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miR-145-5p attenuates inflammatory response and 
apoptosis in myocardial ischemia-reperfusion injury 
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Abstract: Myocardial ischemia-reperfusion (I/R) injury is a common complication following reperfusion therapy 
that involves a series of immune or apoptotic reactions. Studies have revealed the potential roles of miRNAs in 
I/R injury. Herein, we established a myocardial I/R model in rats and a hypoxia/reoxygenation (H/R) model in H9c2 
cells and investigated the effect of miR-145-5p on myocardial I/R injury. After 3 h or 24 h of reperfusion, left 
ventricular end-systolic pressure (LVESP), ejection fraction (EF), and fractional shortening (FS) were obviously 
decreased, and left ventricular end-diastolic pressure (LVEDP) was increased. Meanwhile, I/R induced an increase 
in myocardial infarction area. Moreover, a decrease in miR-145-5p and increase in (NADPH) oxidase homolog 1 
(NOH-1) were observed following I/R injury. With this in mind, we performed a luciferase reporter assay and 
demonstrated that miR-145-5p directly bound to NOH-1 3’ untranslated region (UTR). Furthermore, miR-145-5p 
mimics decreased the levels of tumor necrosis factor (TNF)-α, IL-1β, and IL-6 via oxygen and glucose deprivation/
reperfusion (OGD/R) stimulation. Upregulation of miR-145-5p increased cell viability and reduced apoptosis 
accompanied by downregulation of Bax, cleaved caspase-3, cleaved poly(ADP-ribose) polymerase (PARP) and 
upregulation of Bcl2. In addition, miR-145-5p overexpression increased superoxide dismutase (SOD) activity and 
reduced reactive oxygen species (ROS) and malondialdehyde (MDA) content under OGD/R stress. Notably, NOH-
1 could significantly abrogate the above effects, suggesting that it is involved in miR-145-5p-regulated I/R injury. 
In summary, our findings indicated that miR-145-5p/NOH-1 has a protective effect on myocardial I/R injury by 
inhibiting the inflammatory response and apoptosis.
Key words: apoptosis, inflammatory response, miR-145-5p, myocardial ischemia-reperfusion injury, (NADPH) 
oxidase homolog 1 (NOH-1)

Introduction

acute myocardial infarction (aMi) is a common car-
diovascular disease with a high incidence of morbidity 
and mortality in the world [1, 2]. at present, there are 
several potential treatments applied for aMi, such as 
thrombolytic therapy, percutaneous coronary interven-
tion, and coronary artery bypass grafting [3]. However, 

reperfusion after ischemia is likely to exacerbate myo-
cardial dysfunction, leading to irreversible tissue dam-
age, which is also called myocardial ischemia-reperfu-
sion (i/R) injury [4]. Recent studies have shown that 
myocardial i/R injury is a complicated and multifacto-
rial pathological process involving a series of biological 
alterations, including mitochondrial dysfunction, inflam-
mation, myocardial cell apoptosis, and necrosis [5, 6]. 
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Therefore, how i/R-induced myocardial dysfunction can 
be alleviated is of great significance for the development 
of treatment strategies for ischemic heart disease.

(naDPH) oxidase homolog 1 (noH-1) belongs to a 
family of transmembrane proteins with wide involve-
ment in the pathogenesis of cardiac dysfunction [7, 8]. 
noH-1 represents the main naDPH oxidase isoform 
responsible for superoxide production and plays an im-
portant role in the regulation of inflammation and apop-
tosis [8–10]. it promotes norepinephrine-induced reac-
tive oxygen species (RoS) production in the heart [11]. 
Knockdown of noH-1 prevents against cobalt chloride 
(CoCl(2))-induced hypoxic injury, which is accompanied 
by increased endogenous antioxidant enzyme activity 
and activation of protective autophagy in cardiac H9c2 
cells [12]. NOH-1 can also activate the inflammatory 
response induced by the pro-inflammatory factor tumor 
necrosis factor (TNF)-α, along with a large amount of 
pro-inflammatory cytokine secretion in vascular smooth 
muscle cells [13]. on the other hand, loss of noH-1 
attenuates the inflammatory response and contributes to 
hypertensive cardiac remodelling [14]. notably, noH-1 
has been reported to be highly expressed in cardiomyo-
cytes and cardiac tissue [15]. nevertheless, the role of 
noH-1 in myocardial i/R injury and its molecular 
mechanism are elusive.

MicroRnas (miRnas) are small non-coding Rnas 
of 19 to 25 nucleotides that play important regulatory 
roles in processes involved in the development and pro-
gression of cardiovascular diseases, including heart 
development, myocardial apoptosis, and cardiac hyper-
trophy [16, 17]. in previous studies, researchers have 
demonstrated that miR-145-5p can improve myocardial 
i/R injury, which is correlated with alleviation of the 
inflammatory response and apoptosis during the develop-
ment of ischemia injury [18, 19]. Conversely, miR-145-
5p has also been found to promote i/R-induced apopto-
sis in cardiomyocytes and rat models [20]. in this study, 
a bioinformatics analysis showed that miR-145-5p has 
targeted binding sites on the 3’-untranslated region of 
noH-1. However, further study is required to determine 
whether the role of miR-145-5p in i/R is achieved by 
modulating noH-1.

in the present study, an in vivo model of i/R in rats 
and an in vitro model of oxygen and glucose deprivation/
reperfusion (oGD/R) in H9c2 cells were established, 
and we investigated the effect of miR-145-5p/NOH-1 on 
myocardial ischemic injury and the potential mecha-
nisms.

Materials and Methods

I/R injury model in rats
The study was approved by the animal Care and use 

Committee of The Second affiliated Hospital of 
Shenyang Medical College (Shenyang, China). The 
animal license number was SYYXY2019031501. Male 
Sprague Dawley (SD) rats aged 10 weeks were kept 
under a constant temperature conditions with a 12 h 
light/12 h dark cycle and free access to food and water. 
Rats were randomly divided into four groups (n=6 in 
each group): Sham 3 h, i/R 3 h, Sham 24 h, and i/R 24 
h. as described by Yang et al. [21], the heart was exposed 
through a left thoracotomy, and the Left anterior de-
scending coronary artery (LaD) was ligated for 30 min. 
after 30 min of ischemia, the rats were subjected to 3 h 
and 24 h of reperfusion. The rats in the Sham groups 
received the same procedure without LaD artery occlu-
sion.

Detection of cardiac function
after 3 h and 24 h reperfusion, echocardiography was 

performed to measure left ventricular end-systolic pres-
sure (LVESP), left ventricular end-diastolic pressure 
(LVEDP), ejection fraction (EF) and fractional shorten-
ing (FS).

Infarct size measurement
The infarct size was determined in collected hearts 

using triphenyltetrazolium chloride (TTC) staining (So-
larbio, Beijing, China). The samples were cut into slices 
and stained with 1% TTC for 10–15 min at 37°C. The 
red area was identified as the area at risk (AAR), while 
unstained (white) area was identified as the infarct area 
(ia). The aaR and ia were measured by computerized 
planimetry. The ia/aaR ratio was then calculated.

Cell culture and transfection
H9c2 cell lines were purchased from Procell Life Sci-

ence & Technology Co,. Ltd. (Wuhan, China) and cul-
tured in DMEM medium (Procell, Wuhan, China) sup-
plemented with 10% fetal bovine serum (FBS; Sigma, 
St. Louis, Mo, uSa) at 37°C in an atmosphere contain-
ing 5% Co2. For miR-145-5p overexpression or sup-
pression, miR-145-5p mimics, negative control (nC) 
mimics, miR-145-5p inhibitors, or nC inhibitors were 
transfected into H9c2 cells. The sequences of the miR-
145-5p mimics, nC mimics, miR-145-5p inhibitors, and 
NC inhibitors (JTS Scientific, Wuhan, China) were as 
follows: 5’-GuCCaGuuuuCCCaGGaauCCCu-3’ 
(sense) and 5’-GGauuCCuGGGaaaaCuG-
GaCuu-3’ (antisense) for miR-145-5p mimics, 5’-uu-
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CuCCGaaCGuGuCaCGuTT-3’ (sense) and 5’-aC-
GuGaCaCGuuCGGaGaaTT-3’ (antisense) for nC 
mimics, 5’-aGGGauuCCuGGGaaaaCuGGaC-3’ 
for miR-145-5p inhibitors, and 5’-uuGuaCuaCa-
CaaaaGuaCuG-3’ for nC inhibitors. Furthermore, 
to evaluate the effects of NOH-1 and miR-145-5p, an 
noH-1-overexpressing plasmid or empty vector and 
miR-145-5p mimics or nC mimics were co-transfected 
into H9c2 cells. all transfections were performed using 
Lipofectamine 3000 Reagent (Gibco, new York, nY, 
uSa) according to the manufacturer’s protocols. Trans-
fection efficiency was measured by qRT-PCR or western 
blot analysis.

Oxygen and glucose deprivation/reperfusion 
(OGD/R) model in H9c2 cells

after co-transfection of miR-145-5p mimics and the 
noH-1-overexpressing plasmid for 48 h, H9c2 cells 
were cultured in glucose-free DMEM in an anaerobic 
chamber (95% n2, 5% Co2) at 37°C for 6 h. after ex-
posure to hypoxia, the cells were maintained in a glu-
cose-containing medium with 95% air and 5% Co2 for 
18 h to allow them to recover.

Luciferase reporter assay
HEK-293T cells were co-transfected with 3’ uTR of 

wild-type (WT) or mutant (Mut 1 and 2) noH-1 and 
miR-145-5p mimics or nC mimics using Lipofectamine 
3000. after transfection for 48 h, the cells were har-
vested and lysed. Relative luciferase activity was deter-
mined with a luciferase assay kit (Promega, Madison, 
Wi, uSa) according to the manufacturer’s instructions.

Quantitative real-time PCR (qRT-PCR)
Total Rna from myocardial tissues and H9c2 cells 

was isolated with TRizol reagent (Tiangen, Beijing, 
China) and converted into cDna using reverse tran-
scriptase (Tiangen, Beijing, China). The relative expres-
sion levels of miR-145-5p, NOH-1, TNF-α, IL-1β, and 
iL-6 were determined using a SYBR Green-based qRT-
PCR assay (Solarbio) with the relevant primers. Expres-
sion of 5S or glyceraldehyde-3-phosphate dehydroge-
nase (GaPDH) served as the internal reference. The 
sequences of all the PCR primers (GenScript, nanjing, 
China) were as follows: 5’- GTCCaGTTTTCCCaG-
GaaTCC -3’ (forward) and 5’- GCaGGGTCCGaG-
GTaTTC -3’ (reverse) for miR-145-5p, 5’- GaTCTCG-
G a a G C T a a G C a G G 
-3’ (forward) and 5’- TGGTGCaGGGTCCGaGGTaT 
-3’ (reverse) for 5S, 5’- TTTCCTaaaCTaCC-
GaCTCTTCC -3’ (forward) and 5’- TTGTCCCa-
CaTTGGTCTCCC -3’ (reverse) for noH-1, 5’- CG-

GaaaGCaTGaTCCGaGaT -3’ (forward) and 
5’- aGaCaGaaGaGCGTGGTGGC -3’ (reverse) for 
TNF-α, 5’- TTCAAATCTCACAGCAGCAT -3’ (for-
ward) and 5’- CaCGGGCaaGaCaTaGGTaG -3’ 
(reverse) for IL-1β, 5’- AACTCCATCTGCCCTTCA -3’ 
(forward) and 5’- CTGTTGTGGGTGGTaTCCTC -3’ 
(reverse) for iL-6, and 5’- CGGCaaGTTCaaCGGCa-
CaG -3’ (forward) and 5’- CGCCaGTaGaCTCCaC-
GaCaT -3’ (reverse) for GaPDH.

Western blot
Total protein was extracted using radioimmunopre-

cipitation assay (RIPA; Solarbio) buffer and phenylmeth-
anesulfonyl fluoride (PMSF; Solarbio) and then quanti-
fied with a BCA Protein Analysis kit (Solarbio). The 
protein extracted was subsequently separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PaGE; Solarbio) and then transferred onto poly-
vinylidene fluoride (PVDF) membranes (Millipore, Bil-
lerica, Ma, uSa). after blocking in 5% nonfat milk, the 
membranes were incubated with specific primary anti-
bodies against NOH-1 (Abcam, Cambridge, UK ), TNF-α 
(Abcam), IL-1β (ABclonal, Wuhan, China), IL-6 (Affin-
ity, China), Bax (CST, Boston, Ma, uSa), Bcl2 (ab-
cam), caspase-3 (CST), poly(aDP-ribose) polymerase 
(PaRP) (CST) and GaPDH (Proteintech, Wuhan, China) 
at 4°C overnight. These membranes were then incu-
bated with horseradish peroxidase-labeled igG (igG-
HRP; Solarbio) for 1 h at 37°C, and the bands were vi-
sualized using enhanced chemiluminescence (ECL; 
Solarbio) detection systems. analysis of the gray values 
for proteins was conducted with the imageJ software.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay

at 48 h post-transfection, H9c2 cells were harvested 
at a density of 4 × 103 cells/well. Cell viability was de-
termined using an MTT assay kit (Beyotime, Shanghai, 
China) according to the instructions of the manufac-
turer. The optical density (oD) value was measured at 
570 nm with a microplate reader (BioTek, Winooski, VT, 
uSa).

Terminal deoxynucleotidyl transferase (TdT) dUTP 
nick-end labeling (TUNEL) assay

TunEL staining was performed with an in Situ Cell 
Death Detection Kit (Roche, Basel, Switzerland), ac-
cording to the manufacturer’s protocol, to determine the 
number of apoptotic cardiomyocytes. H9c2 cells were 
fixed with 0.1% Triton X–100 (Beyotime) for 15 min at 
room temperature. After washing with phosphate buffer 
solution (PBS; Sangon, Shanghai, China) 3 times, the 
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sections were incubated with TunEL reaction mixture 
in the dark at 37°C for 1 h. after that, the sections were 
incubated with DaPi (aladdin, Shanghai, China) for 5 
min and washed 3 times with PBS. The number of apop-
totic cardiomyocytes was observed under a microscope 
(Olympus, Tokyo, Japan) at a magnification of 400×.

ROS detection by flow cytometry
H9c2 cells were collected and washed twice in PBS. 

after centrifugation at 140 g for 5 min, the cells were 
incubated with DCFH-Da (Keygen, nanjing, China) at 
37°C for 30 min. after that, the cells were washed 3 
times in PBS, and the RoS production was examined 
using a flow cytometer (ACEA Biosciences, San Diego, 
Ca, uSa).

Detection of superoxide dismutase (SOD) activity
The activity of the anti-oxidative enzyme SoD was 

detected using an SoD activity assay Kit according to 
the manufacturer’s instructions (nanjing Jiancheng, 
Nanjing, China). The specific binding optical density 
was measured at 550 nm with a microplate reader 
(BioTek).

Detection of malondialdehyde (MDA) concentration
The concentration of the oxidative stress product 

MDa was monitored with an MDa assay Kit (nanjing 
Jiancheng). absorbance was visualized at 532 nm with 
a microplate reader (BioTek).

Statistical analysis
Data were analyzed using the GraphPad Prism 8 soft-

ware and presented as the mean ± SD. Comparisons of 
data between two groups were assessed using Student’s 
t-test. Differences among multiple groups were examined 
using analysis of variance (anoVa), followed by 
Tukey’s multiple comparisons as post hoc tests. a P-
value <0.05 was considered statistically significant.

Results

miR-145-5p expression decreased and NOH-1 
increased in the I/R model

Rats were subjected to ischemia for 30 min followed 
by reperfusion for 3 h or 24 h. Subsequently, we dem-
onstrated that LVESP, EF, and FS were obviously de-
creased and that LVEDP was increased in rats of the i/R 
group (Figs. 1a–D). The results of TTC staining sug-
gested that I/R injury resulted in a significant increase 
in infarct size in the i/R groups (Figs. 1E and F). More-
over, miR-145-5pand noH-1 expression levels were 
significantly downregulated and upregulated, respec-

tively, in response to i/R injury (Figs. 1G and H), indicat-
ing that miR-145-5p/noH-1 may play a critical role in 
i/R injury.

NOH-1 is a target of miR-145-5p
The miRDB online prediction database indicated that 

miR-145-5p had two putative target binding sites on 
noH-1 3’ uTR (Fig. 2a). To confirm this prediction, a 
luciferase reporter assay was performed. overexpression 
of miR-145-5p with mimics induced a reduction in the 
luciferase activity of noH-1 3’ uTR WT, while it had 
no impact on the mutant type (Fig. 2B), indicating in-
teraction between noH-1 and miR-145-5p. in addition, 
we transfected miR-145-5p mimics, nC mimics, miR-
145-5p inhibitors or nC inhibitors into H9c2 cells and 
found that miR-145-5p expression was increased by 
miR-145-5p mimics but decreased by miR-145-5p in-
hibitors (Fig. 2C). More importantly, overexpression of 
miR-145-5p significantly reduced NOH-1 expression, 
whereas silencing of miR-145-5p increased it (Figs. 2D 
and E), suggesting that noH-1 expression can be regu-
lated by miR-145-5p. These results imply that miR-145-
5p and noH-1 may have some regulatory roles in i/R 
development.

Effect of NOH-1 on OGD/R-induced inflammatory 
response

as illustrated in Fig. 3a, transfection with the noH-
1-overexpressing plasmid induced an elevation in noH-
1 expression. after oGD/R induction, the mRna and 
protein levels of TNF-α, IL-1β, and IL-6 were increased. 
MiR-145-5p reduced the expression of these inflamma-
tory cytokines, and this was reversed by overexpression 
of NOH-1 (Figs. 3B–G). These findings demonstrate that 
NOH-1 contributes to the inflammatory response of 
oGD/R-induced H9c2 cells, which may be mediated by 
miR-145-5p.

Effect of NOH-1 on OGD/R-induced apoptosis
The MTT assay showed that miR-145-5p increased 

cell viability inhibited by oGD/R, whereas cell viabil-
ity was reduced after transfection with the noH-1-over-
expressing plasmid (Fig. 4a). We further evaluated the 
effect of NOH-1 on apoptosis of OGD/R-induced H9c2 
cells, as shown in Figs. 4B and C. overexpression of 
miR-145-5p decreased the oGD/R-induced cell apopto-
sis rate, along with the elevation of Bax, cleaved cas-
pase-3, and cleaved PaRP and the reduction of Bcl2. 
Notably, these above effects were abrogated by NOH-1 
upregulation. in addition, miR-145-5p decreased the 
generation of RoS and MDa and increased SoD activ-
ity induced by oGD/R stimulation, which was also 
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abolished by noH-1 (Figs. 5a–C). Collectively, these 
results indicated the anti-apoptotic and anti-oxidative 
effects of miR-145-5p/NOH-1 on IR injury.

Discussion

although investigators have revealed the function of 
miR-145-5p in the process of myocardial i/R injury, 
whether miR-145-5p functions by modulating noH-1 

is not entirely understood. in the present study, we dem-
onstrated that miR-145-5p suppressed the release of 
pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and 
reduced apoptosis and oxidative stress induced by 
OGD/R and that these effects were in turn reversed by 
noH-1 upregulation, as illustrated in Supplementary 
Fig. 1.

in our in vivo experiment, we successfully established 
a rat model of myocardial i/R injury. after reperfusion 

Fig. 1. (naDPH) oxidase homolog 1 (noH-1) expression was increased in rats with ischemia reperfusion (i/R) injury. Healthy 
male Sprague Dawley (SD) rats were divided into Sham 3 h, i/R 3 h, Sham 24 h, and i/R 24 h groups (n=6 per group). 
They were then subjected to oxygen and glucose deprivation for 30 min followed by reperfusion for 3 h and 24 h. (a–D) 
at 3 h and 24 h post-reperfusion, the indicators related to cardiac function, including left ventricular end-systolic pressure 
(LVESP), left ventricular end-diastolic pressure (LVEDP), ejection fraction (EF), and fractional shortening (FS), were 
measured using echocardiography. (E) The infarct regions were determined by triphenyltetrazolium chloride (TTC) 
staining. (F) The infarct volumes were analyzed using the imageJ software. (G) Relative expression of miR-145-5p was 
detected by qRT-PCR. (H) noH-1 protein expression was determined using western blot analysis. all results are pre-
sented as means ± SD from six independent experiments, and they were analyzed by one-way anoVa. *P<0.05, compared 
with the Sham 3 h group. ** P<0.01, compared with the Sham 3 h group. *** P<0.001, compared with the Sham 3 h 
group. **** P<0.0001, compared with the Sham 3 h group. #### P<0.0001, compared with the Sham 24 h group.
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for 3 h and 24 h, we observed decreased LVESP, EF and 
FS, increased LVEDP, and increased infarct size, sug-
gesting the damage of cardiac structure and function. 
noH-1 is known to be upregulated following reperfusion 
in the heart [22, 23]. NOH-1 deficiency reduces infarct 

size, cardiac remodeling, and apoptosis in late ischaemic 
preconditioning [24]. Moreover, we found that i/R in-
jury induced a reduction in miR-145-5p expression and 
an elevation in NOH-1. These findings suggest the hy-
pothesis that miR-145-5p and noH-1 may play an im-

Fig. 2. (naDPH) oxidase homolog 1 (noH-1) is a target for miR-145-5p. To explore the interaction between miR-145-5p and 
noH-1, HEK-293T cells were co-transfected with noH-1 3’ untranslated region (uTR) (wild- and mutant-type) and 
miR-145-5p mimics or negative control (nC) mimics. Then, H9c2 cells were transfected with miR-145-5p mimics, nC 
mimics, miR-145-5p inhibitors, or nC inhibitors. (a) a schematic diagram is shown for the predicted miR-145-5p 
binding sites within the 3’ uTR of noH-1. Sequences of candidate binding sites between miR-145-5p and noH-1 are 
marked in red, while sequences with the point mutation in the target candidate sites are in green. (B) a luciferase re-
porter assay was performed to measure the luciferase activity. (C) qRT-PCR was performed to detect the expression of 
miR-145-5p. (D, E) qRT-PCR and western blot analyses were used to detect the noH-1 expression at the mRna and 
protein levels. all results are presented as means ± SD from three independent experiments, and they were analyzed 
by one-way ANOVA. ns, not significant. $$$P<0.001, compared with nC mimics + noH-1 3’uTR WT. a P<0.05, 
compared with miR-145-5p mimics + noH-1 3’uTR WT. ++ P<0.01, compared with nC mimics. ++++ P<0.0001, 
compared with nC mimics. ^^ P<0.01, compared with nC inhibitors. ^^^^ P<0.0001, compared with nC inhibitors.
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portant role in myocardial reperfusion injury. on this 
basis, we explored the relationship between miR-145-5p 
and noH-1 and their roles in i/R injury in the oGD/R 
model established with H9c2 cells. During myocardial 
i/R injury, a large number of RoS free radicals are pro-
duced, and this leads to a severe inflammatory response 
and apoptosis [25]. Cardiac inflammation due to reperfu-

sion is one of the most important predictors in the pro-
cess of i/R injury [26]. TNF-α is a well-known pro-in-
flammatory stimulus that can be triggered in response to 
i/R injury. it can stimulate the release of other pro-in-
flammatory cytokines, such as IL-1β and IL-6, further 
contributing to severe myocardial i/R injury [27–30]. 
noH-1, an important molecular link in the regulation of 

Fig. 3. (NADPH) oxidase homolog 1 (NOH-1) promoted the miR-145-5p-related inflammatory response induced by oxy-
gen and glucose deprivation/reperfusion (OGD/R). To investigate the effect of NOH-1 on inflammatory response, 
H9c2 cells were transfected with miR-145-5p mimics and an noH-1-overexpressing vector and subjected to oGD/R. 
(A) Transfection efficiency was determined by western blot assay. (B–G) The mRNA and protein levels of tumor 
necrosis factor (TNF)-α, IL-1β, and IL-6 were examined by qRT-PCR and western blot analysis. All results are 
presented as means ± SD (n=3). Student’s t-test was used to evaluate the difference between the empty vector group 
and the noH-1-overexpressing plasmid groups. Comparisons of data among multiple groups were conducted with 
one-way anoVa. &&&P<0.001, compared with empty vector. XXXXP<0.0001, compared with Control. VVVP<0.001, 
compared with oGD/R + negative control (nC) mimics. VVVV P<0.0001, compared with oGD/R + nC mimics. n 
P<0.05, compared with oGD/R + miR-145-5p mimics + empty vector. nn P<0.01, compared with oGD/R + miR-
145-5p mimics + empty vector. nnnn P<0.0001, compared with oGD/R + miR-145-5p mimics + empty vector.
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i/R injury, has been reported to play a pivotal role in 
I/R-induced TNF-α secretion in hepatocytes [31]. The 
NOH-1 inhibitor has anti-inflammatory effects that pre-
vent lung i/R injury, and this is achieved via the down-
regulation of TNF-α and IL-6 [32]. in the current study, 
we found that miR-145-5p decreased the expression of 
TNF-α, IL-1β, and IL-6 induced by OGD/R, which was 
similar to the study of Yuan et al. [19]. upregulation of 
NOH-1 resulted in a severe inflammatory response, as 
reflected by the increase in the TNF-α, IL-1β, and IL-6 
production, which is in agreement with previous studies. 
Moreover, NOH-1 was verified to be a direct target of 

miR-145-5p. Therefore, the inflammatory effect of NOH-
1 on myocardial i/R injury may be modulated by miR-
145-5p.

apoptosis is a major contributor to normal cardiac 
homeostasis, and obstruction of the apoptotic process 
leads to serious consequences in the heart [33]. it is well 
established that the activation of apoptotic signals is 
closely related to the expression of apoptosis-related 
signaling molecules [34]. in the process of i/R injury, 
the pro-apoptotic protein Bax is upregulated, and the 
anti-apoptotic protein Bcl2 is downregulated [35]. More-
over, both caspase-3 and PARP are the key effectors in 

Fig. 4. (naDPH) oxidase homolog 1 (noH-1) increased oxygen and glucose deprivation/reperfusion (oGD/R)-induced 
cell apoptosis. To evaluate the effect of NOH-1 on cell apoptosis, relevant functional assays were performed. (A) 
Cell viability was detected using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 
(B) Cell apoptosis was determined by Terminal deoxynucleotidyl transferase (TdT) duTP nick-end labeling (Tu-
nEL), and the apoptosis rate was analyzed. (C) Western blot was performed to detect the expression of Bax, Bcl2, 
pro-caspase-3, cleaved caspase-3, pro-poly(aDP-ribose) polymerase (PaRP) and cleaved PaRP. all results are 
presented as means ± SD, and they were analyzed by one-way anoVa. XXXXP<0.0001, compared with the Control. 
VVP<0.01, compared with oGD/R + negative control (nC) mimics. VVVP<0.001, compared with oGD/R + nC 
mimics. VVVVP<0.0001, compared with oGD/R + nC mimics. nP<0.05, compared with oGD/R + miR-145-5p 
mimics + empty vector. nnP<0.01, compared with oGD/R + miR-145-5p mimics + empty vector.
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the apoptotic pathways [36]. The inactive pro-form of 
caspase-3 is cleaved, and it subsequently cleaves PaRP, 
eventually triggering the process of apoptosis [37]. in 
general, downregulation of pro-apoptotic proteins and 
upregulation of anti-apoptotic proteins can alleviate the 
apoptotic response. in addition, miR-145-5p has been 
reported to inhibit apoptosis by decreasing Bax, cas-
pase-3, and caspase-9 and increasing Bcl2 in hypoxia-
induced cardiomyocytes [19]. nevertheless, upregulation 
of noH-1 can regulate Bax and Bcl2 expression to in-
duce apoptosis in cardiomyocytes [15, 38]. in our study, 
we consistently found that miR-145-5p suppressed 
oGD/R-induced apoptosis and that this was accompa-
nied by a reduction in Bax, cleaved caspase-3 and 
cleaved PaRP and an increase in Bcl2. interestingly, 
noH-1 partially abrogated the above changes, suggest-
ing that miR-145-5p may exert an anti-apoptotic effect 
through inhibition of noH-1 in myocardial i/R injury.

intracellular RoS production is also thought to be a 
major causative factor for i/R injury [39]. Excessive RoS 
production eventually leads to cell apoptosis [40]. as 
reported previously, reperfusion contributes to the oc-
currence of oxidative stress, which ultimately aggravates 
the pathological process of i/R injury [41]. SoD is the 
main enzyme for scavenging RoS [42]. MDa is a mark-
er of lipid peroxidation that reveals the increase of free 
radial formation after ischemia and indirectly elucidates 
the degree of cell damage [43]. in a previous study, miR-
145-5p is shown to strikingly decrease the production 
of the oxidative stress factor MDa and increase SoD 
activity [44]. noH-1 is a main driver of oxidative stress 
and induces large amounts of RoS accumulation [38]. 
in the present study, miR-145-5p overexpression de-

creased RoS generation and the MDa level and elevat-
ed SoD antioxidant enzyme activity in oGD/R-treated 
H9c2 cells, and this was reversed by noH-1 treatment.

in conclusion, we revealed in this study that miR-145-
5p could alleviate the inflammatory response, oxidative 
stress, and apoptosis via the suppression of noH-1, 
thereby ultimately attenuating myocardial i/R injury. 
Based on our findings, miR-145-5p/NOH-1 may serve 
as a potential therapeutic target for reperfusion damage 
in heart.
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