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Abstract

Sialic acid (Neu5Ac) is commonly found in terminal location of colonic mucins glycans where it 

is a much-coveted nutrient for gut bacteria including Ruminococcus gnavus. R. gnavus is part of 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding authors: Correspondence to Nathalie Juge. nathalie.juge@quadram.ac.uk.
#present address: Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, 
Cambridge, CB3 0AS

Data Availability
Genome and protein sequences are available from NCBI and referenced within the text or supplementary information. Accession 
numbers of all genomes used for multigene alignments, are available in Supplementary Table 5. Raw FASTQ files for the RNA-seq 
libraries were deposited to the NCBI Sequence Read Archive (SRA), and have been assigned BioProject accession PRJNA559470. 
The crystal structures described in this paper have been deposited in the protein data bank (ODB) with the following identifiers 6RAB 
(WT), 6RB7 (K167A), and 6RD1 (K167A Neu5Ac complex). All other data are available upon request from the corresponding author.
Computer code for statistical analysis is available on request from the corresponding author.

Contributions
NJ conceived the study and wrote the manuscript with contribution from co-authors. AB carried out bioinformatics analyses, 
transcriptomics, heterologous expression, site-directed mutagenesis, enzymatic assays, analytical product characterisation (HPLC, 
MS), protein-ligand interaction experiments (ITC and fluorescence spectroscopy) and R. gnavus mutagenesis. JB supervised the 
Clostron mutagenesis. GHT supervised the fluorescence spectroscopy experiments. DL developed the HPLC and MS analysis 
protocols. CDO carried out the X-ray crystallography under MAW’s supervision. LV carried out the immuno-histochemistry 
experiments, EC contributed to the mouse study and RNASeq analyses. AB, EC, LV, DL worked under NJ’s supervision. RN carried 
out the NMR experiments under JA’s supervision, AX and WL synthesized the 2,7-anydro-Neu5Ac used in this study under XC’s 
supervision. JC carried out the cluster bioinformatics analyses. All authors reviewed and corrected the final manuscript.

Competing interests
The authors declare no competing interests.

Europe PMC Funders Group
Author Manuscript
Nat Microbiol. Author manuscript; available in PMC 2020 April 21.

Published in final edited form as:
Nat Microbiol. 2019 December ; 4(12): 2393–2404. doi:10.1038/s41564-019-0590-7.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms


the healthy gut microbiota in humans but shows a disproportionate representation in diseases. 

There is therefore a need in understanding the molecular mechanisms underpinning its adaptation 

to the gut. Previous in vitro work demonstrated that R. gnavus mucin glycan-foraging strategy is 

strain-dependent and associated with the expression of an intramolecular trans-sialidase releasing 

2,7-anhydro-Neu5Ac instead of Neu5Ac from mucins. Here, we have unravelled the metabolism 

pathway of 2,7-anhydro-Neu5Ac in R. gnavus which is underpinned by the exquisite specificity of 

the sialic transporter for 2,7-anhydro-Neu5Ac, and by the action of an oxidoreductase converting 

2,7-anhydro-Neu5Ac into Neu5Ac which then becomes substrate of a Neu5Ac-specific aldolase. 

Having generated a R. gnavus nan cluster deletion mutant that lost the ability to grow on sialylated 

substrates, we showed that in gnotobiotic mice colonised with R. gnavus wild-type and mutant 

strains, the fitness of the nan mutant was significantly impaired with a reduced ability to colonise 

the mucus layer. Overall, our study revealed a unique sialic acid pathway in bacteria, with 

significant implications for the spatial adaptation of mucin-foraging gut symbionts in health and 

disease.
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Introduction

The gastrointestinal (GI) tract is heavily colonized with bacteria that play a vital role in 

human health. The gut microbiota composition varies longitudinally along the GI tract but 

also transversally from the mucosa to the lumen1. In the colon, the epithelium is covered 

with a bi-layer of mucus, with the outer mucus layer providing a natural habitat for the 

commensal bacteria whereas the stratified inner mucus layer restricts bacterial access to the 

epithelium2. Mucin proteins that form the mucus layer are highly glycosylated with a diverse 

and complex array of O-glycan structures containing N-acetylgalactosamine, galactose and 

N-acetylglucosamine (GlcNAc), and usually terminated by fucose, sialic acid (Neu5Ac) 

residues, and sulfate3,4. The terminal mucin glycans have been proposed to serve as 

metabolic substrates, providing a nutritional advantage to bacteria that have adapted to the 

GI mucosal environment5–7. The proportion of these terminal glycan epitopes varies along 

the GI tract with a decreasing gradient of fucose and an increasing gradient of sialic acid 

from the ileum to the rectum in humans8,9. Therefore, sialic acid represents a much-coveted 

source of nutrients for the gut bacteria inhabiting the mucus niche in the large intestine.

In bacteria, the genes involved in sialic acid metabolism are usually found clustered together 

forming different nan gene clusters10–12. The canonical nanATEK cluster was first described 

in Escherichia coli encompassing genes encoding the enzymes N-acetylneuraminate lyase 

(NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid 

into N-acetylglucosamine-6-P (GlcNAc-6-P) following its transport through the major 

facilitator superfamily transporter NanT13,14. An alternative pathway for sialic acid 

metabolism has been discovered later in Bacteroides fragilis, relying on the action of an 
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MFS transporter (NanT), an aldolase (NanL), a novel ManNAc-6-P epimerase (also named 

NanE), encoded in the nanLET operon and a hexokinase (RokA), converting Neu5Ac into 

GlcNAc-6-P15. GlcNAc-6-P is then converted into fructose-6-P, which is a substrate in the 

glycolytic pathway by genes encoding NagA (GlcNAc-6-P deacetylase) and NagB 

(glucosamine-6-P deaminase)16. The majority of bacteria that harbour a nan cluster colonize 

mucus regions of the human body10–12. To gain access to this substrate, bacteria are 

dependent on sialic acid release and uptake. Several gut bacteria species, including strains of 

Clostridia, Bacteroides, Bifidobacterium longum, Vibrio cholerae, Ruminococcus gnavus or 

Akkermansia muciniphila express sialidases to release sialic acid from their terminal 

location in mucins10.

Since sialic acid cleavage takes place outside of the cell, bacteria have evolved multiple 

mechanisms to capture this important nutrient from their environment12,17. Such transport 

mechanisms involve the aforementioned NanT MFS transporter used by E. coli and B. 
fragilis, which in E. coli has been demonstrated biochemically to be a H+-coupled 

symporter18 or secondary transporters from the sodium solute symport (SSS) family, present 

in C. difficile and S. typhimurium19,20. High-affinity transport of sialic acid is mediated by 

substrate-binding protein-dependent systems, including a tripartite ATP-independent 

periplasmic (TRAP) transporter, SiaPQM, and ATP-binding cassette (ABC) 

transporters21–25. The sialic acid ABC transporters are classified into 3 types, SAT, SAT2 

and SAT312,17. To date all these transporters have been shown to transport Neu5Ac, with 

some being able to also move the related sialic acid Neu5Gc and KDN26,27.

R. gnavus is an early coloniser of the infant gut28 but persists in adults where it belongs to 

the 57 species detected in more than 90% of human faecal samples29. R. gnavus belongs to 

the Firmicutes division, Clostridia class and XIVa cluster, Lachnospiraceae family30 and is 

considered as a prevalent member of the ‘normal’ gut microbiota29,31. Further, R. gnavus 
shows a disproportionate representation in a number of diseases such as inflammatory bowel 

disease32–40. The ability of R. gnavus strains to utilise mucin glycans as a source nutrient is 

associated with the expression of an intramolecular trans-sialidase (IT-sialidase) that 

specifically cleaves off terminal α2–3-linked Neu5Ac from glycoproteins, releasing 2,7-

anhydro-Neu5Ac instead of Neu5Ac41–45. In R. gnavus ATCC 29149 and ATCC 35913 

strains, the IT-sialidase (RgNanH) is part of a nan cluster, which is induced when the cells 

are grown in the presence of mucin and absent in non-mucin glycan-degrading strains such 

as R. gnavus E143,45. We enzymatically synthesised 2,7-anhydro-sialic acid derivatives46, 

that were used to confirm the ability of IT-sialidase expressing R. gnavus strains to grow on 

2,7-anhydro-Neu5Ac as sole carbon source43. We proposed that the ability of R. gnavus 
strains to produce and metabolise 2,7-anhydro-Neu5Ac, provide them with a competitive 

nutritional advantage in mucus by scavenging sialic acid from mucins in a form that others 

do not have access to43,44.

In order to test this hypothesis and gain insights into R. gnavus 2,7-anhydro-Neu5Ac 

metabolism pathway, we identified candidate genes of the nan cluster involved in 2,7-

anhydro-Neu5Ac transport and metabolism and characterised the proteins. Using 

fluorescence spectroscopy, STD-NMR and ITC, we showed that the solute binding protein 

(SBP) from R. gnavus ABC transporter was specific for 2,7-anhydro-Neu5Ac. Further 
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biochemical analyses uncovered an oxidoreductase activity allowing the conversion of 2,7-

anhydro-Neu5Ac into Neu5Ac and confirmed the specificity of the sialic acid aldolase for 

Neu5Ac. Finally, we showed that the nan cluster was essential to support anaerobic growth 

of the bacteria on sialoconjugates in vitro and for in vivo fitness using gnotobiotic mice 

colonised with R. gnavus wild-type or nan mutant. These data demonstrate a unique sialic 

acid metabolism pathway in bacteria, which provides R. gnavus with a competitive strategy 

to colonise the mucus niche.

Results

Identification of genes involved in 2,7-anhydro-Neu5Ac metabolism in R. gnavus nan 
cluster

We first analysed the transcriptional activity of the nan cluster by qRT-PCR in R. gnavus 
ATCC 29149 grown on 2,7-anhydro-Neu5Ac or α2–3-sialyllactose (3’SL) as the sole carbon 

source. Expression of all genes constituting the nan cluster was induced upon bacterial 

growth on 2,7-anhydro-Neu5Ac or 3’SL as compared to glucose whereas the expression of 

the two genes flanking the cluster (RUMGNA_02702, RUMGNA_02690) remained 

unchanged (Figure 1). The 3’SL and 2,7-anhydro-Neu5Ac induced the transcription of the 

nan genes between 10 and 80-fold. Both substrates induced similar changes, which is not 

unexpected as 2,7-anhydro-Neu5Ac is the sialic acid form produced by R. gnavus ATCC 

29149 from 3’SL. These results indicate that the R. gnavus nan operon is dedicated to the 

metabolism of 2,7-anhydro-Neu5Ac from host sialoglycans.

A sequence similarity network (SSN) analysis was then conducted to identify the proteins 

encoded by the nan cluster, which are associated with the ability of the bacteria to 

metabolise 2,7-anhydro-Neu5Ac over Neu5Ac. As expected, the IT-sialidase from R. gnavus 
strains clustered together with proteins from S. pneumoniae strains whose genomes are 

known to encode IT-sialidases (in addition to other sialidases)47,48 (Supplementary Figure 

1a). Other co-occurring bacterial species include Rumminococcus torques, Lactobacillus 
salivarius, Staphylococcus pseudintermedius, Streptococcus infantis and Streptococcus 
mitis. Bacterial species clustering for RgNanH, also shared clusters for proteins encoding 

RUMGNA_02698, the predicted solute binding protein (SBP) giving specificity to ABC 

transporters, RUMGNA_02692 (sialic acid aldolase), the first protein of the canonical 

Neu5Ac metabolism, and RUMGNA_02695, a putative oxidoreductase, suggesting that 

these proteins may be associated with 2,7-anhydro-Neu5Ac metabolism (Supplementary 

Figure 1 and Supplementary Table 1). In contrast, RUMGNA_02701 with homology to 

sialic acid esterase proteins and RUMGNA_02700 with homology to the YhcH protein 

family did not cluster with proteins from the same set of bacteria (Supplementary Figure 1 

and Supplementary Table 1). The candidate genes were then heterologous expressed, and the 

recombinant proteins purified as described in Methods.

Specificity of R. gnavus sialic acid transporter for 2,7-anhydro-Neu5Ac

We first investigated the ligand specificity of the recombinant SBP (RUMGNA_02698), 

RgSBP, by measuring changes in the intrinsic protein fluorescence upon addition of 

potential ligands. Addition of 10 μM or 20 μM 2,7-anhydro-Neu5Ac resulted in a significant 
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shift at 350 nm, causing an ~16% quench in the fluorescence (Figure 2a). In marked 

contrast, addition of Neu5Ac at 10 μM, 20 μM or 70 μM caused no change in the spectrum 

intensity, suggesting an absence of binding (Figure 2b). Titration of 0.5 μM RgSBP with 2,7-

anhydro-Neu5Ac resulted in a hyperbolic curve with a Kd of 1.349 μM (+/- 0.046) (Figure 

2c). To confirm the specificity of 2,7-anhydro-Neu5Ac over Neu5Ac we monitored 

sequential changes in fluorescence following additions of 10 μM of the two ligands. When 

Neu5Ac was added first, no change in fluorescence was observed and a quench was 

observed following addition of 2,7-anhydro-Neu5Ac (Figure 2d). Conversely, when 2,7-

anhydro-Neu5Ac was added first the quench was observed and additions of 10 μM Neu5Ac 

caused no further change in the intensity (Figure 2d), indicating that Neu5Ac is unable to 

displace 2,7-anhydro-Neu5Ac, and further supporting the specificity of the interaction 

between RgSBP and 2,7-anhydro-Neu5Ac.

The affinity of the interaction between RgSBP and sialic acid ligands was further assessed 

by isothermal titration calorimetry (ITC). RgSBP bound to 2,7-anhydro-Neu5Ac with a Kd 

of 2.42 ± 0.27 μM (Figure 3a) and no binding was observed when Neu5Ac was used as the 

ligand (Figure 3b), in agreement with the findings from fluorescence spectroscopy. The 

binding of 2,7-anhydro-Neu5Ac revealed a thermodynamic signature with both entropic (-

TΔS -7.05 ± 0.08 kcal mol-1) and enthalpic (ΔH -0.93 ± 0.03 kcal mol-1) components 

contributing favourably to the binding process (ΔG -7.99 ± 0.05 kcal mol-1 Figure 3a).

To gain structural insights into the unique ligand specificity of RgSBP, saturation transfer 

difference nuclear magnetic resonance spectroscopy (STD NMR) studies were conducted 

with RgSBP in the presence of 2,7-anhydro-Neu5Ac or Neu5Ac. The transfer of 

magnetization as saturation from the protein to the ligand was clearly observed for 2,7-

anhydro-Neu5Ac but not for Neu5Ac, confirming that RgSBP preferentially selects 2,7-

anhydro-Neu5Ac (Supplementary Figure 2). STD NMR epitope binding revealed that 

protons H3, H4 and H6 showed the highest STD (%) factors, indicating the close contacts 

present at the interface of binding (Figure 3c). On the other hand, protons H7, H8, H9 and 

protons belonging to the CH3 group showed lower STD (%) and are expected to be more 

exposed to solvent. For the DEEP-STD NMR experiment, TEMPOL was used to gain 

insights into RgSBP binding pocket (Supplementary Figure 3). We found that protons H4, 

H6, H7, H8, H9’ were preferentially oriented toward aromatic residues while H3 and 

protons belonging to the CH3 group were oriented toward aliphatic residues (Figure 3d).

Together these data demonstrate that RgSBP specifically binds to 2,7-anhydro-Neu5Ac but 

not to Neu5Ac, in line with the growth profile of R. gnavus ATCC 29149 on these 

substrates43.

Specificity of R. gnavus sialic acid aldolase for Neu5Ac

The substrate specificity of recombinant sialic acid aldolase (RUMGNA_02692; RgNanA), 

was determined using a coupled activity assay where pyruvate released during the 

conversion of Neu5Ac to ManNAc is converted to lactate by a lactate dehydrogenase and the 

subsequent decrease in absorbance at 340 nm measured as NADH is converted to NAD+. 

RgNanA and EcNanA (E. coli Neu5Ac lyase/aldolase used as a control) showed activity 

against Neu5Ac whilst neither enzyme showed activity against 2,7-anhydro-Neu5Ac (Figure 
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4a). The product of the reaction with Neu5Ac was confirmed to be ManNAc by HPLC 

(Supplementary Figure 4). RgNanA showed a kcat of 2.757 ± 0.033 s-1 and a KM of 1.473 

± 0.098 mM (Figure 4b). These kinetic parameters are consistent with values from other 

bacterial sialic acid aldolases characterised to date (Supplementary Table 2).

The RgNanA crystal structure presents as a (β/α8) TIM barrel with an adjacent three-helix 

bundle (for data collection and refinement statistics see Supplementary Table 3), a fold 

shared with characterised Neu5Ac aldolases from Staphylococcus aureus, E. coli, 
Fusobacterium nucleatem, Pasteurella multocida, and Haemophilus influenzae49–54 

(Supplementary Figure 5a). The active site residues in EcNanA, Ser47, Tyr110, and Tyr137, 

identified to be catalytically important are conserved in RgNanA55 (Figure 4c and 

Supplementary Figure 5b), supporting Neu5Ac specificity. The crystal structure of the 

complex between an inactive mutant, RgNanA K167A, and Neu5Ac showed Neu5Ac in the 

open-chain ketone form, with the N-acetyl group oriented out of the active site (Figure 4d). 

Neu5Ac forms extensive interactions with the enzyme active site (Supplementary Table 4). 

The Tyr139 α-carbon was shifted 1.8 Å in the mutant compared to wild-type. This 

movement is also present in the apo crystal structure, therefore presumably due to the 

absence of Lys167 rather than the presence of Neu5Ac (Supplementary Figure 5c).

Conversion of 2,7-anhydro-Neu5Ac to Neu5Ac by RUMGNA_02695

RUMGNA_02695 is a putative oxidoreductase with a predicted Rossman fold. Therefore, 

the activity of the recombinant protein was determined in the presence or absence of NAD+, 

NADH or FAD as potential cofactors. Reaction products were analysed by HPLC following 

DMB labelling of the sialic acid46. When 2,7-anhydro-Neu5Ac (which cannot be labelled by 

DMB) was used as a substrate, Neu5Ac was produced in the presence of NAD+ or NADH, 

but not in the presence of FAD or in the absence of a cofactor (Figure 5a). Mass 

spectrometry analyses showed a ratio of 1:2 for 2,7-anhydro-Neu5Ac:Neu5Ac 

(Supplementary Figure 6a), indicating that the reaction may be reversible. This was 

confirmed enzymatically by assaying RUMGNA_02695 against Neu5Ac in the presence of 

NAD+ or NADH, producing a 1:2 for 2,7-anhydro-Neu5Ac:Neu5Ac. Additionally, these 

data indicate that Neu5Ac is the favourable product (Supplementary Figure 6b). No net 

change in NADH concentration was observed during the conversion reaction using 2,7-

anhydro-Neu5Ac or Neu5Ac as substrate, suggesting that the enzyme mechanism may 

involve oxidation and reduction of NADH cofactor (Supplementary Figure 6c). The kinetic 

parameters of the enzymatic reaction were therefore determined using the coupled reaction 

described above in the presence of an excess of sialic acid aldolase and increasing 

concentrations of 2,7-anhydro-Neu5Ac substrate (Figure 5b). Using these conditions, the 

kcat was calculated to be 0.0824 ± 0.0043 s-1 and the KM 0.074 ± 0.014 mM. Taken together 

these data indicate that RUMGNA_02695 is an oxidoreductase required for the conversion 

of 2,7-anydro-Neu5Ac into Neu5Ac, which will then become a substrate for RgNanA. We 

will refer to RUMGNA_02695 as RgNanOx in the rest of the study.

Impact of R. gnavus nan cluster on in vitro growth and in vivo colonisation of mice

The ClosTron transformation method56 was successfully applied to R. gnavus ATCC 29149, 

enabling the generation of nan deletion mutants with an erythromycin resistance gene 
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present in either the sense or antisense direction (relative to RgNanH). The recombination 

event was confirmed by PCR (Supplementary Figure 7a) and the expression of the full 

cluster tested by qPCR (Supplementary Figure 7b). The expression of the genes flanking the 

cluster, RUMGNA_02690 and RUMGNA_02702, showed levels comparable to the wild-

type strain, as also observed for the first three genes of the nan cluster, 

RUMGNA_02701-02699, however, the nan cluster genes RUMGNA_02698-02691 showed 

significantly reduced expression compared to the wild-type strain. R. gnavus ATCC 29149 

wild-type strain was able to utilise both 3’SL and 2,7-anhydro-Neu5Ac as a sole carbon 

source, while no growth was detected using the nan deletion mutants on these substrates 

(Supplementary Figure 8).

To assess the impact of the nan cluster on the fitness of R. gnavus in vivo, germ-free 

C57BL/6J mice were gavaged with 1x108 CFU R. gnavus ATCC 29149 or R. gnavus 
antisense nan deletion mutant or a mixture of wild-type and nan mutant strains at 1x108 

CFU each (Figure 6). During mono-colonisation experiments, both strains were detectable in 

the faecal content at day 3, 7 and 14 post-gavage at mean levels of between 1x106 and 1x107 

bacteria per mg of material (Figure 6a). Both strains were also detected in the caecal content 

of mono-colonised mice sacrificed at day 14. The absence of the nan cluster did not affect 

the mouse expression response, as shown by RNA seq (Supplementary Figure 9). In 

competition experiments, the wild-type strain reached mean colonisation levels comparable 

to the levels obtained during mono-colonisation, whereas the mutant strain was severely 

outcompeted, reaching only 2x104 copies per mg at day 3, before decreasing further at day 7 

and day 14 below the level of detection in the faecal and caecal contents (Figure 6b). The 

impact of the nan deletion on the location of R. gnavus within the mucus layer was 

determined in mono-colonised mice by measuring the distance of the nan mutant or wild-

type R. gnavus strains to the epithelial layer throughout the colon by fluorescent in situ 
hybridization (FISH) staining using confocal microscopy. The data showed that the nan 
mutant resided 19.70 μm from the epithelial layer, 5.06 μm further away than the wild-type 

strain, 14.64 μm (Figure 6c&d).

Discussion

Sialic acid comprises a family of 9-carbon acidic sugar found predominantly on the cell-

surface glycans of humans and other animals. Neu5Ac, the most common form of sialic acid 

in humans, is a major epitope of mucin glycans which can serve as a metabolic substrate to 

the gut bacteria which have adapted to the mucosal environment6,10. In vivo, sialic acids 

may be modified by O-acetylation, O-methylation 9,10,57–59. Sialic acid metabolism is vital 

to the ability of R. gnavus strains to utilise mucin as a nutrient source43–45. R. gnavus ATCC 

29149 strain encodes an extended nan operon dedicated to the metabolism of 2,7-anhydro-

Neu5Ac from host sialoglycans.

Before being metabolised, a functional sialic acid transporter is essential for the uptake of 

sialic acid derivatives into the bacterial cell. The R. gnavus ATCC 29149 nan cluster 

contains a single ABC transporter, orthologous to the uncharacterised Steptococcus 
pneumoniae SAT2 system (Sp_1690-2), including two permeases (RUMGNA_02696 and 

02697) and RgSBP (RUMNGA_02698). R. gnavus SAT2 transporter is expected to be 
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coupled with an MsiK-like ATPase encoded elsewhere in the genome, with 

RUMGNA_03040 sharing 59% identity with the S. pneumoniae MsiK. Interestingly, in 

contrast to S. pneumoniae, R. gnavus does not encode SAT or SAT3 transporters which are 

known to recognise Neu5Ac with SAT3 being required for growth on Neu5Ac 60–62.

By studying RgSBP subunit, we have discovered that SAT2 is a specific transporter for 2,7-

anhydro-Neu5Ac with a Kd of 2.42 ± 0.27 μM, which does not bind Neu5Ac. Using STD 

NMR and DEEP-STD NMR, we characterized the orientation of the ligand in the binding 

site and the contribution of aromatic and aliphatic residues in RgSBP 2,7-anhydro-Neu5Ac 

binding pocket. The lower affinity as compared to bacterial SAT (SatA) transporters specific 

for Neu5Ac characterised to date, which bind in the nM range63, might be consistent with 

the ‘exclusive’ access of the bacteria to the 2,7-anhydro-Neu5Ac substrate. Taken together 

these findings indicate that the ability of R. gnavus strains to grow on 2,7-anhydro-Neu5Ac 

(and not on Neu5Ac) can be explained by the exquisite specificity of RgSBP 

(RUMGNA_02698) RgSBP is also orthologous (72% identity/86% similarity) with the SBP 

from the putative sialic transporters in Streptococcus sanguinis SK36 (SSA_0076) and 

Streptococcus gordonii str. Challis substr. CH1 (SGO_0122)12. It would therefore be of 

interest to determine the specificity of Streptococcus SBPs towards 2,7-anhydro-Neu5Ac.

Once inside the cell, 2,7-anhydro-Neu5Ac needs to be converted back into Neu5Ac to 

become a substrate for the sialic acid aldolase. RgNanOx (RUMGNA_02695) was identified 

as the oxidoreductase catalyzing the conversion of 2,7-anhydro-Neu5Ac into Neu5Ac, 

following a mechanism of action which remains to be determined. Bioinformatic analysis 

identified close homologous of this protein in a range of bacterial species, including YjhC 

from E. coli (Supplementary Figure 1, Supplementary Table 1). Neu5Ac is then converted 

into ManNAc and pyruvate via the action of RgNanA (RUMGNA_02692), a Neu5Ac-

specific aldolase with conserved structural features with NanA proteins from the nan 
canonical pathway.

MultiGeneBlast analysis revealed that predicted homologs of the R. gnavus nan cluster are 

shared by a limited number of species, including 37 homologous clusters in S. pneumoniae 
isolates, S. suis A7, Blautia hansenii DSM 20583, Blautia sp. YL58 and Intestinimonas 
butyriciproducens AF211 (Supplementary Figure 10 & 11 and Supplementary Table 5). The 

presence of this cluster in S. pneumoniae suggests that it can also transport this unusual 

sialic acid into the cell. A major difference between NanB/NanH IT-sialidase and NanC 

sialidase cluster types is the associated transporter class, a carbohydrate ABC transporter for 

NanB/NanH as opposed to a sodium:solute symporter in NanC clusters47, which may 

indicate a difference in the form of sialic acid being transported. These bioinformatics 

analyses support the specialization of the R. gnavus nan cluster.

We confirmed the importance of this metabolic pathway (Supplementary Figure 12) by 

generating a R. gnavus nan deletion mutant that was tested in vitro and in vivo using germ-

free mice. In in vivo competition experiments, the fitness of the mutant was impaired as 

compared to the wild-type strain with a reduced ability to colonise the mucus layer. The nan 
cluster is therefore important to maintain the spatial distribution of R. gnavus strains in the 

gut. The ability for R. gnavus strains harbouring a nan cluster to penetrate further down into 
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the mucus layer may contribute to protect the bacteria from the constant mucus turner-over. 

This mechanism may serve as a determinant underlying R. gnavus success as one of the 

most largely shared species among individuals29,31.

Together these findings provide robust biochemical and in vivo evidence for the role of R. 
gnavus nan cluster in the adaptation of this important gut symbiont to the mucosal 

environment in the gut, providing defined molecular targets for biomarkers and therapeutic 

strategies.

Methods

Materials

All chemicals were obtained from Sigma (St Louis, USA) unless otherwise stated. D-

glucose (Glc), N-acetylneuraminic acid (Neu5Ac), were purchased from Sigma-Aldrich (St 

Louis, MO). 3′-sialyllactose (3′SL) was purchased from Carbosynth Limited (Campton, 

UK). 2,7-anhydro-Neu5Ac was prepared as previously described46,64.

Bacterial strains and media

R. gnavus ATCC 29149 was routinely grown in an anaerobic cabinet (Don Whitley, Shipley, 

UK) in BHI-YH as previously described45. Growth on single carbon sources utilized 

anaerobic basal YCFA medium65 supplemented with 11.1 mM of specific mono- or 

oligosaccharides (2,7-anhydro-Neu5Ac, 3’Sialyllactose (3’SL) or glucose). The bacteria 

were grown to late exponential phase for RNA extraction, the culture was performed in 14 

ml tubes. Growth was determined spectrophotometrically by monitoring changes in optical 

density at 600 nm compared to the same medium without bacterium (Δ OD595 nm) hourly for 

10 hours.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from 3 ml of mid- to late exponential phase cultures of R. gnavus 
ATCC 29149 in YCFA supplemented with one carbon source (Glc, 3'SL or 2,7-anhydro-

Neu5Ac). Three biological replicates were performed for each carbon source. The RNA was 

stabilized prior to extraction by using RNAprotect Bacteria Reagent (Qiagen, Crawley, UK) 

according to the manufacturer’s instructions. The RNA was then extracted after an 

enzymatic lysis followed by a mechanical disruption of the cells, using the RNeasy Mini Kit 

(Qiagen) according to manufacturer's instructions with an on-column DNAse treatment. The 

purity and quantity of the extracted RNA was assessed with NanoDrop 1000 UV-Vis 

Spectrophotometer (Thermo Fischer Scientific, Wilmington, DE) and with Qubit 2.0 

(Invitrogen).

qPCR was carried out in an Applied Biosystems 7500 Real-Time PCR system (Life 

Technologies Ltd). One pair of primers was designed for each target gene using ProbeFinder 

version 2.45 (Roche Applied Science, Penzberg, Germany) to obtain an amplicon of around 

60–80 bp long. The primers were between 18 and 23 nt-long, with a Tm of 59–60°C 

(Supplementary Table S6). Calibration curves were prepared in triplicate for each pair of 

primers using 2.5-fold serial dilutions of R. gnavus ATCC 29149 genomic DNA. The 
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standard curves showed a linear relationship of log input DNA vs. the threshold cycle (CT), 

with acceptable values for the slopes and the regression coefficients (R2). The dissociation 

curves were also performed to check the specificity of the amplicons. Each DNAse-treated 

RNA (1 μg) was converted into cDNA using QuantiTect® Reverse Transcription kit 

(Qiagen) according to the manufacturer’s instructions. DNAse-treated RNA was also treated 

the same way but without addition of the reverse-transcriptase (RT−). Each qPCR reaction 

(10 μl) was then carried out in triplicate with 1 μl of 1 ng/μl (cDNA or RT−) and 0.2 μM of 

each primer, using the QuantiFast SYBR Green PCR kit (Qiagen) according to the 

manufacturer’s instructions (except for the combined annealing/extension step which was 

extended to 35 s). Data obtained with cDNA were analyzed only when CT values above 36 

were obtained for the corresponding RT−. For each cDNA sample, the 3 CT values obtained 

for each gene were analyzed using the 2-ΔΔCT method using housekeeping gyrB 
(RUMGNA_00867) gene as a reference gene and glucose as a reference condition. For each 

gene in each condition, the final value of the relative level of transcription (expressed as a 

fold change in gene transcription compared to glucose) is an average of 3 biological 

replicates, 1-way Annova was used for statistical analysis, using Graph Pad Prism (V 5.03).

Cloning, expression, mutagenesis and purification of recombinant proteins

R. gnavus ATCC 29149 genomic DNA (gDNA) was purified from the cell pellet of a 

bacterial overnight culture (1 ml) following centrifugation (5,000 g, 5 min) using the 

GeneJET Genomic DNA Purification Kit (ThermoFisher, UK), according to the 

manufacturer’s instructions.

The full-length RgSBP excluding the signal sequence (residues 1–29), the full length 

RgNanA and full length RUMGNA_02695 were amplified from R. gnavus ATCC 29149 

gDNA, and cloned into the pEHISTEV66 expression system, introducing a His-tag at the N 

terminus using primers listed in Supplementary Table S6. DNA manipulation was carried 

out in E. coli DH5α cells. Sequences were verified by DNA sequencing by Eurofins MWG 

(Ebersberg, Germany) following plasmid preparation using the Monarch Plasmid Miniprep 

kit (New England Biolabs). The RgNanA active site mutant, K167A, was generated using 

the QuikChange Lightning mutagenesis kit (Agilent) and primers listed in Supplementary 

Table S6. E. coli BL21 (New England BioLabs) cells were transformed with the 

recombinant plasmid harbouring the gene of interest according to manufacturer's 

instructions. Expression was carried out in 800 ml ‘Terrific Broth Base with Trace Elements' 

autoinduction media (ForMedium, Dundee, UK) growing cells for 3 h at 37 °C and then at 

16 °C for 48 h, with shaking at 250 rpm. The cells were harvested by centrifugation at 

10,000 g for 20 min. The His-tagged proteins were purified by immobilized metal affinity 

chromatography (IMAC) and further purified by gel filtration (Superdex 75 column) on an 

Akta system (GE Health Care Life Sciences, Little Chalfont, UK). Protein purification was 

assessed by standard SDS–polyacrylamide gel electrophoresis using NuPAGE Novex 4–12% 

Bis-Tris gels (Life Technologies, Paisley, UK). Protein concentration was measured with 

NanoDrop 1000 UV-Vis Spectrophotometer (Thermo Fischer Scientific, Wilmington, DE) 

and using the extinction coefficient calculated by Protparam (ExPASy-Artimo, 2012) from 

the peptide sequence.
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Fluorescence spectroscopy

All protein fluorescence experiments used a FluoroMax 3 fluorescence spectrometer with 

connecting water bath at 37°C. Because of the presence of 15 tyrosine residues, the protein 

was excited at 297 nm with slit widths of 5 nm. Under these conditions, the protein has a 

maximal emission at 331 nm. RgSBP was used at a concentration of 0.2 μM in 50 mM Tris 

pH 7.5 for all fluorescence experiments. Cumulative fluorescence changes from titration of 

the protein with ligand were plotted in GraphPad and fitted to a single rectangular hyperbola. 

The Kd values reported were averaged from three separate ligand titration experiments.

Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry (ITC) experiments were performed using the PEAQ-ITC 

system (Malvern, Malvern, UK) with a cell volume of 200 μl. Prior to titration, protein 

samples were exhaustively dialysed into 50 mM Tris-HCl pH 7.5. The ligand was dissolved 

in the dialysis buffer. The cell protein concentration was 100 μM and the syringe ligand 

concentration was 2 mM. Controls with titrant (sugar) injected into the buffer only were 

subtracted from the data. The analysis was performed using the Malvern software, using a 

single-binding site model. Experiments were carried out in triplicate.

Sialic acid aldolase activity assays

Aldolase activity was measured by monitoring the decrease in absorbance at 340 nm 

(A340nm) as NADH is converted to NAD by lactate dehydrogenase in a coupled reaction 

where pyruvate is released from sialic acid by the aldolase. Reactions were performed in a 

100 μl volume with final concentrations of 150 μM NADH (Sigma, St Louis, USA), 0.5 U 

LDH (Sigma, St Louis, USA), 10 mM sialic acid (Neu5Ac or 2,7-anhydro-Neu5Ac) and 1.5 

μg purified RgNanA or EcNanA (E. coli aldolase CAS: 9027-60-5, Carbosynth, UK) in 50 

mM Na-phosphate buffer (pH 7.0). The reactions were performed at 37 °C and monitored 

using FLUOstar OPTIMA (BMG LABTECH). For kinetics experiments, the sialic acid 

concentration was varied at 20, 10, 5, 4, 2, 1, 0.4, 0.2, 0.1 mM and the initial rate of reaction 

determined for each concentration in triplicate before analysis was performed by fitting the 

data to a Michaelis-Menten using Graph Pad Prism (V 5.03).

To monitor the production of ManNAc during the aldolase-catalyzed reactions, 2-AB 

labelling was carried out on the products from the above reactions. Briefly, 50 ng GlcNAc 

was added to 10 μl of each sample as an internal reference, before drying using a 

Concentrator Plus (Eppendorf). 5 μl of labelling reagent was added and incubated at 65 °C 

for 3 h. The labelling reagent was prepared by dissolving 50 mg 2-aminobenzamide in a 

solution containing 300 μl acetic acid and 700 μl DMSO, before 60 mg sodium 

cyanoborohydride is added. Following addition of H2O to reach 100 μl total volume, the 

sample was transferred to a HPLC vial and 10 μl loaded onto a HyperClone 3u ODS (C18) 

120A 150x4.6 mm 3 μ column. Mobile phases of 0.25% n-butylamine, 0.5% phosphoric 

acid, 0.1% Tetrahydrofurane; 50% methanol; Acetonitrile and H2O were used at a 0.7 

ml/min flow rate.
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Bioinformatics analyses

Sequence Similarity Networks (SSN)—The InterPro families for RgNanH (Glycoside 

Hydrolase, family 34; IPR001860) and RgNanA (N-acetylneuraminate lyase; IPR005264) 

were identified using the UniProt database, this family identifier was used to extract protein 

sequences using Enzyme Function Initiative (EFI) Enzyme Similarity tool67. For the other 

proteins, the families found in the InterPro database were too large to be analysed, so the 

sequence BLAST tool was used with a maximum of 2500 protein sequences extracted. From 

this sequence similarity networks were generated and viewed in Cytoscape version 3.668.

Cluster analysis—Homologous gene clusters were identified for the R. gnavus ATCC 

29149 nan cluster45 using MultiGeneBlast69. The BCT (Bacteria) GenBank subdivision was 

queried with the sequence spanning locus tags RUMGMA_RS11835 – RUMGNA_RS11885 

(from scaffold AAYG02000020_1). The data was manually curated, excluding all clusters 

that do not contain a predicted sialidase or are homologous to the functionally characterized 

S. pneumoniae NanC cluster47,70 and the clusters are summarized by organism and predicted 

gene content in Supplementary Table S5.

RUMGNA_02695 enzymatic activity assay

To assay RUMGNA_02695 activity against 2,7-anhydro-Neu5Ac, the purified recombinant 

protein was incubated in 100 μl reactions at 37 °C overnight with 1 mM 2,7-anhydro-

Neu5Ac, 50 mM sodium phosphate buffer pH 7.0 and 500 μM NADH, NAD, FAD or no 

cofactor. The reactions were dried using a Concentrator Plus (Eppendorf) for 1 h. Samples 

were then resuspended in 50 μl of water and 50 μl of reaction buffer (1.74 mg of 1,2-

Diamino-4,5-methylenedioxybenzene dihydrochloride (DMB, Carbosynth, UK), 324.6 μl 

MilliQ water, 88.6 μl glacial acetic acid, 58.2 μl of β-Mercaptoethanol and 79.3 μl of sodium 

hydrosulphite) and incubated for 2 h at 55 °C in the dark. The samples were then centrifuged 

for 1 min and filtered using a 0.45 μm filter into a glass HPLC vial and directly analysed by 

HPLC.

DMB-labelled samples were analysed by injecting 10 μl onto a Luna 5 μm C-18(2) LC 

column 250x4.6 mm (Phenomenex) at 1 ml/min. Mobile phases methanol/acetonitrile/water 

were used for separation of fluorescently labelled sialic acids46. The settings of the 

fluorescence detector were 373 nm excitation and 448 nm emission. Samples were run 

alongside a Neu5Ac standard.

To determine the kinetic parameters of RUMGNA_02695 enzymatic reaction, a coupled 

reaction with lactate dehydrogenase and sialic acid aldolase was carried out as described 

above but with 15 μg of RgNanA and 10 μg RUMGNA_02695 in each reaction. For the 

kinetics assays, 1, 0.4, 0.2, 0.1, 0.04, 0.02 and 0.01 mM 2,7-anhydro-Neu5Ac was used and 

the initial rate of reaction determined for each concentration in triplicate before analysis was 

performed by fitting the data to a Michaelis-Menten using Graph Pad Prism (V 5.03).

Electrospray ionisation spray mass spectrometry (ESI-MS) analysis was performed using the 

Applied Biosystems 4000 Q-TRAP. The full 100 μl reaction was diluted with 500 ul of 50% 
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Acetonitrile and 0.1 % formic acid and samples analysed in negative ion mode using direct 

injection.

ClosTron mutagenesis

R. gnavus mutants were generated using the ClosTron methodology56, which inserts an 

erythromycin resistance cassette into the gene of interest. The target site (270a) was 

identified using the Perutka method71. The re-targeted introns were synthesised and ligated 

into the pMTL007C-E2 vector by ATUM (MenloPark, USA). The plasmids were then 

transformed into E. coli CA434 using the heat-shock 42°C for 45 seconds followed by 2 min 

on ice before the recombinant clones were selected for chloramphenicol resistance (25 μg/

ml). Recombinant E. coli cells were grown overnight aerobically in 10 ml LB, 1 ml of the 

overnight culture was pelleted and washed with PBS. Continuing under anaerobic conditions 

the E. coli cell pellet was resuspended in 200 μl of an R. gnavus overnight culture and the 

cell suspension spotted onto a non-selective BHI-YH plate. Following incubation for 8 h at 

37 °C the bacteria were washed from the plate using PBS and plated onto BHI-YH 

supplemented with cycloserine (250 μg/ml) and thiamphenicol (15 μg/ml) and grown for 72 

h to select against E. coli and for transfer of the plasmid to R. gnavus. Individual colonies 

were grown in non-selective BHI-YH broth overnight to allow expression of the plasmid and 

genomic recombination. The culture was then plated onto a BHI-YH medium containing 

cycloserine (250 μg/ml) and erythromycin (10 μg/ml) to select clones with successful 

genomic recombination. PCR and sequencing were used to confirm recombination in the 

gene of interest.

Expression of the nan cluster genes in the generated mutants was assessed as described 

above using RNA samples from growth on YCFA supplemented with glucose.

The ability of the mutants to utilise sialic acids and sialoconjugates was assessed by 

supplementing YCFA with 11.1 mM of 2,7-anhydro-Neu5Ac, 3’SL, glucose or Neu5Ac in 

triplicate 200 μl cultures in 96-well microtiter plates. The OD595 nm was measured hourly for 

10 h in an infinite F50 plate reader (Tecan, UK) housed within an anaerobic cabinet 

connected to Magellan V7.0 software.

Saturation Transfer Difference (STD) NMR Spectroscopy

An amicon centrifuge filter unit with a 10 kDa MW cut-off was used to exchange the protein 

in 25 mM d19-2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol pH* 7.4 (uncorrected for the 

deuterium isotope effect on the pH glass electrode) D2O buffer and 50 mM NaCl. 2,7-

anhydro-Neu5Ac and Neu5Ac were dissolved in 25 mM d19-2,2-bis(hydroxymethyl)-2,2′,
2″-nitrilotriethanol pH 7.4, 50 mM NaCl. Characterization of ligand binding by Saturation 

Transfer Difference NMR Spectroscopy72 was performed on a Bruker Avance 800.23 MHz 

at 298 K. The on- and off-resonance spectra were acquired using a train of 50 ms Gaussian 

selective saturation pulses using a variable saturation time from 0.5 s to 4 s, for binding 

epitope mapping determination while only 0.5 s of saturation time for each selected 

frequency was used to perform the DEEP-STD NMR experiments42. The water signal was 

suppressed by using the excitation sculpting technique73, while the remaining protein 

resonances were filtered using a T2 filter of 40 ms. All the spectra were performed with a 
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spectral width of 10 KHz and 32768 data points using 256 or 512 scans. This time due to the 

absence of a 3D structure it was impossible to derive the resonances for saturation of 

aliphatic and aromatic residues found in the binding site as required by the DEEP-STD 

NMR technique. Moreover, RgSBP being a high molecular weight protein the NMR spectra 

assignment is precluded. For this we adopted a search for druggable sites strategy using 4-

hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidine (TEMPOL) as previously described74.

1H-1H TOCSY spectra of the protein (500 μM) were acquired in the presence and in the 

absence of TEMPOL (2.5 mM and 12.5 mM). The spectra were performed with a spectral 

width of 10 kHz using a time domain of 2056 data points in the direct dimension and 32 

scans. The indirect dimension was acquired using the non-uniform sampling (NUS) 

technique acquiring a NUS amount of 50% of the original 256 increments resulting in 64 

hypercomplex points. The spectra were processed with the Topspin 3.1 compressed sensing 

(cs) routine. The final selected resonances were those identified by the TEMPOL PRE 

effect, and not overlapping with ligand signals. The DEEP-STD NMR data obtained were 

used to derive the average orientation of the ligand bound to RgSBP by averaging the DEEP-

STD factors obtained from each saturated region. The DEEP-STD NMR and binding 

epitope mapping analysis were performed using previously published procedures42,74,75.

Crystal structure determination

Sitting drop vapour diffusion crystallisation experiments of RgNanA wt were set up at a 

concentration of 20 mg/ml and monitored using the VMXi beamline at Diamond Light 

Source76. The described RgNanA wild-type crystal structure was acquired from a crystal 

grown in the Morpheus screen (Molecular Dimensions), 0.2 M 1,6-hexandiol, 0.2 M 1-

butanol, 0.2 M 1,2-propanediol, 0.2 M 2-propanol, 0.2 M 1,4-butanediol, 0.2 M 1,3-

propanediol, 0.1 M Hepes/MOPS pH 6.5, 20% ethylene glycol, 10% PEG 8000. The 

diffraction experiment was performed on beamline I24 beamline at Diamond Light Source 

Ltd at 100K using a wavelength of 0.9686 Å. The data were processed with Xia2 making 

use of aimless, dials, and pointless (for data collection and refinement statistics see 

Supplementary Table S3). The structure was phased using MrBump through CCP4 online 

and Molrep77–79, by CdNaI from C. difficile (PDB 4woq) prepared using Chainsaw. 

Refinement was carried out using Refmac, Buster, and PDB redo80–84. Coot and ArpWarp 

were used for model building and Molprobity for structure validation85. It was not possible 

to crystallise RgNanA wt in the presence of Neu5Ac as it caused protein precipitation and 

RgNanA crystals dissolved in Neu5Ac soaking experiments, as also observed previously 

with P. multocida Neu5Ac aldolase53, possibly due to conformational changes during 

substrate binding or catalysis. Experiments with RgNanA K167A mutant were set up at 25 

mg/ml. Diffracting crystals grew in 0.1 M Tris/BICINE pH 8.5, 20% ethylene glycol, 100 

mM MgCl2, 10% PEG 8000 and diffraction experiments performed on beamline I04 at 

Diamond Light Source using a wavelength of 0.9795 Å. The crystal structure was phased 

with PHASER using the RgNanA wild-type crystal structure86. A 60 second 5 mM Neu5Ac 

soak prior to freezing generated the RgNanA K167A Neu5Ac complex. Due to data 

anisotropy, we processed the data in autoPROC86,87 with the STARANISO option88 and 

used these data for refinement with Buster using the previously obtained models of RgNanA 

wild-type and K167A Neu5Ac complex.
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In vivo colonisation and analyses

The impact of the nan deletion mutation on R. gnavus fitness was assessed by its ability to 

colonise germ-free C57BL/6J mice. Groups containing four 7-9 week old germ-free mice 

(two male, two female) were gavaged with 1x108 CFU of R. gnavus ATCC 29149 wild-type 

or antisense nan mutant in 100 μl PBS, individually or in combination. Sample size was 

selected following the 3 R's principles of reduction, replacement, refinement, whilst ensuring 

data collected allowed for statistical analysis, randomization was not possible due to the 

constraints of germ-free isolators, scientists were blinded for the FISH analysis. Care and 

treatment of animals was in accordance guidelines from and approval by the University of 

East Anglia Disease Modelling Unit and all animal experiments were conducted in strict 

accordance with the Home Office Animals (Scientific Procedures) Act 1986. Faecal samples 

were collected from each mouse at 3,7 and 14 days post gavage, and caecal content taken at 

day 14. DNA was extracted from these samples using the MP Biomedicals Fast DNA™ 

SPIN kit for Soil DNA extraction with the following modifications. The samples were 

resuspended in 978 μl of sodium phosphate buffer before being incubated at 4 °C for one 

hour following addition of 122 μl MT Buffer. The samples were then transferred to the 

lysing tubes and homogenised in a FastPrep® Instrument (MP Biomedicals) 3 times for 40 s 

at a speed setting of 6.0 with 5 min on ice between each bead-beating step. The protocol was 

then followed as recommended by the supplier.

Colonisation was quantified using qPCR carried out in an Applied Biosystems 7500 Real-

Time PCR system (Life Technologies Ltd). In competition experiments, primers based on 

the insertion in the RgNanH gene were used to distinguish between wild-type and nan 
mutant. One pair of primers was designed to specifically target R. gnavus wild-type strain by 

spanning the area of insertion into the nan cluster and one pair of primers was designed to 

specifically amplify the inserted DNA, therefore targeting the nan mutant (Supplementary 

Table S6). The primers were between 18 and 23 nt-long, with a Tm of 59–60°C. Standard 

curves were prepared in triplicate for both primer pairs using a 10-fold serial dilution of 

DNA corresponding to 1x107 copies of RgNanH/2ul to 1x102 copies/2ul diluted in 5 μg/ml 

Herring sperm DNA. The standard curves showed a linear relationship of log input DNA vs. 

the threshold cycle (CT), with acceptable values for the slopes and the regression coefficients 

(R2). The dissociation curves were also performed to check the specificity of the amplicons. 

Each qPCR reaction (10 μl) was then carried out in triplicate with 2 μl of 1 ng/μl DNA 

(diluted in 5 μg/ml Herring sperm DNA) and 0.2 μM of each primer, using the QuantiFast 

SYBR Green PCR kit (Qiagen) according to the manufacturer’s instructions (except that the 

combined annealing/extension step was extended to 35 s instead of 30 s). Data obtained 

were analysed using the prepared standard curves.

RNAseq analysis

For RNAseq analysis, the colonic tissues from mono-colonised mice were gently washed 

and stored in RNAlater at -80ºC until extraction. RNA extraction was performed using the 

RNeasy mini kit (QIAGEN) following the manufacturer’s instructions for purification of 

total RNA from animal tissues, including the on-column DNase digestion. Homogenisation 

was achieved with acid washed glass beads using the FastPrep®-24 (MP Biomedicals, 

Solon, USA) by 3 intermittent runs of 30 s at 6 m/s speed every 5 min, at room temperature. 
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Elution was performed as recommended with 50 μl RNAse-free water. The quality and 

concentration of the RNA samples was assessed using NanoDrop 2000 Spectrophotometer 

Nanodrop, the Qubit RNA HS assay on Qubit® 2.0 fluorometer (Life Technologies) and 

Agilent RNA 600 Nano kit on Agilent 2100 Bioanalyzer (Agilent Technologies, Stockport, 

UK).

RNAseq was carried out by Novogene (HK) (Hong Kong). Briefly, mRNA was enriched 

using oligo(dT) beads, fragmented randomly in fragmentation buffer, followed by cDNA 

synthesis using random hexamers and reverse transcriptase. After first-strand synthesis, a 

custom second-strand synthesis buffer (Illumina) was added with dNTPs, RNase H and 

Escherichia coli polymerase I to generate the second strand by nick-translation. The final 

cDNA library was obtained after a round of purification, terminal repair, A-tailing, ligation 

of sequencing adapters, size selection and PCR enrichment. Library concentration was first 

quantified using a Qubit® 2.0 fluorometer (Life Technologies), and then diluted to 1 ng/μl 

before checking insert size on an Agilent 2100 and quantifying to greater accuracy by qPCR 

(library activity >2 nM). Sequencing of the library was carried out on Illumina Hiseq 

platform and 125/150 bp paired-end reads were generated.

FASTQ files containing base calls and quality information for all reads that passed quality 

filtering were generated. Reads were mapped to the mouse reference genome using 

TopHat289. The mismatch parameter was set to two, and other parameters were set to 

default. Appropriate parameters were also set, such as the longest intron length. Filtered 

reads were used to analyze the mapping status of RNA-seq data to the reference genome. 

The HTSeq software was used to analyze the gene expression levels, using the union 

mode90. In order for the gene expression levels estimated from different genes and 

experiments to be comparable, the FPKM (Fragments Per Kilobase of transcript sequence 

per Millions base pairs sequenced) was used to take into account the effects of both 

sequencing depth and gene length. The differential gene expression analysis was carried out 

using the DESeq package90 and the readcounts from gene expression level analysis as input 

data. An adjusted p value (padj) cut-off of 0.05 was used to determine differential expressed 

transcripts.

Fluorescent in situ hybridization (FISH) staining

For FISH analysis, the colonic tissue was fixed in methacarn (60% dry methanol, 30% 

chloroform and 10% acetic acid), processed and embedded in paraffin as previously 

described2. Tissue sections were prepared at 8-10 μm. Paraffin sections were dewaxed and 

washed in 95% ethanol. The tissue sections were incubated with 100 μl of Alexa Fluor 555-

conjugated Erec482 probe (5’ – GCTTCTTAGTCARGTACCG -3’) at a concentration of 10 

ng/μl, in hybridisation buffer (20 mM Tris-HCl, pH 7.4, 0.9M NaCl, 0.1% SDS) at 50°C 

overnight. The sections were then incubated in a 50°C prewarmed wash buffer (20m M Tris-

HCl, pH 7.4, 0.9 M NaCl) for 20 min. All subsequent steps were performed at 4°C. The 

sections were washed with PBS, the blocked with TNB buffer (0.5% w/v blocking reagent in 

100 mM Tris-HCl, pH 7.5, 150 mM NaCl) supplemented with 5% goat serum. To detect 

mucin, the sections were then counterstained with a Muc2 antibody (sc-15334) at 1:100 

dilution in TNB buffer overnight. The sections were washed in PBS, then goat anti-rabbit 
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antibodies (diluted 1:500) were used for immunodetection. The sections were counterstained 

with Sytox blue (S11348, ThermoFisher) diluted 1:1000 in PBS and mounted in Prolong 

gold anti-fade mounting medium. The slides were imaged using a Leica TCS SP2 confocal 

microscope with a x63 objective. The distance between the leading front of bacteria and the 

base of the mucus layer was measured with FIJI91. A total of 70 images from 8 mice were 

analysed, and scientists were blinded for the analysis due the subjectivity of determining the 

leading front of bacteria and base of the mucus layer. The association between genotype and 

distances was estimated by a linear mixed model, including fixed effects of genotype and 

area and random effects of mouse and each individual image. There was substantial spatial 

correlation between adjacent observations and so an AR(1) correlation structure was added. 

The resulting model had no residual autocorrelation as judged by visual inspection of 

autocorrelation function. The nmle package version 3.1-137 using R version 3.5.3 was used 

to estimate the model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. R. gnavus ATCC 29149 nan operon
a) Diagram depicting the genomic organisation of the nan operon RUMGNA_02701 

(putative sialic acid esterase; tan) RUMGNA_02700 (putative YhcH family protein; dark 

blue), RUMGNA_02699 (predicted transcriptional regulator; purple), RUMGNA_02698 – 

02696 (putative sialic acid ABC transporter of the SAT2 family; green), RUMGNA_02695 

(putative oxidoreductase, pink), RUMGNA_02694 (RgNanH (Intramolecular trans 
sialidase), gold), RUMGNA_02693 (NanE (epimerase), blue), RUMGNA_02692 (NanA 

(aldolase), dark green), RUMGNA_02691 (kinase) (NanK, red). b) qPCR analysis showing 

fold changes in expression of nan genes when R. gnavus was grown with 3’SL or 2,7-

anhydro-Neu5Ac compared to glucose using ΔΔCt calculation. Error represent standard 

deviation and are based on three biological replicates analysed in triplicate. Statistical 

significance was determined using a 1-way ANOVA with a Dunnett’s multiple comparison 

test. NS – no significant change in expression (p > 0.05), * - p 0.05 – 0.01, ** - p 0.01 – 

0.001, *** - p < 0.001.
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Figure 2. Steady-state fluorescence analysis of ligand binding to RgSBP.
Fluorescence emission spectrum of 0.5 μM RgSBP excited at 297 nm in the presence or 

absence of a) 2,7-anhydro-Neu5Ac or b) Neu5Ac. The data shown are representative of 

triplicate readings. c) Titration of 0.5 μM RgSBP with 2,7-anhydro-Neu5Ac. The data 

represents the mean of triplicate readings. d) Displacement of Neu5Ac with 2,7-anhydro-

Neu5Ac, six sequential additions of 10 μM Neu5Ac to 0.5 μM RgSBP followed by one 

addition of 10 μM 2,7-anhydro-Neu5Ac, and displacement of 2,7-anhydro-Neu5Ac with 

Neu5Ac, one addition of 10 μM 2,7-anhydro-Neu5Ac followed by 6 subsequent additions of 

10 μM Neu5Ac. The data shown are representative of triplicate experiments, the signal 

peaks are artefacts attributed to external light during sample addition.
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Figure 3. Biophysical analysis of ligand binding to RgSBP.
ITC Isotherms of RgSBP binding to a) 2,7-anhydro-Neu5Ac or b) Neu5Ac, showing both 

DP – differential power and ΔH – enthalpy change. The data shown are representative of 

triplicate experiments. c) Saturation Transfer Difference (STD) NMR binding epitope 

mapping of 2,7-anhydro-Neu5Ac interacting with RgSBP. The initial slopes STD0(%) were 

normalized against the highest STD0, assigned as 100%. The obtained factors were then 

classified as weak (0-60 %), intermediate (60-80 %), and strong (80-100%) and used to 

identify the close contacts found at the interface of binding, data is representative of 
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triplicate readings d) Average Differential Epitope Mapping (DEEP) STD factors for 2,7-

anhydro-Neu5Ac obtained saturating RgSBP in spectral regions 0.6, 0.78, 1.44 ppm for 

aliphatic and 7.5, 7.23, 7.27 ppm for aromatic residues. Each differential mapping epitope 

obtained using different saturation frequencies are combined and the average DEEP STD is 

calculated resulting in five points for each frequency and a total of fifteen points for each 

proton receiving saturation. The data reported are the mean ± SEM of a sample of data of 

fifteen points for each proton receiving saturation.
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Figure 4. R. gnavus sialic acid aldolase enzymatic reaction.
a) Change of A340nm over time using R. gnavus sialic acid aldolase (RgNanA) with Neu5Ac 

(pink) or 2,7-anhydro-Neu5Ac (orange), or E. coli sialic acid aldolase (EcNanA) with 

Neu5Ac (black) or 2,7-anhydro-Neu5Ac (green) reactions coupled to lactate dehydrogenase, 

error bars represent standard error from 3 independent experiments. b) Michaelis-Menten 

plot of RgNanA rate of reaction with increasing concentration of Neu5Ac, error bars 

represent standard error. The rate of reaction at each concentration (μM NADH) was 

determined in triplicate by measuring A340nm change using a standard curve. The mean 

value is plotted with standard error of the meaning shown with error bars c) Cartoon 

representation of the wild type RgNanA crystal structure showing the (β/α8) TIM barrel 

organisation and Lys167 as yellow sticks. d) The RgNanA K167A active site is shown in 

orange with bound Neu5Ac in the open-chain ketone form shown in cyan. The green mesh 

represents the Neu5Ac Fo-Fc difference map at the 3σ level (for a stereo image of Neu5Ac 

and Fo-Fc difference map see Supplementary Figure 5d). Hydrogen bonding interactions are 
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depicted using black dashed lines. In addition, the unbound RgNanA wt active site is shown 

in grey.
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Figure 5. RUMGNA_02695 catalyses the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac.
a) High Performance Liquid Chromatography (HPLC) expand acronyms number replicates 

with same outcome analysis of DMB labelled RUMGNA_02695 reactions with 2,7-

anhydro-Neu5Ac using different co-factors. NAD (black), NADH (pink), FAD (blue), no co-

factor (brown), and a Neu5Ac standard (green), data is representative of five independent 

experiments. b) Michaelis-Menten plot of the rate of reaction for RUMGNA_02695 with 

increasing concentration of 2,7-anhydro-Neu5Ac. The rate of reaction (μM NADH) at each 

concentration was determined in triplicate by measuring A340nm change and using a 

standard curve, the mean value is plotted with standard error of the meaning shown with 

error bars
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Figure 6. Colonisation of germ-free C57BL/6J mice with R. gnavus ATCC 29149 wild-type or 
nan mutant strains.
Mice were monocolonised with a and b sample size (n) and define centre measure mean (a) 

R. gnavus wild-type (black; n = 4) or nan mutant (red; n = 4) strains individually or (b) in 

competition (n = 4). Mice were orally gavaged with 1x108 of each strain, faecal samples 

were analysed at 3,7 and 14 days after inoculation and caecal samples at 14 days after 

inoculation using qPCR, centre line denotes the mean. (c) Fluorescent in situ hybridisation 

(FISH) and immunostaining of the colon from R. gnavus monocolonised C57BL/6 mice. R. 
gnavus ATCC 29149 and R. gnavus nan mutant are shown in red. The mucus layer is shown 

in green and an outline of the mucus is shown in the first panels. Cell nuclei were 

counterstained with Sytox blue, shown in blue. Scale bar: 20 μm. Image is representative of 

70 total images (d) Quantification of the distance between the leading front of bacteria and 

the base of the mucus layer. A total of 70 images of stained colon from 8 R. gnavus 
monocolonised mice were analysed. The asterisks (***) show the significance (P=0.0135, 

by linear mixed model analysis, including fixed effects of genotype and area and random 

effects of mouse and each individual image. There was substantial spatial correlation 

between adjacent observations and so an AR(1) correlation structure was added. The 
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resulting model had no residual autocorrelation as judged by visual inspection of 

autocorrelation function. The nmle package version 3.1-137 using R version 3.5.3 was used 

to estimate the model), centre point indicates the mean, box limits, upper and lower 

quartiles; whiskers, minimum and maximum.

Bell et al. Page 31

Nat Microbiol. Author manuscript; available in PMC 2020 April 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Identification of genes involved in 2,7-anhydro-Neu5Ac metabolism in R. gnavus nan cluster
	Specificity of R. gnavus sialic acid transporter for 2,7-anhydro-Neu5Ac
	Specificity of R. gnavus sialic acid aldolase for Neu5Ac
	Conversion of 2,7-anhydro-Neu5Ac to Neu5Ac by RUMGNA_02695
	Impact of R. gnavus nan cluster on in vitro growth and in vivo colonisation of mice

	Discussion
	Methods
	Materials
	Bacterial strains and media
	Quantitative real-time PCR (qRT-PCR)
	Cloning, expression, mutagenesis and purification of recombinant proteins
	Fluorescence spectroscopy
	Isothermal titration calorimetry (ITC)
	Sialic acid aldolase activity assays
	Bioinformatics analyses
	Sequence Similarity Networks (SSN)
	Cluster analysis

	RUMGNA_02695 enzymatic activity assay
	ClosTron mutagenesis
	Saturation Transfer Difference (STD) NMR Spectroscopy
	Crystal structure determination
	In vivo colonisation and analyses
	RNAseq analysis
	Fluorescent in situ hybridization (FISH) staining

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

