the EHR, although medication
and diagnosis features carry considerably more noise
than documented eye examination measurements. In
addition, future work could also incorporate results
from visual field testing in TabNet fusion models.
Although we acknowledge that our approach does
not include raw image data derived from the OCT
scans, such data are often proprietary and difficult
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to obtain, store, and analyze, and their incorpora-
tion into models limits the ability to deploy such
models because data ingestion requirements into them
becomes more complex. We have demonstrated that a
simpler approach using OCT imaging results stored in
tabular form is still highly effective. Future research
could explore different methods of image represen-
tation to better encapsulate the spatial information
inherent in imaging scans to potentially augment
performance.

In conclusion, we developed models that predict the
patients with glaucoma progression to surgery using
data from EHR and RNFL OCT scans, comparing
TabNet and XGBoost modeling techniques. We found
that models incorporating both EHR and RNFL data
outperformed single-modality models. In addition,
TabNet outperformed XGBoost, achieving the highest
AUROC at 0.832. Our research highlights the simplic-
ity and versatility of TabNet for data fusion models
in healthcare, which may have broad applicability for
researchers in the healthcare domain. Future research
can investigate incorporating additional modalities,
such as visual field test results. Such endeavors
hold promise for enhancing predictive modeling and
augmenting decision-making processes for patients
with glaucoma.
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