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Reading is a crucial visual activity and a fundamental
skill in daily life. Rapid Serial Visual Presentation
(RSVP) is a text-presentation paradigm that has been
extensively used in the laboratory to study basic
characteristics of reading performance. However,
measuring reading function (reading speed vs. print
size) is time-consuming for RSVP reading using
conventional testing procedures. In this study, we
develop a novel method, qReading, utilizing the
Bayesian adaptive testing framework to measure
reading function in the periphery. We perform both a
psychophysical experiment and computer simulations
to validate the qReading method. In the experiment,
words are presented using an RSVP paradigm at 108 in
the lower visual field. The reading function obtained
from the qReading method with 50 trials exhibits good
agreement (i.e., high accuracy) with the reading
function obtained from a conventional method
(method of constant stimuli [MCS]) with 186 trials
(mean root mean square error: 0.12 log10 units).
Simulations further confirm that the qReading method
provides an unbiased measure. The qReading
procedure also demonstrates excellent precision (half
width of 68.2% credible interval: 0.02 log10 units with
50 trials) compared to the MCS method (0.03 log10
units with 186 trials). This investigation establishes
that the qReading method can adequately measure
the reading function in the normal periphery with high
accuracy, precision, and efficiency, and is a potentially
valuable tool for both research and clinical

assessments.

Introduction

Reading is an important visual activity and a
fundamental skill that can be greatly affected by vision
loss. Difficulty in reading has been reported as the main
complaint of patients who attend low-vision clinics
(Crossland, Gould, Helman, Feely, & Rubin, 2007),
and improving reading ability is the main objective of
the patients who seek low vision rehabilitation (Elliott
et al., 1997; Owsley, McGwin, Lee, Wasserman, &
Searcey, 2009). Reading performance is also positively
correlated with the subjective quality of life for patients
with central vision loss (Hazel, Petre, Armstrong,
Benson, & Frost, 2000; Mitchell et al., 2008).

Although visual acuity is the most common func-
tional vision endpoint, it can be insensitive to some
retinopathies and their progression, especially in early
disease stages (Klein, Wang, Klein, Moss, & Meuer,
1995; Sunness et al., 1997). Sometimes, when reading
performance is impaired, visual acuity can be still
within the normal limits or have little change (Cross-
land, Culham, & Rubin, 2004, 2005). In this regard,
reading performance may be a better functional vision
endpoint given its high sensitivity to both visual
impairment (Cacho, Dickinson, Smith, & Harper,
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2010; Richter-Mueksch, Stur, Stifter, & Radner, 2006)
and physical characteristics of text (Legge, 2007).

In both the clinics and laboratory, most reading tests
aim to measure reading speed in a range of print sizes
to construct a reading function (Figure 1). Legge and
Bigelow (2011) have thoroughly reviewed the relation-
ship between reading speed and print size. Each reading
function contains a point corresponding to the critical
print size below which reading speed begins to decline
sharply and above which any further increase in print
size does not lead to faster reading speed (Legge &
Bigelow, 2011; Whittaker & Lovie-Kitchin, 1993). This
relationship holds for normally-sighted people and
patients with central vision loss (e.g., Chung, 2011;
Chung, Mansfield, & Legge, 1998). Given this well-
established relationship, identifying changes of the
reading function relative to age-matched controls may
help diagnose the nature of visual deficits in patients.

Several reading tests are available to clinicians to
evaluate the impact of visual impairment on reading.
Early reading assessments such as the Sloan Continu-
ous Text Read Cards (sentence-based; Sloan & Brown
1963) and the Bailey–Lovie Near Reading Card (single
word–based; Bailey & Lovie, 1980) allow clinicians to
determine the magnification necessary to read normal
text sizes. Later, the MNREAD test with a similar
concept was introduced (Legge, Ross, Luebker, &
Lamay, 1989). Other standardized tests include the
Pepper Test (Baldasare, Watson, Whittaker, & Miller-
Shaffer, 1986), Radner reading test (Radner et al.,
1998), Jaeger reading test (Runge, 2000), and
SKREAD (MacKeben, Nair, Walker, & Fletcher,
2015). The MNREAD test is among the most
commonly administered reading tests in low-vision
clinics.

Typically, in a reading test, patients are instructed
to read printed sentences or groups of words while
the clinician takes on the cumbersome task of
covering/revealing a testing stimulus and recording
both the reading time and accuracy. In this case, the
performance measure (i.e., reading speed) is suscep-
tible to ‘‘glitches’’ (Rubin, 2013). For example, if the
clinician starts the stopwatch too soon before the
patient is ready or if the patient repeats part of a
sentence or makes corrections during reading, the
estimated reading speed (calculated from the re-
corded reading duration) would not be accurate. The
performance measure is also affected by the patient’s
articulation rate. Additionally, card-based tests
require precisely calibrated and controlled viewing
conditions (e.g., external lighting and viewing dis-
tance) to ensure the accuracy of the measurements.
The number of tests that can be administered is
determined by the number of unique versions of
testing charts, which places an upper limit on the
number of conditions that can be assessed (e.g., OS
vs. OD vs. OU or high vs. low light level, etc.) and
may frustrate efforts in assessing remediation or
progression of disease over time.

Rapid Serial Visual Presentation (RSVP) is an
alternative text presentation paradigm, primarily used
in the laboratory. In an RSVP task, a rapid sequence of
words is presented at a fixed location on a video display
(Rubin, 2013). For both normal- and low-vision
observers, RSVP reading speed is typically much higher
than that for reading a page or a block of text (Rubin &
Turano, 1992, 1994; Yu, Park, Gerold, & Legge, 2010),
which can be at least partly attributed to the reduced
need for eye movements in RSVP reading. In the
laboratory, researchers use the RSVP paradigm to
control where text is presented on the retina and
provide precise control on word exposure duration.
Although it is technically feasible to vary exposure
duration word by word, the typical RSVP paradigm
uses a fixed duration for word presentation throughout
a sentence/trial, making it easier to compute reading
speed. In comparison to page reading, RSVP reading
eliminates and, therefore, does not assess eye move-
ments, natural rhythm of eye fixations, and trans-
saccadic integration. However, the RSVP paradigm
offers precise control of word exposure duration,
making the reading speed measurement impervious to
many uncontrollable factors. For instance, observers
can initiate a trial whenever they are ready. The
exposure duration of words in each trial is precisely
controlled, which is recorded as reading time. Observ-
ers can take time to report the words and make
corrections, which does not affect the measurement of
their reading speed.

With conventional testing procedures (e.g., non-
adaptive methods, such as the method of constant

Figure 1. The reading curve shows reading speed (words per

minute [wpm]) versus print size (lowercase x-height in degrees).

In the present paper, the reading curve is described by an

exponential function with three parameters: the asymptotic

performance level (corresponding to maximum reading speed),

the print size corresponding to a reading speed of six wpm, and

the slope that controls the changing rate of the reading curve.

Journal of Vision (2019) 19(5):5, 1–14 Shepard et al. 2



stimuli (MCS; Chung et al., 1998; Legge et al., 2007) or
adaptive staircase methods (Fine, Peli, & Reeves, 1997;
Pelli & Tillman, 2007), obtaining a reading function
(reading speed vs. print size) for RSVP reading requires
measuring reading performance repeatedly over a range
of predetermined stimulus conditions, which can be
overly time-consuming for clinical use. For instance,
the MCS procedure typically takes about 1 hr to
capture the reading curve across a range of print sizes
in normal vision. The testing time is even greater for
low-vision patients, who may take more time to read
and fatigue more easily. Hence, there is a clear need for
developing efficient testing methods aiming at easy
administration and short testing duration while pro-
viding accurate and precise estimate of the reading
function.

Here we adopt a Bayesian adaptive testing frame-
work (Lu & Dosher, 2013) to develop an efficient
testing method, qReading, to measure the reading
function in the periphery for RSVP reading. The
Bayesian adaptive procedure was first applied in the
landmark development of the QUEST method (Watson
& Pelli, 1983) and is now extensively used in
psychophysics (e.g., Alcalá-Quintana et al., 2007;
Garcı́a-Pérez & Alcalá-Quintana, 2007; Hou, Lesmes,
Bex, Dor, & Lu, 2015; King-Smith, Grigsby, Vingrys,
Benes, & Supowit, 1994; King-Smith & Rose, 1997;
Lesmes, Jeon, Lu, & Dosher, 2006; Lesmes, Lu, Baek,
& Albright, 2010; Remus & Collins, 2007, 2008;
Snoeren & Puts, 1997; Watson, 2017). To provide
efficient assessment while maintaining high precision
and accuracy of the measurements, the qReading
method combines Bayesian inference and an observer
model to capture the regularities in reading data and
adopts the information-theoretic framework to select
the most informative testing stimuli. In this study, the
reading function, reading speed (converted from
exposure duration) versus print size, is described by an
exponential function with three parameters. With the
information collected from each trial (i.e., testing
stimulus and the corresponding response), the estima-
tion on an individual’s reading function is refined on a
trial-by-trial basis. The qReading method updates the
joint posterior distribution of the parameters of the
reading function and, in turn, updates the estimated
reading function. Subsequently, a one-step-ahead
search is performed to select the print size and exposure
duration that optimizes the information gain for the
upcoming trial.

In this report, we describe a psychophysical exper-
iment and computer simulations to validate the
qReading method when measuring the reading function
for RSVP reading in the periphery. We demonstrate
that the qReading method can adequately measure the
reading function in the periphery with high accuracy,
precision, and efficiency and could be a useful tool for

the assessment of visual function of both normal- and
low-vision patients.

General methods

Observers

Five native English-speaking adults aged 19–25 years
with normal or corrected-to-normal vision were re-
cruited. None of the observers reported difficulties in
reading and were all naive to the purpose of the
experiment. The Ohio State University’s institutional
review board approved the research protocol, and the
procedures complied with the Declaration of Helsinki.
The experiments were undertaken with written consent
of each observer.

Apparatus and stimuli

The experiments were programmed and controlled
using MATLAB (MathWorks, Ltd.) and PsychTool-
box-3 (Brainard, 1997; Kleiner, Brainard, Pelli,
Ingling, Murray, & Broussard, 2007; Pelli, 1997) on a
MacBook Pro. The display was a ViewSonic Graphics
Series G220fb CRT monitor (size of the screen, 40.53
30.2 cm) with a 1,280 3 1,024-pixel resolution and 85-
Hz refresh rate. An EyeLink 1000 eye tracker (SR
Research, Ltd., Ottawa, Ontario, Canada) was used to
monitor the eye position of each observer. All testing
was conducted binocularly in a dark room at a
viewing distance of 60 cm, which was preserved with
the use of a chinrest. Observers were asked to
maintain stable fixation on a fixation line that ran
horizontally across the center of the display for the
entire trial. Words were presented at 108 below the
fixation line. All characters were lowercase English
letters and depicted as black characters on a white
background with a luminance of 115 cd/m2. A
monospaced (i.e., fixed width) Courier font and the
standard letter spacing (1.16 3 x-width) were used.

RSVP reading task

The RSVP task (e.g., Yu, Cheung, Legge, & Chung,
2007) was used as the reading task when comparing a
conventional testing method (MCS method; see
section ‘‘The MCS method’’) and the qReading
method. On a given trial, a sentence was randomly
selected without replacement from the sentence pool
that consisted of 1,180 sentences, each containing 10
words. Each word had six letters or fewer in length.
The text is simple enough to ensure that the
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performance is not limited by vocabulary or syntax,
and no punctuation was presented in any of the
sentences. Words of the sentence were presented
serially (i.e., one word at a time) at the same location
(left justified) on the display with a specified exposure
duration. A mask, ‘‘xxxxxx,’’ was presented before the
first word of the sentence to indicate the print size and
location of the stimuli, and it also appeared after the
last word of each sentence (see Figure 2). Observers
were instructed to read the words aloud while
maintaining stable fixation along the horizontal
fixation line. Eye movements were monitored by the
EyeLink 1000 eye tracker sampling at 1,000 Hz.
Although viewing was binocular, only the left eye was
tracked for each observer. Horizontal eye movements
along the fixation line were permitted. The trial was
cancelled and repeated with a different sentence if
fixation deviated (618) above or below the fixation
line. Deviation of the fixation was detected in 7.7% of
the qReading trials and 5.0% of the other reading
trials, averaged across observers.

The MCS method

When measuring the reading function for RSVP
reading, the conventional testing procedure typically
measures reading performance repeatedly for a range
of predetermined print sizes. In this study, MCS was
used to obtain the conventional baseline because it
provides an estimate of the entire psychometric
function (reading accuracy as a function of exposure
duration) at each print size. Five print sizes, 0.608,
0.988, 1.588, 2.588, and 4.208, were tested. At each
print size, six exposure durations, 82, 141, 247, 435,
765, and 1,329 ms/word, were used. For the smallest
print size, a longer duration of 2,318 ms was added to
ensure that the observers were able to attain 80% or

higher reading accuracy at the longest duration.
Therefore, there were 31 stimulus conditions (5 print
sizes 3 6 exposure durations þ 1 additional exposure
duration at the smallest print size). There were six
blocks of trials. Each block had 31 trials with one trial
per condition. The order of stimulus conditions was
randomized in each block. Collectively, the six blocks
contained 186 trials and, with breaks, took about 1
hr. The data collected at each print size were fitted
with a cumulative Gaussian function (Equation 1),
where the guess rate (c ¼ 0.01), slope (b ¼ 0.24), and
lapse rate (k ¼ 0.04) were fixed1 and the shift (s) was
free to vary:

W log10durationð Þ
¼ ck

þ 1� kð Þ cþ 1� cð ÞU log10duration� s
b

� �� �
; ð1Þ

where U is the cumulative distribution function of the
standard Gaussian distribution. The same equation
was also used for psychometric functions in the
qReading method. Figure 3 illustrates an example
data set collected at one print size from one observer
using the MCS method along with the fitted
psychometric function. Reading accuracy was plotted
as a function of exposure duration. Reading speed
was computed based on the threshold exposure
duration at which observer’s response is 80% correct
according to the fitted curve: reading speed (wpm) ¼
60/(threshold exposure duration in seconds). The
reading speed versus print size function (see Equation
2) was then estimated based on the reading speeds
measured at the five print sizes.

Figure 2. A schematic diagram of the RSVP task.

Figure 3. Example plot of reading accuracy (proportion of words

read correctly) as a function of exposure duration. The data are

collected from one of our observers at one print size using the

MCS method and fitted with a one-parameter cumulative

Gaussian function. The arrows indicate the 80% accuracy

(threshold) and the threshold exposure duration.
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The qReading method

Similar to a parallel study (Hou et al., 2018), the
qReading method in the present study consists of six
components. The first component is the functional
form of the reading curve. We use an exponential
function to model the reading curve (Equation 2).
Similar nonlinear functions have also been used by
others (e.g., Bernard, Scherlen, & Castet, 2007;
Cheung, Kallie, Legge, & Cheong, 2008; Seiple, Szlyk,
Memahon, Pulido, & Fishman, 2005; Yu et al., 2010).
The function has three parameters: asymptotic perfor-
mance level in terms of threshold exposure duration
(AD, corresponding to the maximum reading speed),
the print size at which the reading speed is six wpm
(CS), and slope (DC, the slope of the function that
determines the changing rate of the reading curve):

log10ReadingSpeed

¼ log10
60

AD

� �
� log10

10

AD

� �
e�

log10PrintSize�log10CS

DCð Þ: ð2Þ

Second, a three-dimensional parameter space, ~h ¼
(AD, CS, DC), is defined to encompass all potentially
observable reading curves for the target population and
testing condition (108 eccentricity in the normal
periphery for the present study). The joint prior
distribution of the three parameters is determined
based on a priori knowledge of the probability of
different reading curves. Specifically, the ranges of the
three parameters are�1.12 to 0.18 (corresponding to
800 to 40 wpm)2 for log10AD,�1 to 0 (corresponding to
0.18 to 18 print size) for log10CS, and�1.5 to 0 for
log10DC. In order to perform all the computations in
real time, for each parameter, 25 values were evenly
sampled (in log10 units) within its range. A finer grid in
the parameter space (100 values evenly sampled over
each parameter’s range) was used in the data analysis.

Third, a two-dimensional stimulus space is con-
structed to span broad ranges of print size and
exposure duration. There are 25 log-spaced print sizes
between 0.38 and 4.28 and 42 log-spaced exposure
durations between 24 and 3,000 ms (2–255 frames) in
the stimulus space. For each print size, a psychometric
function (see Equation 1) is defined based on the
parameters of the reading curve. Consistent with the
MCS method, the threshold exposure duration at 80%
correct was used to derive reading speed from the
psychometric functions.

Fourth, a one-step-ahead search is performed to
select the stimulus condition (a combination of print
size and exposure duration) for the subsequent trial
with the goal of optimizing the expected information
gain on the reading curve (Baek, Lesmes, & Lu, 2016;
CoboLewis, 1996; Kontsevich & Tyler, 1999; Kujala &
Lukka, 2006; Lesmes et al., 2006).

Fifth, following the observer’s response to the
stimulus in each trial, the joint posterior distribution of
the three parameters is updated using Bayes’ rule. The
posterior distribution then serves as the new prior for
the upcoming trial.

Last, the qReading method repeats the fourth and
fifth steps until a certain criteria is met to achieve an
accurate and precise estimation of the reading curve.

Because each sentence contains 10 words and, for
each word, the observer generates one response, which
could be either correct or incorrect (including missing
the word), there are 10 responses from each trial.
Therefore, the joint posterior distribution of the three
parameters is actually updated 10 times following each
trial. There are 50 trials in the qReading block with an
average testing duration of approximately 12 min.

Experimental design

The experiment consisted of one session with seven
blocks. The qReading block was placed in the middle of
the session (i.e., surrounded by MCS blocks) except for
observer S2 who did the qReading block after the
second MCS block. Twenty practice trials were given to
each observer in the beginning of the session, which
were not included in the analysis.

Psychophysical validation

Figure 4 shows the reading curves obtained from the
qReading and the MCS methods for the five observers.
The columns show how the estimated reading curve
evolves in 10-trial increments throughout the block. As
shown in Figure 4, the reading curves obtained with the
two methods are comparable. To quantify the similar-
ity of the two reading curves, we calculated the root
mean square error (RMSE) of the reading speeds (in
log10 units) obtained with the 50 qReading trials and
the 186 MCS trials, collapsed across all observers (m¼
5) for all print sizes (n¼ 5)3 that were measured in both
methods (i.e., five print sizes between 0.68 and 4.28):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1
Pnj

i¼1
ReadingSpeed qReadingi;j
� ReadingSpeed MCSi;j

� �2
Pm

j¼1 nj

vuuut : ð3Þ

We found that the RMSE was 0.16, 0.16, 0.13, 0.13,
and 0.12 log10 units after 10, 20, 30, 40, and 50 trials
with the qReading procedure, respectively.

We calculated the area under the curve (AUC) for
the estimated reading curves from both methods.
Specifically, we used log10 scale for both the x- and y-
axes (i.e., reading speed in log10(wpm) and print size in
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log10(8)), and calculated the total area enclosed by the
reading curve and the horizontal line through log10(1
wpm) in the print size range assessed by both methods
(i.e., 0.68 to 4.28). The individual data with the AUC
calculation (in the square of log10 units) are shown in
Figure 4.

A Bland–Altman plot (Bland & Altman, 1986, 1999)
was used to evaluate the agreement between the
estimates from the MCS and the qReading methods.
Figure 5 plots the AUC difference between the reading
curves measured with the MCS and the qReading
methods versus the mean AUC from the two methods.
We estimated an agreement interval in which 95% of
the differences between the AUCs measured with the
two methods reside. Across all five observers, the
difference between the AUCs from the two methods
always fell within the limits of agreement (�0.14 and
�0.01 square log10 units). Figure 5 also shows that the
AUCs from the qReading method were always slightly
larger (0.07 square log10 units, 4%) than those from the
MCS method, indicating a small but consistent bias.
After subtracting the bias from the qReading measure,

we found a very good agreement between the two
methods as indicated by the small limits of agreement.
As shown later (see the ‘‘Simulation’’ section), we
further evaluated the potential bias of the qReading

Figure 4. Reading curves from the qReading and the MCS methods. Each row presents reading data from one observer. The columns

show how the qReading curve evolves in 10-trial increments throughout the block. The black curves are the estimated reading curves

using the qReading method. The error bars represent the 668.2% HWCIs. The red filled circles represent the estimated reading

speeds from the MCS method with 186 trials. In each panel, we list the AUC values from the qReading (black text) and the MCS

methods (red text).

Figure 5. A Bland–Altman plot. The x-axis denotes the mean of

the AUCs measured with the MCS and the qReading methods.

The y-axis indicates the difference between the corresponding

AUCs. The blue dashed lines represent the 95% limits of

agreement. The black dashed line indicates bias.
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method in simulations and found that the qReading
method was essentially an unbiased procedure. It
indicates that the small bias shown here may reflect
improved performance during the test. For instance,
the observers’ reading speeds often are slower in the
first one or two MCS blocks compared to the rest of the
session (including the qReading block) due to learning.

The half width of the credible interval (HWCI) of the
posterior distribution of the estimated performance can
provide a measure of precision in a single run of a
procedure. It is a proper measure of precision especially
for the present study because we only obtained one
measurement (reading function) from each observer
using each testing method. The 68.2% credible interval
represents the interval in which the true value of the
variable of interest lies with a 68.2% probability. The
68.2% HWCI is calculated as

HWCI0:682 ¼
U�1 0:841ð Þ � U�1 0:159ð Þ

2
; ð4Þ

where U�1 represents the inverse cumulative distribu-
tion function of the posterior. We first calculated the
HWCI at each print size and then computed the
average across print sizes. Since 25 different print sizes
were used during the reading curve measurement with
the qReading method, the average HWCI for qReading
was first calculated across the 25 print sizes for each
individual. Overall, the HWCI decreased (i.e., mea-
surement becomes more precise) as more qReading
trials were added. With 10, 20, 30, 40, and 50 qReading
trials, the average HWCI across observers was 0.15,
0.23, 0.11, 0.08, and 0.05 log10 units, respectively.
When we evaluated only the five print sizes that were

assessed in both the qReading and the MCS methods,
the corresponding HWCIs were 0.06, 0.04, 0.03, 0.03,
and 0.02 log10 units, respectively. Figure 6 shows the
average HWCI across the common print sizes plotted
as a function of the number of qReading trials for the
five observers. The HWCI for the MCS method were
generated with a bootstrapping technique. In each
iteration, six sentences were sampled for each exposure
duration with replacement at each print size (a total of
186 sentences). The data were then fit with the
cumulative Gaussian function (Equation 1) to get an
estimate of reading speed for each print size. After
3,000 iterations, the HWCI was calculated for each of
the five print sizes. The average HWCI across print
sizes and observers was 0.03 log10 units for the MCS
method.

Simulations

We performed simulations to further evaluate the
qReading procedure. These simulations allow us to test
the basic assumptions of the qReading method (e.g.,
priors, parameter space for reading function, parame-
ters of psychometric functions, etc.) and evaluate the
performance of the algorithm (e.g., convergence of the
posterior). Most importantly, the simulations allow us
to evaluate whether the method is biased because we
know the exact ‘‘truth’’ in the simulations but we don’t
know the ‘‘truth’’ in most experiments. We can generate
numerous trials and blocks (e.g., a block containing
100 trials or 1,000 blocks with 50 trials per block) and
compare each estimated reading curve to the ground
truth.

To perform simulations, we first defined three
simulated observers by assigning values to the three
parameters (AD, CS, and DC) of their reading curves.
The values were selected to cover a wide range of
possible reading curves when considering peripheral
reading performance in normally-sighted observers (see
Table 1). The reading curves constructed by the three
parameters are considered as the true reading curves
which were used to generate the simulated observer’s
responses and acted as a yardstick to evaluate the
accuracy of the qReading algorithm. All of the other
parameter settings and procedure details (e.g., range of
print size, range of exposure duration, strategy for

Figure 6. The average 68.2% HWCI of the estimated reading

function from the qReading method plotted as a function of the

number of trials for five observers. The black dashed line

denotes the 68.2% HWCI (group average) of the estimated

reading function from 186 trials with the MCS method. The

HWCIs shown here are calculated across the print sizes assessed

in both the qReading and the MCS methods.

log10AD log10CS log10DC

Sim1 �0.50 �0.57 �0.71
Sim2 �0.70 �0.40 �0.35
Sim3 �0.92 �0.48 �0.55

Table 1. Reading curve parameters for three simulated
observers.
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selecting stimulus condition, the prior distribution of
the parameters) were the same as those in the
psychophysical experiment.

In the first simulation, a 100-trial qReading block is
generated for each simulated observer. Figure 7 shows
the estimated and true reading functions. To quantify
the similarity of the estimated reading function and the
ground truth, we calculated the RMSE across all three
simulated observers (m¼ 3) and 25 print sizes (n¼ 25).
After 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trials,
the RMSE was 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03,
0.02, 0.02, and 0.02 log10 units, respectively.

Table 2 lists the estimated and true AUCs in the
print size range of 0.38 to 4.28. It shows how the AUC
changes in increments of 10 trials throughout the entire
block.

Figure 8 shows the average HWCI as a function of
the number of trials for the three simulated observers.
Similar to what we found in the human observers, the
average HWCI decreased (i.e., qReading estimate
becomes more precise) as more trials were added.
Similar to the observations in the psychophysical
experiment, the average HWCIs across the three
simulated observers at trial 10, 20, 30, 40, and 50 were
small: 0.07, 0.05, 0.04, 0.03, and 0.03 log10 units,
respectively. The precision of the qReading method
(HWCI) did not change significantly after 50 trials. The
HWCIs at trial 60, 70, 80, 90, and 100 were 0.03, 0.02,
0.02, 0.02, and 0.02 log10 units, respectively. These
simulations suggest that additional testing after 50

trials may not lead to significant improvement in
accuracy and precision.

We also performed a separate simulation to further
evaluate the accuracy of the estimated reading curve. In
this simulation, each simulated observer was tested
with the qReading method for 1,000 blocks with 50
trials per block. Estimation bias was then calculated.
First, the AUC was calculated across the print size
range of 0.38 to 4.28 after each trial in each block.
Second, for each number of completed trials, the
average AUC was computed across the 1,000 blocks.
The absolute difference between the average AUC and
the true AUC (i.e., the AUC calculated based on the
true reading curve) was obtained and referred to as
bias. Figure 9 plots the bias as a function of the number
of trials for the three simulated observers. As the
number of trials increased, the bias always dropped
below 0.01 log10 units. This shows that the qReading
method is essentially an unbiased procedure.

Discussion

In the current study, we present a Bayesian adaptive
method, qReading, to measure the reading function in
the peripheral visual field. The qReading utilizes a
Bayesian adaptive framework to select the stimulus
condition that optimizes the expected information gain
prior to each trial, thus allowing for efficient assessment

Figure 7. Simulated qReading performance in 100 trials for each of the three simulated observers. The black curve is the estimated

reading function based on the simulated responses. The error bars represent 668.2% HWCIs. The red curve represents the ground

truth.

Number of trials 10 20 30 40 50 60 70 80 90 100 Ground truth

Sim1 2.40 2.40 2.42 2.42 2.41 2.40 2.40 2.40 2.40 2.39 2.38

Sim2 1.91 1.94 1.93 1.93 1.93 1.92 1.92 1.92 1.92 1.92 1.92

Sim3 2.46 2.53 2.50 2.50 2.50 2.49 2.49 2.48 2.48 2.49 2.47

Table 2. AUCs (in the square of log10 units) calculated across print sizes (0.38 to 4.28) based on one 100-trial qReading block for the
three simulated observers.
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of the reading function. Both psychophysical experi-
ment and computer simulations were performed to
validate the qReading method. Our investigation
demonstrated that the qReading method can ade-
quately measure the reading function in the periphery
with high accuracy, precision, and efficiency. To assess
accuracy, we compared the estimated reading functions
measured using the qReading method to those obtained
with the MCS method. We found that the qReading
method is highly accurate with the RMSE dropping to
0.13 log10 units in about 30 trials. The high accuracy
was further verified by computer simulations—after
about 30 trials, the RMSE dropped below 0.04 log10
units. Our simulations also showed that the bias always
drops below 0.01 log10 units after only eight trials, and
after 30 trials, the qReading method introduced nearly
zero bias in estimating the AUC of the reading
function. We computed the HWCIs from both methods
to evaluate their precision and found that it only
requires, on average, about 30 qReading trials to reach
the same precision achieved by 186 MCS trials.
Simulations further confirmed the high precision of the
qReading method—the average HWCIs fell below 0.05
log10 units in less than 30 trials.

Although, in the present study, 50 qReading trials
were used to assess the accuracy and precision of the
qReading method, our results suggested that fewer
trials may be adequate to obtain an accurate and
precise measurement of the reading function. For
instance, with about 30 qReading trials (7 min), we can
get an accurate estimate of the reading function and
match the precision achieved by the 1-hr MCS test. One
way to decide on the number of required trials and
improve the efficiency of the test is to employ a
stopping rule and conclude the testing when the
stopping rule is satisfied. For example, the stopping
rule can be based on HWCI. Once a predefined level of
precision has been reached, we can end the testing.

Another factor that we need to consider in terms of
further improving testing efficiency is the prior (joint
prior distribution of the three reading-function pa-
rameters). In the present study, the qReading method
adopted a broad prior that was determined based on
some a priori knowledge of the probability of different
reading functions for the target population and testing
condition. Potentially, more informative priors can be
used to further optimize the qReading method and
improve its testing efficiency. Here, the reading curve is
expressed as an exponential function. It is possible that
the reading curve can be described with some other
parametric model (e.g., hinged lines, Gaussian, and
polynomial), a nonparametric model, or a combination
thereof for different patient populations and condi-
tions. As we collect more data with the qReading
method in different populations, we will build a
population-level structure to better tailor the prior and
the model based on the demographics of each
individual patient (e.g., age, eye disease history,
education level, and level of language proficiency).
Specifically, we can implement a hierarchical Bayesian
framework that not only considers the responses from
earlier trials in the current block but also incorporates
responses collected from other individuals in the same
population (Gu et al., 2016; Kim, Pitt, Lu, Steyvers, &
Myung, 2014). We can also utilize existing information
from the observer (such as visual acuity and practice
trials) to further customize the prior.

One advantage of the qReading method is that the
method can be easily modified to test reading in
different conditions. In the current study, we measured
the reading function in a specific reading condition:
viewing simple sentences (10 common words per
sentence, �6 letters per word) presented with the RSVP
paradigm at 108 eccentricity in the periphery. In future
studies, we can evaluate the reading function using

Figure 8. The average 68.2% HWCI as a function of the number

of trials for the three simulated observers.

Figure 9. Estimation bias as a function of the number of trials

for the three simulated observers (average across 1,000 blocks).

The black dashed line denotes 0.01 log10 units.
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other variations of reading materials, such as words
with a fixed length, words with various frequencies,
sentences with scrambled word order, etc. We can also
adopt other text-presentation methods (e.g., page
reading); position text at various retinal locations;
present text in different contrasts, spacings, fonts,
colors, and directions; and employ different reading
tasks. The easy modification of the qReading method
will allow us to test these aforementioned alternative
conditions. In a parallel study, Hou et al. (2018)
developed and applied the qReading method to a word/
nonword judgment task. After viewing a five-letter
string, the observers were instructed to indicate if the
letter string was a word or nonword. Although it can be
considered as a truncated, one-word, silent version of
the RSVP task, the lexical decision task used in the
Hou et al. (2018) study only examines word recognition
and ignores many nonvisual linguistic factors, such as
grammar and context in reading. Similarly, they found
that the qReading method was accurate, precise, and
efficient compared to the corresponding conventional
testing method. Arango et al. (2017) also applied the
qReading method to another reading task in which
participants indicated whether four-word sentences
were logically true or false (Crossland, Legge, & Dakin,
2008). Both of these studies were performed in central
vision where reading performance is much less limited
by sensory factors (decreasing resolution, mislocations,
and crowding) in comparison to peripheral vision (He,
Legge, & Yu, 2013; Yu, Legge, Wagoner, & Chung,
2014). These studies demonstrate the flexibility in
applying the qReading technique to efficient assessment
of reading performance.

In everyday page reading, eye fixations are distrib-
uted across words in a nonhomogeneous fashion,
especially for people with central vision loss (Calabrèse,
Bernard, Faure, Hoffart, & Castet, 2016). Clusters of
eye fixations form around words that are challenging to
identify, reflecting the difficulty of trans-saccadic
integration for these words. It has been shown that
fixation clustering is a significant predictor of reading
speed (Calabrèse et al., 2016). For RSVP reading,
oculomotor measures were used only to monitor
fixation stability. In other implementations of the
qReading method that adopt, for example, page
reading as the text presentation method, we will
incorporate fixation clustering and other oculomotor
measures in assessing reading performance. Doing so
would allow us to characterize the reading performance
in a more comprehensive way.

There are 246 million people worldwide with low
vision (World Health Organization, 2014). A compre-
hensive, accurate, and individual-based reading assess-
ment is crucial in developing effective rehabilitation
methods and prescribing adaptive devices to assist these
patients with their reading needs and improve their

quality of life. Such assessment is also essential for
monitoring the level of vision impairment throughout
the course of the disease. With the conventional MCS
testing method, administering comprehensive reading
assessment and monitoring the change of reading
performance as disease progresses in patients would
present a great clinical burden. Here we address the
issue by developing the qReading method. Collectively,
the results of the psychophysical experiment and
computer simulations demonstrate that the qReading
method can adequately measure RSVP reading func-
tion in the periphery with high precision, accuracy, and
efficiency.

Keywords: peripheral reading, low vision, adaptive
methods
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Footnotes

1 In the present study, we made the assumption that
the shape of the underlying psychometric function for
reading is known and constant across print sizes. First,
we derived reading speeds by fitting the RSVP data
using the cumulative Gaussian function that has either
one free parameter (i.e., shift) or four free parameters
(i.e., guess rate, slope, lapse rate, and shift). We found
that fits of the two models were not significantly
different (AUC; see ‘‘Psychophysical validation’’ sec-
tion for calculation details; p¼ 0.36). Therefore, the
one-parameter fitting routine was used in the present
study. Second, the values of the three fixed parameters
were determined based on previous empirical data
collected in a similar testing condition for the same
target population. In addition, we performed simula-
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tions to confirm that adopting different values of slope,
lapse rate, and guess rate (over large ranges) had little
effect on our findings for the target population.

2 For observer S1, we used the range of�1 to 0.30
(corresponding to 600 to 30 wpm) for parameter log10AD
during the data collection. To be consistent with the
other observers, the range of�1.12 to 0.18 was used for
data analysis.

3 Due to the poor performance of the observer, we
were not able to obtain a reliable estimation of S4’s
reading speed at the smallest print size (0.608) using the
MCS method. Therefore, n is equal to four for S4. The
same is true for AUC and HWCI calculations.
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