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Specific frontal neural dynamics contribute to
decisions to check
Frederic M. Stoll1, Vincent Fontanier1 & Emmanuel Procyk1

Curiosity and information seeking potently shapes our behaviour and are thought to rely on

the frontal cortex. Yet, the frontal regions and neural dynamics that control the drive to check

for information remain unknown. Here we trained monkeys in a task where they had the

opportunity to gain information about the potential delivery of a large bonus reward or

continue with a default instructed decision task. Single-unit recordings in behaving monkeys

reveal that decisions to check for additional information first engage midcingulate cortex and

then lateral prefrontal cortex. The opposite is true for instructed decisions. Importantly,

deciding to check engages neurons also involved in performance monitoring. Further, specific

midcingulate activity could be discerned several trials before the monkeys actually choose to

check the environment. Our data show that deciding to seek information on the current state

of the environment is characterized by specific dynamics of neural activity within the

prefrontal cortex.
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B
eyond simple reactions to mistakes or successes, animals
and, in particular, primates are capable of improving
decision efficiency and reduce uncertainty by collecting

additional information1. Foraging, for instance, is a highly
adaptive activity that entails constant exploration for specific
information and reactivity to sudden threatening cues. In more
complex settings, verification of one’s own performance or task
completion represents another mode of information seeking that
serves to increase the efficiency of behaviour. One critical
question is how decisions to seek or check for information are
produced in the brain.

The primate global cortical network contains a dense core of
highly interconnected areas2, which covers a set of regions co-
activated during adaptive decision-making3,4. Empirical
descriptions complement theoretical accounts suggesting that
parts of the dense core, especially the lateral prefrontal cortex
(LPFC) and midcingulate cortex (MCC), contribute to different
components of free, exploratory and adaptive decisions, especially
in the context of adaptive responses to unexpected feedback5–7.
However, both the experimental evidence and theory provide
conflicting information on the synergy between MCC and LPFC.
How and on the basis of what information they participate
together in complex decisions remain unclear8–11. For example,
MCC activation was shown to reflect the potential value, and thus
the incentive, of foraging12. Yet, activation variations could also
integrate multiple signals, including aspects of the difficulty of
deciding and evaluating the need to shift from the default
option10,13.

Decision-making is dynamically encoded in the frontal
cortex14. Tonic and dynamical activity in LPFC contributes to
decision-making based on active memory of external cues15.
MCC neural activity reflects reinforcement-related information
cumulated through trial and error, and maintained across trials,
contributing to value-based decision-making11,16,17. However,
decisions to check or seek for information are qualitatively
different from decisions driven by environmental cues and hence
might exhibit a specific frontal dynamic. A critical question thus
concerns the specific and relative contributions of MCC and
LPFC dynamics to information seeking and the mechanisms by
which such behaviour is triggered.

In this context, our study builds on work linking MCC to
foraging patches of rewarded options12,18, which might also link
to the putative role of this area in obsessive compulsions marked
by exaggerated checking19,20. We studied the neural dynamics in
MCC and LFPC, to uncover the mechanisms contributing to
decisions to check. We found that MCC has a particular role in
encoding decisions to check for information. MCC activity
reflects information gathered and used for this decision, and
reveal a functional link between the neural substrates of checking
and feedback processing. Finally, decision to check is contingent
on particular neural dynamics within MCC and LPFC, and
contrasts with a typical decision in a cue-based task, suggesting
that in decision-making the dynamics within the prefrontal cortex
are adjusted to the source of decision.

Results
Behaviour. We designed a behavioural task to assess how
monkeys checked for information during ongoing task behaviour.
The task design is based on a dual-task principle (Fig. 1a). On
each trial, monkeys can either select the triangle stimulus to
‘Work’ and perform a delayed visual categorization task (Fig. 1
and Methods, referred hereafter to the main task) or select the
disk stimulus to ‘Check’ and see whether a bonus reward is
available. If they choose to work in the main task, they are shown
a cue stimulus (a rightward or leftward bar oriented at various

angles) and, after a delay, have to categorize its side of orientation
by selecting a target on the right or on the left (this Right versus
Left decision is called Cued decision). The main task has three
levels of difficulty and requires cue-based decision-making.
By contrast, choosing the disk stimulus provides information on
how soon a bonus reward will be delivered, as indicated by a
visual gauge, which gradually fills up. The bonus is delivered only
if the monkey checks when the gauge is full. It is noteworthy that
if the gauge becomes full it remains full until the monkey checks
the bonus option. Good performance in the main task increases
the level of the gauge, bringing the bonus closer to delivery.
Specifically, the number of correct trials necessary to get the
bonus varies pseudo-randomly in successive blocks (from 14, 21,
28 or 36 trials) and the gauge increases in 7 steps (Supplementary
Fig. 1). Thus, one way of improving reward income overall
consists of performing well in the main task and also in checking
once in a while to gather information on bonus availability. It is
noteworthy that no explicit information is given regarding a
putative need to check or the value of checking, apart from the
gauge presented at the monkeys’ request.

Monkeys chose to work in the main task on 87.5% of trials,
with good and stable performance. In addition, performance
varied significantly between the three levels of task difficulty that
we imposed (Kruskall–Wallis (KW) test; monkey A: P¼ 1.6
e� 23; monkey D: P¼ 4.3e� 12; monkey H: P¼ 4.1e� 20).
Difficulty was controlled by adapting the orientation of the cues
to obtain three levels of performance for each monkey. Reaction
times (RT) in the main task varied with difficulty (multiple
regression, log(RT)¼Difficulty (three levels)þ Previous perfor-
mance (COR/INC in previous trial)þBlock number (in session);
analysis of variance p(Difficulty): monkey A: P¼ 2e� 16,
monkey D: P¼ 5.5e� 05 and monkey H: P¼ 0.036).

Monkeys decided to check for the bonus reward on the
remaining 12.5% of trials. As expected, all monkeys naturally
increased their checking frequency when approaching bonus
delivery (KW test, Po1e� 27; Fig. 1b,c), but checking did not
interfere with Cued decisions; performance and RTs in the main
task remained constant whatever gauge sizes (KW test,
performance: P40.4; RTs: P40.3). When choosing to check or
to work, response times also remained constant across gauge sizes
(KW test, Work: P40.08 for all monkeys; Check: P40.2 for A
and H), except for monkey D who was quicker to check for larger
gauge sizes (KW test, P¼ 2.5e� 6). The decision to check was
faster than to work for monkey A and D (KW test, Po5e� 8)
and slower for monkey H (Po0.0001). In addition, monkeys
exhibited a response time slowing when choosing to Work
following an incorrect choice in the main task whatever the
difficulty (KW test, Po1e� 6).

Overall, the checking pattern resembles that observed with
secondary reinforcement schedules, but with specific character-
istics21. It is worth noting again that a bonus was delivered only if
the animal checked when the gauge was full. Logistic regressions
revealed that checks occurred mostly after correct trials in the
main task, indicating that monkeys understood that the gauge
increases only after those trials (Fig. 1c). This behaviour appeared
quite early during the learning of the task (binomial test; second
session for monkey D, P¼ 0.0014; third session for monkeys
A and H, Po0.003).

In the short term, checking the gauge size and errors in the
main task, both reduce the reward rate. Figure 2a shows that in
the course of a block, the reward rate decreases when there is an
increase in the frequency of Check decisions (solid lines). This is
suboptimal when considering a hypothetical case where monkeys
do not check (dashed lines). The loss in reward rate is, however,
compensated at the delivery of a reward bonus. Yet, even if
unfavourable in terms of reward gain, monkeys often checked for
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a bonus reward at the very beginning of blocks. Although
such behaviour induces a decrease in reward rate, checking
the gauge size clearly provides relevant task information.
Indeed, the frequency of checks was driven by the information
gained from the observed gauge, as seeing a small gauge
induced less immediate re-checking than a large one, indepen-
dently of time or of the number of previous trials performed
(Fig. 2b).

Thus, although checking was probably driven by the basic
desire to obtain a bonus reward, data suggest that checking also
allowed monkeys to seek information and adapt behaviour
accordingly, helping to reduce uncertainty1. Checking for
information also improves accuracy in naturalistic task
situations22 and our data show that monkeys usually obtained
the bonus just after it became available (median¼ þ 2 trials).
Therefore, a decision to check was driven by motivational and
evaluative factors, taking into account the gauge size,
performance in the main task and bonus expectation.

Single-unit and population coding of feedback and decisions.
We investigated how MCC and LPFC contribute to decisions to
check or work, as well as how they contribute to Cued decisions.
We recorded 411 single units in the two structures during per-
formance of the dual task in two monkeys (monkey H and A; 198
in LPFC including dorsal area 8A, area 8B, caudal 9/46d and
premotor 6DR (F7), and 213 in MCC in the dorsal bank of the
cingulate sulcus; Fig. 1d and Supplementary Fig. 2).

We first tested whether single units encoded the decision to
Check versus Work, the Cued decision in the main task and
feedback valence (reward versus no reward in the main task).
Examples for single-unit activity are shown in Fig. 3 and
Supplementary Fig. 3. Time-resolved generalized linear models
(sliding glm) were used to extract the proportion of neuronal
activity that encoded these different aspects of the task and to
determine how these evolved during the task. This initial single-
unit analysis revealed a number of differences between areas.
Although both were influenced by the different factors, feedback
encoding was more prevalent in MCC (MCC¼ 144/213, 67.6%;
LPFC¼ 65/198, 32.8%; w2¼ 49.6, P¼ 1.8e� 12), whereas encod-
ing of the Cued decision in the main task was more frequently
discriminated in LPFC (MCC¼ 67/213, 31.4%; LPFC¼ 108/198,
54.5%; w2¼ 22.37, P¼ 2.2e� 6) (Fig. 4a and Supplementary
Fig. 4). This latter bias was true for almost all lateral subdivisions
(Supplementary Fig. 5). Cells discriminating Check versus Work
decisions were slightly but not significantly more frequent in
MCC than LPFC (MCC¼ 71/213, 33.3%; LPFC¼ 49/198, 24.7%;
w2¼ 3.65, P¼ 0.055).

Inspection of the time course of encoding across the two areas
clearly shows the bias in MCC for feedback processing and
decisions to Check versus Work (Fig. 4b). By contrast, the bias
was reversed in favour of LPFC for the Cued decision in the main
task. The selectivity for Check versus Work decisions was not
confounded by spatial position or arm movement directions.
Among the neurons discriminating Check versus Work in MCC,
only 25 also encoded the Cued decisions in the main task (35%)
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and just 16 (22.5%) did so in a congruent manner (discriminating
contra and ipsilateral choices in the same direction). In
comparison, 38.8% (19/49) of LPFC units discriminating Check
versus Work decisions showed a congruent coding during Cued
decisions in the main task (LPFC versus MCC, w2¼ 3.7,
P¼ 0.054). Finally, recordings in a control task, testing for an
influence of the spatial position of lever touches, showed very
weak, if any, effect on neural activity (see Methods and

Supplementary Fig. 6). Thus, in line with the literature, our
observations support a weaker role of the MCC compared with
LPFC in encoding the spatial component of decisions11,23,24, but
see refs 25,26).

We quantified the differences between the two areas at the level
of neural populations for feedback, decisions to Check versus
Work and Cued decisions in the main task using linear decoding
(Fig. 5). The latency at which a decoder could discern task-related
factors (Fig. 5a) revealed that MCC leads LPFC in feedback
processing, confirming and strengthening previous observa-
tions24,27. Decoding feedback was also much more efficient
with MCC activity. However, most importantly, decisions to
Check versus Work were decoded from MCC activity before and
more efficiently than from LPFC activity. The MCC population
activity was predictive of whether the monkey would check well
before options were available (before levers’ onset). An alternative
nonlinear support vector machine decoding method provides
similar observations, confirming previous investigations
(Supplementary Fig. 7 and ref. 28).

Linear decoding showed that feedback processing dominates in
MCC, and that it overlaps in time with the encoding of Check
versus Work decisions. The evolution of coding is especially
evident when cross-temporal decoding is applied (Fig. 5b),
providing a measure of the dynamic of information coding in the
population (that is, whether the encoding of a particular
dimension is maintained over time). Likewise, it highlights the
functional dissociation between MCC and LPFC populations. The
restricted diagonal band of significant decoding performance
reveals the dynamical nature of neural population coding in both
structures and for all events considered. Thus, although linear
decoding shows stable discrimination of events over at least a
second, the discrimination is computed dynamically. Single units
in both MCC and LPFC contribute sequentially to encode the
different events, suggesting that integration of information as well
as interactions between MCC and other areas should rely on such
dynamics.

Importantly, in contrast to feedback and checking for the
bonus reward, LPFC led over MCC for the Cued decisions in the
main task. The change in lead appeared in terms of strength and
also in terms of latencies of decoding (Fig. 5a,b). Thus,
relationships between the two regions depend on the cognitive
context and this contributes to the neural specificity of decisions
to check.

Specificity of the neural bases of decision to Check. Deciding to
check for information might be qualitatively different from
other decisions. Checking appears to be driven by the need to
reduce uncertainty or by the rewarding nature of novel infor-
mation29–31. Thus, could checking be the result of a separate
type of decision and of specific computations in prefrontal
areas? We found that the decision to Check, in contrast to the
decision to Work, engaged particular dynamics of MCC and
LPFC. First, most of the contrast between Check and Work
comes from greater neural activity for Check in both MCC and
LPFC (bias towards positive z-values from the sliding glm;
Fig. 6). More units increased activity for Check compared with
Work (MCC, 69%, w2¼ 11.4, P¼ 0.0007; LPFC, 71%, w2¼ 9.3,
P¼ 0.002). In addition, comparatively higher firing rates for
Work (negative z-values) corresponded in reality to a reduction
of activity during Check. This resulted in an increased bin-to-
bin variance of firing during decision to Check compared with
Work (Fig. 6b,c). Therefore, changes in neural activity did not
occur for the default decision to Work. Using a mixed model
(generalized linear mixed-effect model (glmm), see Methods) as a
group analysis to quantify the influence of various task variables
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in the population of activity, we confirmed this bias towards
decision to Check (represented by positive estimates; Fig. 7).
This was true for both areas, although the time course differed.
As previously observed (for example, see refs 32,33), MCC units
processed both positive and negative feedback, with a slight bias
towards greater activity for negative feedback (early positive
estimates; Fig. 7).

The statistical estimates from the groups and individual
neuron statistics (Fig. 4) suggest that multiple neuronal
populations contributed to different events. In particular, the
strong representation of feedback in MCC activity involved
neurons that also encoded the Check versus Work decision
(77.5%). In the MCC, 56.3% of units that encoded decisions to
Check versus Work also coded for negative feedback, whereas
21.1% coded for positive feedback. We further investigated
relationships between parameters encoded by neuronal activity
and found that only Feedback and decisions to Check versus
Work were correlated (correlation of absolute maximal Z-values
over four successive bins obtained from the sliding glm and used
in Fig. 4a, Feedback and Check versus Work: r¼ 0.24,
Po0.0005). This relationship was not significant in LPFC. It
is noteworthy that all effects were confirmed using an alternative
method based on hierarchical clustering (see Methods and
Supplementary Fig. 8).

The data hence highlight in the MCC a clear functional
relationship between feedback and decision to Check. In contrast,
the LPFC was characterized by the coding of Cued decisions in
the main task with a bias towards encoding the spatial elements of
decisions.

Encoding gauge value and distance to check. The monkeys’
behaviour suggests that the information used for deciding to
check includes time, information gathered from previous checks
and performance in the main task. Integration of those variables
could take place after key task events (for example, following
performance feedback), or be spread and maintained across trials,
thanks to the dynamical nature of prefrontal coding14 or to
sustained states of the executive system34. We thus sought traces
of gauge information in neural activity between trials and within
the main task, testing the hypothesis that even Cued decisions in
the main task would incorporate current estimates of the gauge
state. To do this, the independent variable Gauge was included in
statistical models devoted to inter-trial and to the main task
periods. Although information about gauge seemed weakly
represented during the main task (12% of neurons in MCC and
LPFC at target touch in the main task), we did not find clear
evidence of such coding in the group glm at this time period
(only two non-consecutive bins showed an effect at Po0.05, none
at Po0.01). However, the gauge size appeared to be significantly
and transiently encoded positively between trials, especially in the
MCC group of cells, and in both monkeys (Fig. 8a and
Supplementary Fig. 4c). Importantly, gauge encoding occurred
at about the time of Check versus Work discrimination
(see Fig. 7). This suggests that gauge size contributes to the
elaboration of decisions to check in MCC.

We then hypothesized that check decisions might be made
dynamically based on evidence accumulated from successive trials
and previous checks. If this were true, population activity would
show progressive evidence towards a decision to check across
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trials preceding the actual choice to check. Decoding population
activity showed that MCC and LPFC activity during the inter-trial
period, when monkeys were just about to check, robustly differed
from other inter-trial periods (Fig. 8b), confirming our previous
observations (Figs 4 and 5). However, most importantly, MCC
population activity during the two trials preceding a check was
significantly different and one could predict the monkeys’
decision to Check even a few trials before. The early check-
predictive activity (at n� 1 and n� 2) was significant in MCC
and only marginal, although with a similar trend, in LPFC.
Importantly, the regression coefficients for each neuron sig-
nificantly involved in the different decoding outcomes were well
correlated (correlating coefficients from n versus n� 1, n� 1
versus n� 2 and n versus n� 2: all R240.4, Po0.0005),
suggesting a stable and consistent population code over trials
preceding a decision to Check. Yet, such stable encoding was
driven by a subpopulation of MCC neurons partially different
from an additional one contributing to the actual choice of
Checking (at trial n) (Fig. 8c), suggesting a neural dynamic
specific to the actual choice of checking. The later point
(that additional activity was specific to the actual implementation
of the decision to check) was confirmed by alternative decoding,
which clearly differentiated trials n from trials n� 1 or n� 2
(MCC: accuracy484.3%, Po0.0005; LPFC: accuracy489.1%,
Po0.0005).

Although little activity variation was found during decisions to
Work, neural population activity differed within the two trials
preceding a check. Such difference might reflect increased
uncertainty about whether to Check or Work, while approaching
the actual choice. Response times to select the Work option do

not support an effect of uncertainty, as they remained stable
across trials before a Check (Supplementary Fig. 9). However, the
task design allows to plan decisions before the onset of levers,
making these response times unreliable. We thus investigated free
oculomotor activity during inter-trial periods, before the levers’
onset. Fixations on levers’ positions varied from trial to trial and
provided relevant information. We retained three major mea-
sures: scanning, that is, whether or not the animal fixated
alternatively between the two lever positions, the latency between
the last fixation on a lever position and the lever touch, and the
number of fixations on both levers when scanning. Scanning
the two lever positions might reflect hesitation or consideration to
the two options. A late final fixation (that is, closer to touch) can
be interpreted as longer deliberation and thus higher uncertainty
or consideration of the options, whereas making the last fixation
early might reflect a low level of uncertainty. We tested with
multiple regressions whether these measures varied with the
gauge level, distance to check and with the decision to Check
versus Work.

First, monkeys scanned both levers in 18% of trials and were
less likely to do so, while approaching bonus delivery (logistic
regression, fixed effect gauge size: monkey A: Estimate¼ � 0.29,
P¼ 0.0007; monkey H: Estimate¼ � 0.30, P¼ 0.0068). The
probability of scanning slightly increased while approaching the
next decision to check for the bonus reward, but only in monkey
A (Po0.001; P¼ 0.44 for monkey H). Neither latencies of the last
fixation nor the number of fixations changed significantly with
gauge size. However, all three variables were changed before
choosing to Check compared with Work. When deciding to check
for the bonus, monkeys were more likely to scan both levers
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(see ‘Sliding generalized linear models’ in Methods) with a significant discrimination of feedback, Check versus Work and Cued decisions. Data presented

during the time period between feedback (FB) and lever onset, and aligned on the end of trial signal (EoT, grey bars on the x axis represent the duration of

the EoT) for Feedback and Check versus Work and on target onset for Cued decisions. Dashed grey lines represent the 5% level.
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(fixed effect of Check versus Work, Po10� 8 for both monkeys),
performed fewer fixations (Poisson glm, fixed effect of Check
versus Work: monkey A: Estimate¼ � 0.12, P¼ 0.0016; monkey
H: Estimate¼ � 0.13, P¼ 0.0032) and ended fixation much
closer to the lever touch (fixed effect on latency: Po10� 8 for
both). Overall, these data suggest that monkeys were more likely
to consider the two options (Check or Work) at the beginning of
a block than when close to the full gauge, but at the same time
they were more likely to scan just before each decision to Check.
Check versus Work decisions were thus influenced in two ways,
across a block and before each decision to check or not, the time
for decision being longer just before a check.

We further tested whether the odds of scanning levers by the
eye could explain part of the variance in the group neural activity
in MCC and LPFC. The mixed model revealed that indeed Scan,
Gauge size and Check versus Work decision effects were

contributing to variation of the group activity but at different
time before the actual lever touch (Supplementary Fig. 10). In
particular, Scan and Gauge influenced neural activity before
decision to Check or Work did. No interactions between Scan and
Check versus Work factors were found at any time bin.

Finally, as difficulty was a parameter within the main task
(effect of conditions on performance and RTs), we assessed its
contribution to neural activity variations. The sliding glm revealed
effects in a number of cells as expected by chance (Supplementary
Fig. 11a). The group glmm revealed an effect of difficulty in
monkey A only between cue and target onset. We finally tested
whether the strength of Check versus Work effect (absolute
z-value in the sliding glm) would correlate across units with the
effect of condition difficulty in the main task (absolute Z-value for
Difficulty). We found no correlation in MCC (r¼ 0.005, P¼ 0.95)
or in LPFC (r¼ 0.04, P¼ 0.56) (Supplementary Fig. 11b).
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Figure 5 | Linear population coding. Linear decoding (a) and cross-temporal decoding (b) reveal a double dissociation between MCC contributing earlier

and more reliably to Feedback processing and Check versus Work decisions, and LPFC contributing earlier and more reliably to Cued decisions during the

main task. Arrows in a indicate first significant decoding (bold) for each area (colour). Statistical threshold was set at Po0.05 using permutation testing.

Significant decoding is depicted by bold lines in a. Cross-temporal decoding in b were thresholded (grey colourmap) depending on the smallest significant
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Bonferroni corrected) are displayed in red on the time axis in a and within a red contour in b. The red line is drawn at the level of the structure with better

decoding performance.
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Discussion
We report three major results. First, MCC and LPFC neural
dynamics related to decisions to check the environment is
specific, suggesting network reconfigurations depending on
decision types (Check versus Cued). We further demonstrate
that the encoding of decisions to check has a link with feedback
encoding. Finally, we show that the activity related to decisions to
check steadily builds across trials in MCC.

Checking on the current state of the environment might be
driven by the need to reduce uncertainty or by the rewarding
nature of novel information29–31. Here, although probably
initially driven by the desire to get a bonus reward, checking
quickly became an efficient strategy to obtain information on the
timing of bonus availability. One drawback of our task design is
that the delivery of the bonus reward requires using the checking
option. One can argue that checking at any time is driven not by
the will to gather information on the gauge but rather by the hope
of gathering the actual juice reward. Future experiments will
require an explicit separation between bonus delivery and
checking, but although the use of gauge information does not

in itself imply checking was driven by information seeking,
altogether behavioural data suggest this was the case. In
particular, checking occurred only after correct trials (the only
events causing gauge increase), checking frequency was regulated
based on the observed gauge size and the bonus was obtained
close to its availability. This suggests that although checking is
costly, animals used it to track the gauge speed, reducing
uncertainty and adjusting to get the bonus as soon as possible.
Information seeking or foraging might be qualitatively different
from other decisions and rely on particular networks and neural
activity. This is indeed supported by our findings showing
particular neural coding and dynamics in MCC and LPFC, with
MCC leading both in strength and time during checking. Overall,
no equivalent changes in neural activity occurred for selecting the
main task; the most prominent neural changes were when
animals decided to check. One possibility is that check-related
prefrontal activity reflects not only the orientation towards
information seeking but also an active mechanism to disengage
and shift from the routine conduct, that is, from choosing the
main task.
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The particular involvement of MCC in decisions to Check
versus Work appeared through every analytical approach.
Strikingly, increased MCC activity for checking was mostly
produced by neurons also involved in coding feedback and, in
particular, negative feedback, and was only weakly involved in
coding spatial information. This result suggests a functional
commonality between feedback and decisions to check as far as
the MCC is concerned. The co-location in MCC of activity
modulated by exploration or volatility and of feedback-related
activity has been reported previously33,35. Here, however,
statistics and classification of neural activity unveils a direct
structural and functional similarity. Such combination reflects the
link between monitoring relevant outcomes or feedback of actions
and the computations leading to exploratory decisions33,36.
Feedback indeed is a major source of evidence contributing to
ruptures in behaviour, for shifting responses or strategies. This
reinforces again an interpretation of check-related activity as a
correlate of a mechanism to depart from a default option.

Although the type of behaviour we studied here does not
directly relate to abnormal checking observed in obsessive
compulsive disorders (OCDs), one must note that MCC might
have a direct or indirect role in abnormal and compulsive
checking19,37,38. Some of the major symptoms of OCD are
classified as aggressive/somatic obsessions with checking
compulsions, which can notably be interpreted as the
emergence of misperceptions that ‘something is wrong’ in a
specific situation39. These symptoms might correspond to
overactive performance monitoring37 and/or to an abnormal
production of default and automated behaviours40. Enhanced
error-related activity and reduced feedback-related negativity,
whose main source might be in the MCC7, have often been
observed in OCD patients, although not systematically and with
unclear behavioural counterparts in traditional cognitive tasks37.
Our data clearly reveal a link between feedback processing and
checking, and suggests that by using a suitable task incorporating
both performance monitoring and checking, and by focussing on
specific mechanisms (for example, disengagement from default
option) occurring at the times of check decisions, clearer links

between monitoring and checking might emerge in pathological
cases.

One must emphasize two characteristics of our design. First,
contrary to previous protocols12,33,41, we studied purely voluntary
decisions to check, because no direct objective feedback or
observable cue was provided to inform on the potential value of
exploration or on the need to explore. Second, the time scale at
which incentives to check are built crosses over several trials and
encompasses two intermingled tasks, thus making the integration
time more naturalistic, even if prone to interference, compared
with previous tests18.

Medial prefrontal areas and MCC activations might index
multiple signals leading to a decision to explore new alternatives,
including the value of the ‘explore’ option and the difficulty in
deciding for a non-default course of action10,12,13. In our task the
average value of the default Work option is considered stable,
because performance in the main task was constant across blocks.
However, the gauge level can be taken as a proxy for the value of
the Check option (the fuller the gauge, the closer the bonus
availability). Alternatively, difficulty, uncertainty in decision and
increased deliberation time might be reflected in the oculomotor
patterns of monkeys just before Check versus Work decisions. In
fact, we showed that scanning the option levers was negatively
correlated with gauge increase, but was also more probable just
before a check.

At the neural level, gauge-related information did appear
clearly at the time of decisions to check or not. Population data
suggest that a momentary re-instantiation of gauge information
occurs just before the build-up of activity related to the decision
to Check or Work. This phenomenon might contribute to adapt
checking behaviour. Separate statistics for Check and Work
decisions showed that gauge information was present in both
cases. Importantly, scanning targets by the eyes also contributed
to the modulation of neural activity before the decision,
separately from the gauge levels and from the actual decision to
check. The timing of these events might suggest that scanning
alternatively lever positions could contribute to the re-instantia-
tion of gauge information, which would then inform the decision
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to check or not. Thus, MCC activity reflects indeed multiple
signals contributing to the decision to explore, both across trials
and all along the elaboration of that decision13. The neural
dynamic might thus reflect a series of mechanisms engaged for
the decision to check. However, it is still unclear whether these
mechanisms and the longer time taken for a decision to check
include the actual process of active oculomotor exploration, an
increased uncertainty and/or a phenomenon related to decision
difficulty. It is also noteworthy that recently some specific MCC
activity modulations have been interpreted as reflecting task
conflict42. We attempted to relate the neural contribution to
check to the effects of uncertainty or difficulty in the main task
without success. The contribution of oculomotor scanning in the
decision process might reflect the specific recruitment of the
rostral face/eye representation of the MCC to control behaviour
and to gather information for adaptive decisions7. Future
experiments will need to explore the specific role of MCC body
representations in decision making.

Altogether, the data suggest that MCC activity reflects the
progressive integration of cues to build a decision to check and,
through different but overlapping neural populations, the actual
engagement in checking.

The neural coding specific to exploratory decision reveals the
relative contributions of MCC and LPFC, and MCC is clearly
leading the process. Importantly, although both areas contribute
to different events of the task, the temporal lead of activity
variations and reliability of information coding between the two
regions dynamically change depending on the current type of
decision. This is remarkable, as most previous studies, including
ours, have focussed on a hypothetical sequential process from
MCC to LPFC11,27,43,44. It emphasizes a flexibility of the relative
recruitment of frontal areas possibly depending on the source of
evidence contributing to decisions. Interactions between areas
might occur through spike-field and cross-frequency
coordination45. Whereas LPFC might receive input from MCC
to implement exploratory decisions, input from other areas (for
example, parietal areas) might lead in case of externally cued
decisions46. Our work suggests that MCC’s influence over LPFC
takes place only when internal drives and reinforcement-based
information are the major contributors to behavioural adaptation.
It further suggests that specific large-scale functional network
configurations, possibly involving the orbitofrontal cortex and
amygdala (key structures for decision-making and adaptation,
and linked to OCD38), might contribute to the regulation of
exploratory checking behaviours. The notion that network
reconfigurations support different decision types indicates that
the core network described as common to various cognitive tasks
must be seen as a flexible, and not a stable, entity that is engaged
qualitatively differently in various cognitive activities.

Methods
Subjects and materials. This project was conducted with three male rhesus
monkeys (Macaca mulatta), three for behavioural analyses and two for neural
recordings. Monkey A was 16 years old and monkey H was 8 years old at the time
of experimental sessions and were included in the recording part of the experiment.
Monkey D, 8 years old at the time of experimental sessions, performed only the
behavioural part.

All procedures followed the European Community Council Directive (2010)
(Ministère de l’Agriculture et de la Forêt, Commission nationale de
l’expérimentation animale) and were approved by the local ethical committee
) Comité d’Éthique Lyonnais pour les Neurosciences Expérimentales *, CELYNE,
C2EA #42. Monkeys were habituated to sit in a primate chair (Crist Instrument
Co., MD, USA) in front of a tangent touch screen monitor (Microtouch System,
Methuen, USA). An open window in front of the chair allowed them to use their
preferred hand to interact with the screen (monkey A and D, left-handed; monkey
H, right-handed). The position and accuracy of each touch was recorded with the
computer in charge of visual stimuli presentation (CORTEX software, NIMH
Laboratory of Neuropsychology, Bethesda, MD). Eye movements were monitored
and recorded using an Iscan infrared system (Iscan Inc., MA, USA; sampling

rate¼ 2.8 kHz). Electrophysiological data were recorded using an Alpha-Omega
multichannel system (AlphaOmega Engineering, Israel). Juice reward was provided
by a computer-controlled system (Crist Instrument Co.).

Monkeys were implanted with a head-restraining device in a first surgery. Next,
in a second surgery, a craniotomy was performed to expose an aperture over the
prefrontal cortex and a recording chamber was implanted (Gray Matter Research,
MT, USA) (see below Recordings). Analgesics and antibiotics were administered
throughout surgical periods. The chamber was kept sterile with regular cleaning
and sealed with sterile caps.

Behavioural tasks. Monkeys were trained to perform a dual task motivated by
juice reward. At the beginning of each trial, monkeys had the opportunity to either
work or check their ongoing progress (Check versus Work choice), by touching
and holding for 700 ms one of the two ‘lever’ targets (triangle to Work and circle to
Check; Fig. 1). Levers were always displayed at the same positions (laterally aligned
on the centre of the screen for Work and contralateral to the arm used for Check).
This was to ensure that when a decision to check was made it was not just for a
question of ease of touching a closer position on the screen. A dot appeared at the
centre of the screen during lever holding, for both options, but gaze fixation was
never required. Stimuli were all presented on a grey background screen.

The Work option consisted in a visual categorization task (referred as the main
task) based on the orientation of a stimulus. Monkeys were presented a central
smoothed oriented bar (600 ms for monkey A and D, and 350 ms for monkey H)
followed by a 400- or 650-ms delay (for monkey A/D and H, respectively). The two
targets were then presented, consisting of two oriented bars (±45� from vertical
plane) presented on either side of the screen and, to get a reward, the animals had
to touch the target oriented in the same direction than the previously presented
stimulus (Cued decision). For all monkeys there was 1,000 ms between the onset of
the stimulus and the target onset. The relative positions of targets were randomized
from trial to trial for monkey H and D. Monkeys responded by touching one of the
two targets and after a random delay interval of 200–600 ms (step of 200 ms), a
central dot was presented for 500 ms. Cued decisions in the main task were either
rewarded (50% water/apple juice, 0.5 ml) if correct or penalized with a timeout
(2,000 ms) when incorrect. After feedback onset (1500 to 2,000 ms), an End of Trial
(EoT) signal (red circle on for 800 ms) signalled that a new Check versus Work
choice would be presented after a fixed delay (700 or 1,000 ms for monkey A and
H/D, respectively).

We varied task difficulty by using one of three possible absolute orientations
(relative to the vertical axis) of the cue, which was pseudo-randomly selected
for each Cued decisions (in total, three oriented rightwards and three leftwards).
Orientations were not fixed between sessions, but varied depending on
monkeys’ performance in previous sessions (using the five to ten last sessions).
At the start of each session, we computed a psychometric curve from the
monkey’s previous performance using a binomial (logistic regression)
generalized linear model. Next, stimuli orientations were selected to elicit 70, 80
or 90% of correct responses on average. These three orientations thus
corresponded to three levels of difficulty. This allowed us to maintain uncertainty
on Cued decisions during the main task, even if monkeys’ performance changed
between sessions.

Instead of selecting the Work option, monkeys could select the Check option.
Here, when monkeys selected and maintained the Check lever, a gauge was
displayed for 800 ms, indicating how far they were from a bonus reward. If the
Check option was chosen while the gauge was full, a bonus reward (3.5 ml; 7 times
a reward in the main task) was delivered 400 ms after gauge appearance, otherwise
(in case of partial gauge) the trial ended without reward or penalty. After a delay of
1,800 ms (for monkey A and 1,500 ms for monkeys H and D), the next trial was
proposed.

The gauge was filled according to the number of correct Cued decisions
performed in the main task from the beginning of a block. Incorrect choices or
execution errors during the main task did not affect the gauge evolution. The
number of correct choices required to complete a block (and to obtain a bonus)
was randomly selected and could either be 21 or 31 for a first set of behavioural
sessions or 14, 21, 29 or 36 for a second set of behavioural sessions (Supplementary
Fig. 1). Monkey D was trained only during the first set of sessions. For monkeys
A and H, behavioural analyses and electrophysiological recordings were performed
only with the second set of sessions. Monkeys showed adapted behaviour in both
cases (data not shown), allowing us to consider equally all sessions. Once monkeys
reached the required number of correct trials in a block, the bonus reward stayed
available until the next check (that is, Bonus rewards could not be lost by
performing too many trials in the main task). After a bonus reward was delivered,
the gauge size was reset and a new pseudorandom number of required correct
choices in the main task was picked for the following block.

The gauge was represented by a large green circle, containing a plain, filled
green disk. The circle indicated the maximum to be reached (see symbols in
Fig. 1a,b and Supplementary Fig. 1). The full gauge size associated with the bonus
reward was represented by a full green disk with a diameter identical to the outside
circle. The diameter of the green disk could take seven different values, increasing
linearly depending on (1) the number of correct Cued decisions performed
in the main task and (2) the total number of trials required to earn a bonus
(see Supplementary Fig. 1).
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In addition, on 15% of trials, monkey A was forced to touch a square lever,
which was presented alone and pseudorandomly at one of the spatial positions of
the Check and Work levers. The monkey earned no reward during this Control
task. This allowed us to control whether Check versus Work choice neuronal
activity was modulated by the spatial property of levers independently of
confounding factors related to decision difficulty and/or reward expectations.

Recordings. Recording chambers were centred at antero-posterior coordinates of
þ 34.4 and þ 33.6 relative to ear bars (for monkey A and H, respectively).
Electrophysiological activity was recorded using epoxy-coated tungsten electrodes
(1–2 MO at 1 kHz; FHC Inc., USA) independently lowered using microdrive
guidance (AlphaOmega Engineering). Neuronal activity was sampled at 22 kHz
resolution. Recordings were referenced on guide tubes containing the electrodes
and in contact with the dura. Two to six electrodes were used simultaneously to
record neuronal activity in MCC and LPFC. The label MCC is used to emphasize
the homology of the recorded region with the aMCC in humans, where feedback-
related activation have been observed—see Procyk et al.7 for details.

Recording sites (see Supplementary Fig. 2) were reached through a 1-mm
spaced recording grid and covered in MCC, an area extending over B10 mm
(anterior to posterior), and at depths superior to 4 mm from cortical surface.
Recording sites in LPFC were located between principal and arcuate sulcus
(areas 6DR, 8B, 8A and 9/46) and at depths inferior to 2 mm from cortical surface.
Regions were targeted pre-operatively using Brainsight neuronavigation (Rogue
Research Inc., Canada) using each monkey’s anatomical MRI (T1, 1.5 T and voxel
0.6 mm iso). Recording chambers were implanted contralateral to the arm used
with online targeting using neuronavigation. Reconstructions of cortical surface, of
MRI sections perpendicular to recording grids and of microelectrode tracks were
performed using the same reference frames. Maps and recording locations in the
two monkeys were combined by aligning grids on the level of the genu of the
arcuate sulcus, taken from coronal sections on the MRI and then relocated using
views perpendicular to the recording chamber axis. Locations were confirmed with
those MRI reconstructions and stereotaxic measurements by keeping track of
electrophysiological activity during lowering of electrodes.

Behavioural analyses. Only sessions with more than four earned bonus rewards
(four blocks) were included. We used 48, 44 and 26 sessions to investigate
monkeys’ behaviour during the dual task (in monkey A, H and D, respectively).
Break trials and trials of the control task were not used for behavioural analyses.

RTs (time between the appearance of the two targets in the main task and the
release of the lever) and movement times (time of arm movements from lever to
target) were computed on each Cued trials in the main task. For the Check versus
Work decisions, response times (time between the lever onset and the lever touch)
were also recorded and analysed.

A logistic regression was used to establish the impact of events on the odds of
choosing the Check option in contrast to the Work option. glm were fitted using
R47 and the packages MASS48, as well as ggplot2 for graphics49.

The main glm used to explain the odds of checking included the following
variables: Gauge (representing the gauge size, from 1 to 7)þ Previous performance
(Incorrect/Correct)þ Speed (representing the various number of correct trials
defining the gauge size increase, from 1 to 4)þBlock number (order of the block in
a given session, from 1 to 10). The significance and estimates were extracted: slope
for Gauge and difference from Correct estimate for Previous trial, and difference
from speed 1 estimate for Speed. Block number provided no significant effects and
is thus not presented in Fig. 1c.

Similarly, a glm was used to explain possible variations of RTs in the Cued
decision during the main task. The glm included the following variables: Difficulty
(representing the orientation of the cue, from 1 to 3)þ Previous
performanceþBlock number.

Oculomotor analyses. Oculomotor signals were first subsampled at 186 Hz for
ease of data processing. A cleaning procedure using robust spline smoothing with
generalized cross-validation to minimize over- or under-smoothing automatically
was then applied to remove blinks and interpolate short periods of poor signal/
noise ratio (o20% of the trial length). Trials with longer noisy periods were
removed from the following analyses. It is noteworthy that sessions considered here
are parts of the recording set as we wanted to use oculomotor measures as a factor
to explain neuronal activity modulations.

Oculomotor signals were extracted from 1,000 ms before the EoT and until
monkeys’ touch on one of the lever (Check or Work) in the following trial. We
then defined non-overlapping windows around the spatial position of each lever
(2.5 times the stimulus lever sizes) and detected when monkeys’ gaze were inside
either windows of interest. Only fixations of one of the levers for 4150 ms where
considered. We also counted the number of fixations on each levers during the time
period of interest. In that case, two successive fixations needed to be separated by
4150 ms to be considered.

Three measures were then considered. The scanning behaviour (named Scan)
corresponds to the fact that the animal fixated either only one lever position (0) or
both lever positions (1) during the inter-trial period. Furthermore, we extracted the
time of the last lever fixation after the EoT and up to the touch. It is noteworthy

that the latencies were realigned to the touch latencies instead of the EoT onset.
This measure represents an alternative to using the Response time for check or
work decisions by providing information about the relative time at which monkeys
last considered which decision to make. Finally, we considered the total number
of fixations performed in cases were monkeys scanned both levers (that is, when
Scan¼ 1).

We analysed, using generalized linear models, the fixed effects of Gauge size,
Distance to check, Previous performance (Incorrect/Correct) and Check versus
Work decisions on the three oculomotor measures (Scan, Latency and Number of
fixations) using binomial, normal and Poisson link functions, respectively.

Spike sorting and visualization. Neuronal activity was visually inspected using
online spike sorting (MSD, AlphaOmega) and then analysed offline using spike
sorting (UltraMegaSort2000, Matlab toolbox, Kleinfeld Lab, University of
California, San Diego, USA; see also ref. 50). We referred to metrics qualities to
verify the completeness and purity of unit activity and thus to infer the presence of
single neurons. Each single unit activity was selected, recorded and included in
analyses on the basis of the quality of isolation only. For visualization purpose, we
computed the spike density histogram relative to the appropriate conditions for
each isolated single unit (convolved using a 20-ms Gaussian kernel) and averaging
activity using a sliding window of 20 ms each 20 ms step (Matlab, The MathWorks
Inc., home-made scripts).

Sliding generalized linear models. To investigate whether each single unit
activity encoded the different key variables of the task, we analysed variations of
spike counts measured in each trial using a glm approach on the R platform, the
libraries MASS and ggplot2 for graphics (see above) (Fig. 4).

Spike counts were measured on successive bins of 200 ms moved smoothly by
50 ms around different key event times in each trial. Because of the statistical
properties of count data, the glm were applied using a Poisson regression (Poisson
error structure). However, evaluation of Poisson glm is based on the assumption
that the dispersion parameter is equal to 1. The model is inadequate if data are
overdispersed (when variance is much larger than the mean). Inappropriate
imposition of the Poisson might underestimate the s.e. and overstate the
significance of the regression parameters, therefore inducing misleading inference
on the regression parameters. One way of checking for overdispersion is to divide
residual deviance by the degree of freedom. This should be close to 1 for correct
dispersion. In case of overdispersion, we applied Negative binomial regression
using the glm.nb() function. To validate this choice for each set of data, we
statistically compared the two models (Poisson and Negative binomial) fitted for
each set (likelihood ratio test, w2-test).

Proportions of significant single units were extracted from the sliding glm if
they significantly discriminated the factor of interest for four consecutive bins
(covering a time period of 350 ms) within a pre-defined epoch of 1,500 ms around
the event considered (epochs represented in orange horizontal bar on top of graphs
in Fig. 4b). Neuronal preference was then defined depending on the sign of the
Z-value during this period. We assessed statistical significance by computing
w2-tests when testing for differences in neuronal proportion between structures
(at Po0.05).

Two glm models were used for three different alignments on events. One model
was used for activity aligned on both feedback and EoT events, incorporating the
variable Feedback (Correct versus Incorrect), Next decision (Check versus Work)
and Gauge (covariate 7 steps). For the study of information processed during Cued
decision in the main task, we analysed single trial activity aligned on Cue onset or
Target touch with one model incorporating the variables Space (Right versus Left
choices), Difficulty (1/2/3 angles in the cue-based categorization) and Gauge
(covariate 7 steps).

We also checked for multicollinearity with the variation inflation factors (VIF)
for each fit (each neuron and each time bin). The VIF provides an index of how
much a variable relate to the other variables. It should be 1 for totally orthogonal
vectors. A VIF between 2.3 and 5 is supposed to indicate some significant but
manageable collinearity, whereas VIF410 indicates problems and a need to act on
variables. We computed VIF for all three variables and found an average VIF of
1.67 s.d.±0.068 (median: 1.04), suggesting collinearity was not an issue in our
primary model.

Group analyses using a glmm. The capacity of groups of single unit activity to
encode factors were tested using a so-called population glm, which correspond to a
glmm, using a Poisson regression, with single unit considered as random factor.
The mixed models used were of the form:

y ¼ b0 þb1:CheckWorkþ b2:Gaugeþb3:PreviousPerformanceþ g:Zþ e

where g.Z is the random term, and CheckWork, Gauge and PreviousPerformance
are the fixed effects describing the Check versus Work decision (0/1), the gauge size
(1–7) and the performance in the previous trial (0/1) with their respective
parameters (b). To approach the population of single units as a whole, we
considered units as a Random factor, hence providing to the model a freedom to
take into account single-unit activity individual variance. In the glmm, the Single
unit identity was used as a random factor, to take into account the potential
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difference/variance of fixed effects from one cell to another. The analysis takes into
account that slopes and intercept differences can vary between single units, as if we
were testing effects on a population of different subjects. We add a random effect
for ‘units’ and this characterizes idiosyncratic variation that is due to individual
differences.

A persistent problem with Poisson models in biology is that they often exhibit
overdispersion, where the variance of the response variable is greater than the
mean. Not accounting for overdispersion can lead to biased parameter estimates; it
can bias both the means and s.e. of parameter estimates. One manner in which
overdispersion is dealt with involves the use of observation-level random effects
(OLRE), which model the extra variation in the response variable using a random
effect with a unique level for every data point51. The procedure is to create a
variable with one level for each single data point, in our case for each spike count
measure for each cell, each time bin and each condition. This OLRE variable is used
as a random effect. This allows to include in the model the extra variance missing
to the Poisson model.

Data observation and model validation revealed overdispersed data overall. To
model the excess variation and solve the problem of underestimated mean and s.e.,
we included an OLRE that showed to improve model performance. We tested the
models’ fits with and without the OLRE and found that deviance and akaike
information criterion (AIC) were always better with OLRE (see Supplementary
Fig. 12). Statistical comparisons between models were always significant in favour
of the model with OLRE.

The impact of Scan on the group neural activity was evaluated using a glmm
with single unit as a random factor and an OLRE to solve overdispersion problems.
Fixed effects were Previous performance, Gauge, Scan and Check/Work.

Hierarchical clustering analyses. The statistical estimates in the group and
single-unit activity statistics (sliding glm in Fig. 4) suggested that multiple cell
populations contributed to different events. To study further the functional
typology of single-unit activities, we proceeded to classify units using another
approach beyond the one reflected in the Venn representations (Fig. 4).

We applied a hierarchical clustering method to the Z-values obtained for each
cell and each event (Feedback, Check versus Work decisions and Cued decisions in
the main task), to extract objective classes of neurons in both areas. This method
complements classic tools used to characterize neuronal preference without the bias
of reporting strict categories of neurons. As for Venn representations in Fig. 4a, we
used here the maximal Z-value extracted from the sliding glm during a defined time
window (orange bars in Fig. 4b) for each significant neuron and for each variable of
interest (Feedback, Check versus Work decisions and Cued decisions in the main
task). Values for nonsignificant neurons were set to zeros. It is noteworthy that
positives Z-values mean a greater activity for Correct choices, Check decisions or
Right cued decisions compared with Incorrect choices, Work decisions or Left cued
decisions, respectively (negative values therefore represent the opposite pattern).
The distance measure used was the Euclidean distance and the Ward’s method was
used for the aggregation process. This method attempts to minimize the sum of
squared errors (SSEs) of any two nearby clusters that can be formed at each step.
Conventionally, the clusters have been chosen from the distance matrix and from a
threshold of distance taken on the dendrogram (red dashed line). The choice of a
threshold is usually taken above small distances and where large jumps of distances
can be observed (see Supplementary Fig. 8a,b). To assess the specificity of each
cluster, we averaged the same Z-value used as an input to the algorithm over
selected neurons (as shown in Supplementary Fig. 8c). Similarly, the firing rates of
each neuron in the different clusters were averaged and displayed in
Supplementary Fig. 8d. This revealed five clusters of single-unit activity in the
MCC and three in the LPFC. This method emphasized that the strong
representation of feedback (positive and negative) in the MCC was spread over
different clusters (Clusters 3, 4 and 5). Importantly, a specific group of single units
(cluster 4) contributed actively to both negative feedback and decision to Check
(that is, bias towards positive Z-values for feedback and Check versus Work).

Linear decoding methods. We applied multiple linear regressions to decode
information from population activity vectors in both regions. This method assesses
the capability of a linear readout to extract a given response variable (for example,
Check versus Work) from trial by trial spike counts of the whole neuronal
population. In this procedure, a Tikhonov regularization was used to minimize the
SSEs and so to avoid overfitting by placing constraints on regression coefficients.

In this analysis, 60% of trials were used for training and 40% for testing,
randomly selected from the pool of available trials. To determine the regularization
parameter, we further subdivided the 60% partition to perform a five cross-
validation procedure. For each regularization value tested, the SSEs across the five
folds was calculated. The regularization value corresponding to the minimal SSE
was then selected and used to train the classifier on the entire training partition
(the 60% one). Finally, the testing was performed on the 40% partition, including
only trials the classifier did not experience before. The classifier was trained and
tested at each time bin.

To assess the temporal evolution of information coding, we applied this analysis
at equivalent time points (by training and testing the classifier at a given time, see
Fig. 5a) but also at different times (by training the classifier at time t and testing it
at time tþ i, see Fig. 5b). Such procedure highlights the dynamic of population

coding, revealing the specificity (or generality) of pattern differences. Decoding
matrices were thresholded to display only significant coding at Po0.05 (see below).
For this analysis (performed for Feedback, Check versus Work and Cued decisions
in the main task), spike counts were measured on successive bins of 200 ms for
each 50 ms step and extracted from a set of 20 trials for each conditions. Owing to
this under-sampling procedure, an unbiased readout performance (decoding rate)
was extracted by randomly selecting trials and performing all computations 200
times. We then used the average decoding rate over these 200 computations. It is
noteworthy that when comparing Check versus Work choices, we only considered
trials that were preceded by a correct Cued decision in the main task, as monkeys
mostly engaged in the Check option after correct trials (see Results).

A similar method was also used to assess how the population activity vector
changed at different distances to Check (Fig. 8b,c), using a Lasso regularization.
One advantage of the Lasso method is to reduce the number of predictors used
(that is, neurons) depending on their importance and redundancy to discriminate
the response variables (regression coefficient for unnecessary predictors are set to
zero) and to allow feature extraction for instance. This allowed us to assess the
minimal number of neurons that contributed significantly to the decoding. Venn
representations on Fig. 8c show the number of neurons that had non-zero
regression coefficient in at least 10% of the 200 pseudorandom trial selections. It is
important to note that a high number of neurons with non-zero regression
coefficient is not necessarily a guarantee of correct decoding. When the decoder
could not fit the data (for example, did not converge), the decoding rate was set to
50%. For example, the decoder failed to converge for permuted data 49.7% of the
time.

The same procedure as the one described earlier for the Tikhonov
regularization was used for the Lasso regularization too, namely (1) the separation
of trials into two independent partitions for training (60% of trials) and testing (the
remaining 40%) purposes, and (2) the determination of the regularization
parameter based on minimal variance during a fivefold cross-validation performed
on the training partition. Here, the spike count was extracted from a set of 15 trials
during the inter-trial period (from the EoT event to þ 2,000 ms) for each distance
considered. We then compared the population activity for different distances of
correct trials before a check (n, n� 1, n� 2 and n� 3, with n being the trial at
which the monkey checks) to a reference set of correct trials taken at a distance
between five to ten trials before a check. This means that a correct decoding at trials
n� 1, for example, represents a significant difference in population activity
between these trials and similar trials taken at n� 5 to n� 10, the only constant
difference between the two groups of trials being the distance to the next check.
Therefore, this approach allows to test whether traces of decision to check can be
detected several trials before the actual choice of checking.

Statistical procedures for linear decoding methods. We assessed statistical
significance by performing 1,000 permutations of randomly shuffled conditions for
each neuron. Trial assignments and all following computations were then per-
formed using the same procedure as for the main tests (see above). Two-tailed
P-values were then extracted by counting the number of permuted observations
that have a greater value than actual observation, divided by the number of
permutations. We used a cutoff threshold of 95%.

In addition, statistical comparisons between MCC and LPFC population coding
were performed using KW tests (with Bonferroni correction for multiple testing)
over the 200 random trial selections. Only time bins where at least one of the two
populations significantly decoded the information were tested and reported on
Fig. 5.

Comparison of linear and nonlinear classifiers. It must be noted that numerous
algorithms for classifications have been developed in the field of machine learning
and statistics; all of them could in principle be used to assess how neuronal
population activities discriminate response variables (foe example, see ref. 28). The
linear decoding methods we performed here (see Figs 5 and 8b,c) represent only
one type of algorithm, which tends to be preferred in electrophysiology studies
given their few advantages. In particular, they do not rely on complex relations
between predictors and response variables; they only use a hyperplane to separate
the input data. This means that only one downstream neuron could theoretically
read out and discriminate response variables by simply performing a linear sum of
the inputs from a whole population. In addition, such methods are less compu-
tationally demanding than nonlinear versions and can therefore be performed
easily, yet providing accurate predictions. Nevertheless, it is possible that linear
methods did not provide the best decoding accuracy in some contexts (for example,
underestimated accuracy in case of a nonlinear encoding of the response variables),
or even tend to overestimate possible effects.

To test the reliability of our results for the different conditions considered, we
also applied an alternative nonlinear classifier, using support vector machine
(SVM) with Gaussian kernel. Contrary to linear classifiers, SVM mapped
nonlinearly input data into a higher-dimensional space and separated conditions
by using non-planar boundaries. In the case of a nonlinear encoding of the
response variables, we might expect more accurate predictions than previously
observed with a linear separation. Alternatively, a linear coding will bring similar
results. To ensure a fair comparison, all procedures (trial selection, assignments
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into training/testing sets and permutations) were conducted similarly to the linear
decoding (see above).

Average decoding accuracies for both linear classifier (from Fig. 5) and
nonlinear SVM are shown in Supplementary Fig. 7. Striking similarities could be
noted between both classifiers types, for all three response variables (Feedback,
Check versus Work decision and Cued decisions in the main task). No differences
could be observed in terms of strengths or latencies of significant decoding,
suggesting that simpler linear boundaries are enough to account for the coding of
these variables in MCC and LPFC populations.

Data availability. All relevant data and codes are available from the authors upon
request.
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