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Electrodynamic study of YIG filters 
and resonators
Jerzy Krupka1, Bartlomiej Salski2, Pawel Kopyt2 & Wojciech Gwarek2

Numerical solutions of coupled Maxwell and Landau-Lifshitz-Gilbert equations for a magnetized 
yttrium iron garnet (YIG) sphere acting as a one-stage filter are presented. The filter is analysed 
using finite-difference time-domain technique. Contrary to the state of the art, the study shows that 
the maximum electromagnetic power transmission through the YIG filter occurs at the frequency 
of the magnetic plasmon resonance with the effective permeability of the gyromagnetic medium 
μr ≈ −2, and not at a ferromagnetic resonance frequency. Such a new understanding of the YIG filter 
operation, makes it one of the most commonly used single-negative plasmonic metamaterials. The 
frequency of maximum transmission is also found to weakly depend on the size of the YIG sphere. An 
analytic electromagnetic analysis of resonances in a YIG sphere is performed for circularly polarized 
electromagnetic fields. The YIG sphere is situated in a free space and in a large spherical cavity. The 
study demonstrates that both volume resonances and magnetic plasmon resonances can be solutions 
of the same transcendental equations.

Yttrium iron garnet (YIG) is one of the most frequently used magnetic materials for constructing resonance 
and non-resonance devices operating at microwave frequencies and it is very important for ultrafast and 
ultrahigh-density spintronics. A theory for the ferromagnetic resonance, spin waves and modes of operation of 
spherical YIG resonators and filters was developed over 60 years ago1–21 and is summarized in textbooks11,22. The 
ferromagnetic resonance phenomenon is quantitatively described by a permeability tensor that can be derived 
from the Landau-Lifshitz-Gilbert equations. If a uniform static magnetic field is applied along the z-axis of a 
cylindrical or Cartesian coordinate system, then the permeability tensor in these systems takes the following 
form11:
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where: fH =  γH0, fres =  fH(1 +  α2)0.5, MS is the saturation magnetization of the ferromagnetic sample, α is the 
Gilbert damping factor, H0 is the static magnetic field inside the sample, γ  =  35.176 MHz/(kA/m), and j is the 
imaginary unit.

Equations (2–4) are valid for H0 >  MS. For frequencies f close to fres, the permeability tensor components μ and 
κ have Lorentzian frequency dependence. When f =  fres, the imaginary parts of these components exhibit maxima 
and the real parts change their signs from positive to negative. Existing theories of spherical YIG band-pass filters 
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are usually based on simple lumped-element models9. Such models describe the tuning of the filter, assuming 
that its centre frequency follows the frequency of ferromagnetic resonance but they do not explain the physical 
phenomenon based on electrodynamics. There remain open questions related to the operation of YIG filters and 
resonators. For example, does the maximum transmittance of the filter occur at the ferromagnetic resonance 
frequency, f =  fres, where magnetic losses of YIG are the largest? Is the magnetic field uniform in the YIG sample at 
the frequency of maximum transmittance as predicted by magneto-quasistatic models5,6? How is the maximum 
transmittance of the filter related to the permeability of the YIG sphere? The goal of this work is to investigate 
these questions using a rigorous electromagnetic analysis.

We first numerically analysed a one-stage spherical YIG filter using the finite-difference time-domain (FDTD) 
method implemented in the QuickWave 3D (QW-3D) simulator23. This simulation uses the gyrotropic perme-
ability tensor, as in Eqs (1–4)24. In addition, our basic findings were confirmed using the finite element method 
(FEM) implemented in the HFSS25 simulator. Second, we analysed a rigorous electromagnetic model of the reso-
nances in gyromagnetic spheres situated in a free space and in spherical metal cavities.

Analysis of a YIG filter
We performed an electromagnetic analysis for the experimental setup of a one-stage filter, as shown in Fig. 1a.

In the experiment, a YIG sphere is mounted on the top of a dielectric tuning rod and inserted into a copper 
shield containing two orthogonal semi-circular loops. Figure 2 shows a typical transmittance of the filter at the 
[100] orientation of the YIG sphere (hard magnetization orientation) and at an external static magnetic field 
Hext ≈  222 kA/m. The radius of the YIG sphere is R1 =  253 μ m. In the experiment, all resonance frequencies varied 
when we rotated the tuning rod (and the sphere) as this changed the angle between the external magnetic field 
and the hard crystallographic axis of the YIG crystal. This is a well-known phenomenon related to the crystallo-
graphic anisotropy of the static magnetization of YIG crystals. For the “easy” orientation of the YIG sphere (along 
the [111] axis), all resonance frequencies are reduced by ~396 MHz with respect to those shown in Fig. 2.

Figure 1. YIG filter. (a) Experimental set-up for a one-stage spherical YIG filter. (b) FDTD model of the filter.

Figure 2. YIG filter transmission spectrum. Magnitude of a transmission coefficient |S21| for the one-stage 
spherical YIG filter measured for the [100] YIG sphere orientation and an external static magnetic field 
Hext  ≈  222 kA/m.
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Figure 1b depicts a simple numerical model of the filter with a YIG sphere magnetized along the z-axis. The 
sphere is located in a rectangular 2 ×  2 x 2 mm3 cavity with perfectly conducting walls. We conducted an EM 
analysis with the FDTD method implemented in QW-3D. The model consists of about 4.1 million rectangular 
FDTD cells of variable sizes, with the smallest one equal to 10 μ m. Figure 3a presents the results of the FDTD 
computations of the transmission coefficient for the YIG filter model depicted in Fig. 1b.

The properties of the YIG sample obviously depend on the uniform static magnetic field H0. For a sphere, H0 
is related to the external magnetic field Hext by the well-known formula = −H H Mext S0

1
3

, where 1/3 is a demag-
netization factor of a sphere11. In that case, we expect the ferromagnetic resonance frequency fres for the assumed 
parameters of the model (listed in the caption of Fig. 3) to be ~6.166 GHz. As seen in Fig. 3a, the maximum trans-
mission of the filter occurs at a frequency of 7.938 GHz, which is much larger than the frequency of the ferromag-
netic resonance. However, it is in approximate agreement with the experimental data. As shown in Fig. 2, the 
main resonance occurs at 8.166 GHz for the [100] orientation of the YIG crystal. According to Fig. 3b, the filter’s 
transmittance at 7.938 GHz corresponds to the effective permeability for a right-handed circularly polarized wave, 
which is equal to Real(μr) =  Real(μ +  κ) =  − 1.781. In addition to the main transmittance peak, there are two 
visible discontinuities in the computed transmission characteristic of the filter shown in Fig. 3a. The first discon-
tinuity appears near the ferromagnetic resonance frequency at 6.165 GHz, where the real part of the effective 
permeability μr is large, while the second occurs at 8.292 GHz, where Real(μr) =  − 1.318.

We analysed the electromagnetic field distributions to understand why the maximum transmittance of the 
filter occurs at a frequency that does not correspond to any characteristic features of the ferromagnetic permea-
bility tensor. Figure 4a shows a 3D distribution of an instantaneous electric field vector at 7.938 GHz, and Fig. 4b,c 
present its magnitude in the x-y and x-z planes, respectively, obtained using the FDTD model shown in Fig. 1b. 
The electric field is circumferential and tangential to the air/YIG interface. Figures 4d,e show the corresponding 
2D instantaneous magnetic field distributions in the x-y and x-z planes, respectively. The magnetic field vector 
in the YIG sphere has components that are almost transverse with respect to the applied static magnetic field. 
The polarization of the magnetic field inside the YIG sphere is reversed with respect to the magnetic field in air, 
due to negative real part of the permeability at the observation frequency. Figure 4f shows the magnitude of the 
instantaneous electric field vector at 8.292 GHz, where real(μr) =  − 1.318. As for the main mode, the electric field 
has only a circumferential component tangential to the air/YIG interface, but there are more variations in the x-y 
plane compared to the main mode. We emphasize that the magnetic field is not evenly distributed inside the YIG 
sphere, but is focused at the air/YIG interface. Furthermore, the electromagnetic field rotates clockwise in time 
around the magnetization z axis, which we can observe in the time-domain simulations.

The obtained field distributions indicate that magnetic plasmons exist in the analysed system. They are equiv-
alent to the dielectric surface plasmons at metal dielectric interfaces occurring at frequencies, where the permit-
tivity of the metal is negative. Nano-resonances in spheres that exhibit the negative permittivity value εr ≈  − 2. 
a called plasmonic resonances, and they have been studied by many researchers26–30. Plasmonic resonances lead 
to several exciting optical phenomena, including the sparkling colours of stained glasses26–30. To date, magnetic 
plasmon resonances have not been discovered at optical frequencies28 but, as it is demonstrated in this paper, they 
do exist at microwave frequencies.

Figure 3. Transmittance of the YIG filter. (a) Transmittance of the YIG filter computed with FDTD using 
QW-3D. (b) Corresponding components of the permeability tensor obtained from Eq. (1) with the following 
parameters: α =  0.0002, H0 =  175.3 kA/m, and Ms =  140 kA/m.
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Resonators containing gyromagnetic medium
Hundreds of experiments with YIG spheres have been performed in different types of metal cavities, resulting in 
the identification and measurement of multiple resonances1–9,13–21. Most of these studies assumed that the cavity 
modes are coupled to the so-called quasi-magnetostatic modes (or Walker modes5). It seems, however, that the 
problem is actually more complicated. In general, EM fields in the system are solutions of the coupled Maxwell 
and Landau-Lifshitz-Gilbert equations with appropriate boundary conditions defined for the whole cavity con-
taining a YIG sphere. Unfortunately, when the dimensions of the sphere are much smaller than the dimensions 
of the metal cavity, a numerical electromagnetic simulation becomes impractical. This is because the number 
of rectangular cells in the finite difference method (or the number of polyhedral elements in the finite element 
method) that are necessary to obtain a desired accuracy increases proportionally with the ratio of the volume of 
the cavity to the volume of the sphere.

For these reasons, we used analytical methods to investigate a spherical cavity loaded with a YIG sphere. It was 
shown earlier that YIG filters operate at a magnetic plasmon resonance, where the permeability of the gyromag-
netic medium is μr ≈  − 2 for rotating fields. It was also shown that, for plasmonic modes, the microwave magnetic 
field is orthogonal to the static magnetic field. Such modes can be rigorously analysed in an appropriately chosen 
coordinate system assuming that the permeability is a scalar (but dispersive) quantity, μr. To analyse the eigen-
modes in a YIG sphere situated at the centre of a spherical metal cavity, we chose a spherical coordinate system 
rotating synchronously with the circularly rotating electromagnetic fields. The rotating r-θ  plane of this system 
corresponds to the x-y plane in Fig. 4, and the azimuthal coordinate of the system corresponds to the circum-
ferential electric field. In general, TEn0p and the TMn0p modes exist in spherical resonators, where the n, m, and 
p subscripts indicate elevation, azimuthal, and radial mode orders, respectively. However, only the TEn0p modes 
will be analysed herein, as the RF magnetic field components are orthogonal to the static magnetic field in this 
case, facilitating the analytical study. The resonances of the isotropic magnetic spheres for a medium with scalar 
complex permittivity and scalar complex permeability can be rigorously computed as solutions of the appropriate 
transcendental equations31–34. The equations for a sphere of radius R1 situated in free space have the following 
form for TEnmp modes:
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Figure 4. Electromagnetic field distributions in the YIG filter computed with FDTD. (a) Instantaneous 
electric field vector (7.938 GHz). (b,c) Magnitude of the instantaneous electric field vector (7.938 GHz).  
(d,e) Instantaneous magnetic field vector (7.938 GHz). (f) Magnitude of the instantaneous electric field vector 
(8.292 GHz). Note that the four points of field perturbation outside the YIG sample, visible in (b–d), originate 
from the coupling loops.
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where k =  k0(εrμr)0.5, k0 =  ω/c, εr is the relative complex permittivity of the sphere, μr is the relative complex 
permeability of the sphere, c is the speed of EM waves in a vacuum, and J (H) are the Bessel (Hankel) functions.

We obtained the transcendental equation for the TEnmp modes of the shielded sphere, with the radius of the 
shield equal to R2, by modifying the equation for the multi-layered spherical Bragg resonators34:

ω =Wdet( ( )) 0 (6)
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Equations (5 and 6) can be solved numerically for the complex angular frequencies. The real parts of the 
angular frequencies divided by 2π  correspond to the resonance frequencies of particular modes. The Q-factors 
are determined as Q =  Real(ω )/(2Imag(ω )). More general expressions for the EM fields in anisotropic spheres can 
be represented in terms of spherical harmonics35.

Volume modes in gyromagnetic resonators
For gyromagnetic samples, the magnetic losses are the largest for the internal static magnetic field value corre-
sponding to the ferromagnetic resonance for a given frequency fres. As an illustration, Fig. 5a presents the scalar 
permeability components of a gyromagnetic medium, with Ms =  140 kA/m and α =  0.0002, for a certain range of 
the static magnetic fields near ferromagnetic resonance.

First, we computed a few resonance frequencies for a low loss isotropic magnetic sphere (Imag(μr) =  0.01) 
situated in a free space. Relative permittivity is 16, the radius is R1 =  0.5 mm, and the real part of the permeability 
spans from 1 to 1000. The red lines in Fig. 5b represent a few of the TEn01 resonant free space modes of the iso-
tropic magnetic sphere, while the black horizontal lines show the resonance frequencies of the first three TEn01 
modes of the empty cavity with the radius of R2 =  25 mm. The TEnmp frequencies of the empty cavity were evalu-
ated from the well-known formula: π=f c u R/(2 )n p, 2 , where un,p denotes the p-th root of the equation  
Jn + 0.5(u) =  0. When the small magnetic sphere is inserted into the cavity, strong mode coupling occurs on the 
intersections between the free space modes of the magnetic sphere and cavity modes as indicated in Fig. 5c. As a 
result, the resonance frequencies (red circles in Fig. 5c) and Q-factors (red line in Fig. 5d) of the cavity vary rap-
idly and mode splitting occurs near the mode crossing points. The first mode crossing point appears for 
Real(μr) ≈  153.9, and the second for Real(μr) ≈  448. The coupling between the free space modes of the magnetic 
sphere and the cavity modes strongly depends on the losses of the sphere. The smaller the losses in the sample the 
stronger coupling takes place. The resonance frequencies and the Q-factors for a lossy sample with the imaginary 
part of the permeability presented in Fig. 5a are shown as black lines in Fig. 5c,d. For the sphere with large imag-
inary parts of permeability, the Q-factor occurring for the first mode crossing for Real(μr) ≈  153.9 is the most 
pronounced. Such behavior can be explained with an analysis of the electromagnetic field distributions in the 
cavity. Figure 5e presents a radial distribution of the modulus of the electric field for the TE101 and TE102 modes of 
the magnetic sphere situated in a spherical cavity. It can be seen that the electric field practically vanishes outside 
the magnetic sphere for Imag(μr) =  0.01, while it remains substantial there for larger magnetic losses.
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For this reason, we concluded that if the gyromagnetic sphere has low magnetic losses the electromagnetic 
energy stored in the cavity region (R1 <  r <  R2) is smaller than the energy stored in the sample and the total 
Q-factor approaches that of the sphere in free space.

Magnetic plasmon modes in gyromagnetic resonators
As shown, magnetic plasmon modes exist for negative effective permeability. Such modes should be present in 
both unshielded and shielded gyromagnetic spheres. For the TEn0p modes, the magnetic field has a radial compo-
nent, so the magnetic plasmon modes should belong to this family of modes.

Figures 6a,b present computed resonance frequencies and Q-factors for the TE101 mode in free space - solu-
tions of Eq. (5) - that are obtained for magnetic spheres of various radii having an effective permeability in the 
range − 3 <  μr <  − 1. In these computations, we assume that the imaginary part of the permeability is constant 
and equal to 42 ×  10−4. This corresponds to the value obtained for the gyromagnetic medium, with α  =  0.0002, 
MS =  140 kA/m, and the static internal magnetic field H0 chosen so that μr =  − 2. These reproduce the conditions 
for the simulations presented in Fig. 3. Figure 6a shows that the resonance frequencies vary rapidly with the real 
part of the permeability, but at frequencies below 10 GHz they are practically the same for spheres with radii in the 
range 0.125 mm <  R1 <  0.5 mm. The asymptotic permeability values at the low frequency limit for the TE101 mode 
are slightly smaller than − 2 for all radii of the three spheres. These values at the low-frequency limit for the TE201 
and TE302 modes for a sphere with R1 =  0.5 mm radius are − 1.53 and − 1.35, respectively.

Next, we consider the TEn0p resonances for a 0.5 mm radius gyromagnetic sphere in a 25 mm radius cavity 
that occur at negative scalar permeability values in the range − 5 <  μr <  1. Figures 6c,d present the resonance fre-
quencies and Q-factors for the first three TE10p modes, respectively. These figures show that, near the asymptotic 
lines corresponding to the free space magnetic plasmon modes, the resonance frequencies vary rapidly and the 
Q-factors approach their minima. The electric field distribution obtained for permeability values corresponding 
to the Q-factor minima for the modes with p =  1 (μr =  − 2.105) and p =  2 (μr =  − 2.075) are presented in Fig. 7a. 
The radial subscript in Fig. 7a corresponds to the first magnetic plasmon mode in the sphere. However, for the 
mode with p =  2, the electric field changes its sign in the air region, and for the mode with p =  1, the electric field 
is evanescent in the air region without any change in its sign.

Figure 5. Characteristics of volume modes in the gyromagnetic sphere. (a) Scalar effective permeability 
components of a gyromagnetic medium as a function of the internal static magnetic field for α  =  0.0002, 
MS =  140 kA/m, and fres = 8.575 GHz. (b) Resonance frequencies of a few free space TEn01 modes of a magnetic 
sphere as a function of permeability. (c) Resonance frequencies for three TE10p modes of a magnetic sphere 
situated in a spherical cavity versus the internal static magnetic field. The black curve corresponds to material 
with permeability components as in (a), while the red curve is for the real part as in (a) and Imag(μr) =  0.01. 
(d) Q-factors for three TE10p modes of the magnetic sphere versus the internal static magnetic field. (e) Radial 
distribution of the modulus of the electric field for the TE101 and TE102 modes of the magnetic sphere situated in 
a spherical cavity. For plots (b–d): εr =  16, R1 =  0.5 mm, and R2 =  25 mm.
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Figure 6. Characteristics of magnetic plasmon modes in the gyromagnetic sphere. (a) Resonance 
frequencies. (b) Q-factors for the free space TEn01 modes for magnetic spheres as a function of the real part 
of permeability, assuming that Imag(μr) =  42 ×  10−4, and εr =  16. (c) Resonance frequencies. (d) Q-factors 
for the TE10p modes of the magnetic sphere in a spherical cavity, assuming that Imag(μr) =  42 ×  10−4, εr =  16, 
R1 =  0.5 mm, and R2 =  25 mm.

Figure 7. EM distributions in the spherical cavity with the magnetic sphere. (a) The electric field 
distributions for the first two magnetic plasmon TE10p modes of the magnetic sphere in the spherical cavity 
(R2 =  25 mm). (b) The electric field distributions for two magnetic plasmon TEn01 modes of the magnetic sphere. 
(c) Radial distribution of all EM components for the TE101 mode in the expanded view. (d) Radial distribution 
of all EM components for the TE201 mode in the expanded view. (e) 2D plots of the electric field in the r-Θ  plane 
for three TEn01 modes. For all plots: Imag(μr) =  42 ×  10−4, εr =  16, R1 =  0.5 mm, and R2 =  25 mm.
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Magnetic plasmon mode resonances are also observed for higher mode indices (n ≥  1), but their coupling 
with the cavity modes decreases with an increase in the mode index. The electric field distributions for the modes 
with n =  2 and n =  3 are presented in Fig. 7b for such permeability values, as they permit the strongest coupling. 
Figures 7c,d present the radial distributions for all three electromagnetic field components for the modes with 
n =  1 and n =  2 in an expanded view that includes the gyromagnetic sphere. The magnetic field components are 
finite at the centre of the sphere for the TE101 mode, and the same is true for the TE10p modes. For the modes hav-
ing elevation indices n ≥  1, the magnetic field components approach zero at the centre of the sphere. For all of the 
TEn0p modes, the electric field vanishes at the centre of the sphere. Figure 7e presents distributions of the electric 
field in the r-Θ  plane for the TEn01 modes, which are seen to be similar to the distributions shown in Fig. 4b,d. 
This indicates that the mode presented in Fig. 4d is the magnetic plasmon mode TE301.

Discussion
This work shows that maximum transmission of YIG filters corresponds to the frequency of the first magnetic 
plasmon resonance and not to the ferromagnetic resonance, which plays only supplementary role in bringing 
negative effective permeability at a discrete frequency. We rigorously analysed the resonances for a gyromagnetic 
sphere in a free space and in a spherical cavity. Both magnetic plasmon modes (modes that appear for the negative 
effective permeability of a gyromagnetic medium) and volume modes (modes that appear for a large positive per-
meability) were analysed. Results show that the strongest coupling between the free space modes and the modes 
of the empty cavity occur near the free space and cavity mode crossing points. Another interesting observation is 
that the fundamental mode of operation of the YIG filter is not circularly polarized but it circularly rotates in time 
around the magnetization axis, which allows coupling between orthogonally oriented coupling loops.

The internal static magnetic field values corresponding to the mode crossing points for the magnetic plasmon 
modes differ from the values corresponding to the ferromagnetic resonance. If we assume that the magnetic losses 
are negligibly small (α ≈  0), Eqs (2 and 3) can be used to derive the following:

µ µ κ= + = +
−

Re Re M
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f f

( ) ( ) 1
(7)r

S H
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Substituting fH =  γH0 into Eq. (7), we find that the internal static magnetic field Hμp, which is necessary to obtain 
a fixed μp value of the scalar permeability, is equal to
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It is interesting to note that the internal static magnetic value of Hμp, which is necessary to obtain the scalar 
permeability μp =  − 2, is equal to = +µ γ

H Mp
f
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. When the influence of anisotropy is neglected, 
= −H H Mext S0
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, so the first magnetic plasmon mode should be observed near the external static magnetic 
field ≈

γ
Hext

f . Equality in this formula would take place only for a specific orientation of YIG crystal with respect 
to the static magnetic field.
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