
Repulsive Forces Between Looping Chromosomes Induce
Entropy-Driven Segregation
Manfred Bohn*, Dieter W. Heermann

Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany

Abstract

One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during
interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence
indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization
of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between
chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without
invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold
higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-
random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results
suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without
requiring additional energy-consuming processes.
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Introduction

Chromatin in higher eukaryotes is compacted and folded on

several scales. While the folding mechanisms on the scale of the

chromatin fiber are rather well understood [1,2], the higher-order

arrangement of whole chromosomes inside the nucleus remains an

open question [3–5]. Chromosomes, in comparison to other

polymeric systems, display a vast amount of unexpected types of

behaviour. Most importantly, chromosomes are highly compart-

mentalized objects being well separated during interphase [6].

Such a separation is not only observed regarding complete

chromosomes, rather Mb-sized stretches of chromatin, when

labelled fluorescently with different colors, also display little

intermingling [7]. A lot of speculation has been going on about

the mechanisms driving such kind of compartmentalization. It has

been proposed that compartmentalization results from non-

equilibrium effects: During metaphase chromosomes are con-

densed and well separated. The entanglement time disregarding

topoisomerase-II activity is supposed to be much larger than the

lifetime of the cell [8]. Based on the assumption of a linear polymer

model, calculations show that this holds also true given the activity

of topoisomerase-II [9].

Nowadays however, there is an ever growing body of evidence

that chromatin is not organized as a simple linear polymer. Rather

functional loops seem to play a pivotal role in transcriptional

regulation of higher eukaryotes. Several experimental techniques

have allowed the determination of specific intra- as well as

interchromosomal contacts [10–12]. 4C experiments revealed that

abundant short as well as long-range chromosomal contacts are

established ranging from a few kb to several Mb, these contacts

being cell-type specific. The formation of chromatin loops has

been shown to be important for transcriptional regulation in the b-

globin locus [13]. Experimental evidence further suggests that loop

formation involves specific proteins like CTCF [14].

Recently, several computational studies have been put forward

investigating the entropic effects of looping. It was shown that ring

polymers in proximity show less intermingling than corresponding

linear systems [15]. Cook et al. [16] simulated linear chains as well

as rosette-like structures in a dense system and found that the

probability of inter-chain contacts decreases by the transition from

a linear to a looping polymer. In another study, the potential of

mean force arising when two ring polymers are brought in

proximity has been analyzed [17]. A three-fold increase in the

repulsion compared to linear chains (self-avoiding walks) at short

separations was found. Topological constraints arising from the

non-catenation of rings results in a further increase of repulsion.

However, it remains an open question, whether similar predictions

can be derived for a system of chromosomes.

The scope of this paper is to extend the study of effective

interactions between ring polymers to the more complex system of

looping chromosomes. Chromsomes are simulated using the

Dynamic Loop (DL) model [18], which has been shown to be

consistent with a variety of experimental observation. Among

others, the model correctly displays the observed folding into a

confined sub-space of the nucleus [19], the power-law decay of the

contact probabilities determined in a recent study [12] and the

formation of chromosome territories (CTs). This DL model

assumes that loops form on the basis of diffusional motion, two

chromatin segments having a certain probability to stick together

for a certain time when being in proximity. Amongst others, we
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want to investigate how the strength of the repulsive interaction

changes when introducing more and more loops into the system.

While a coarse-grained model of the chromosome is employed

here, a mapping to physical units can be conducted using results

from fluorescence in situ hybridization (FISH) experiments [19].

Results

Simulation of chromosomes
To obtain information about the repulsive interactions between

chromosomes, we use the recently developed Dynamic Loop (DL)

model. This model initally assumes chromatin to consist of a

coarse-grained linear polymer chain. Loop formation is achieved

using diffusional motion of the monomers in the following way:

Whenever two segments co-localize by diffusional motion, a

chromatin loop is formed with a certain probability p between

these two sites. The loop is assigned a certain lifetime, thus loop

attachment points dissolve again during the course of time.

The stochastic nature of loop formation provides a method to

effectively incorporate protein-chromatin and chromatin-chroma-

tin interactions. Probabilistic looping, which is often thought to be

mediated by DNA-binding factors [14,20,21] or by transcription

factories [22], mimics the effect of protein concentration (there

being either proteins binding DNA sites or not) and binding

affinity. In the following we denote by ‘‘loop’’ a functional

interaction between two parts of a chromatin fiber existing for a

certain time as created by the method. In contrast, a ‘‘contact’’

denotes two parts of the chromatin fiber close together by thermal

fluctuations without necessarily being an interaction.

A typical human chromosome has a length of about 100 mega

basepairs (Mb), rendering a detailed description on the molecular

level computationally impossible. Coarse-graining approaches,

where a long stretch of chromatin is modeled as an effective

monomer, are well justified on a scale above the persistence length

lp~40{250 nm [23]. Thus, it is reasonable to conduct computer

simulations on a coarse-grained scale where it can be securely

assumed that the fiber is flexible.

The effective repulsion between chromosomes increases
strongly with loop number

What happens, when two polymeric coils are brought close

together? Clearly, in the absence of other interactions than

excluded volume forces, polymers repell each other due to the

constrained conformational space available. Such a behaviour has

been found both for linear self-avoiding walks [24] and ring

polymers [17]. Here, we investigate the potential of mean force

between the centers of mass of two chromosomes modelled by the

Dynamic Loop model. Results are shown for chains of length

N~256 in Figure 1. In principle, dependent on the coarse-

graining used, such chains could represent small chromosomal

regions up to whole chromosomes. To allow comparison for

different sets of parameters (chain length N, looping probability p,

lifetime of loops t), the center-of-mass distance is scaled with the

mean radius of gyration Rg of the corresponding isolated chains.

The radius of gyration is a measure of the typical size of a

chromosome, i.e. the chromosome territory.

Evidently, the effective potential increases when approaching

the two chromosomes, i.e. lowering the center-of-mass distance r.

This result is expected, as the accessible conformational space

becomes smaller the more the monomer clouds are in proximity.

More importantly, we find that the effective potential Ueff (r) is

pronouncedly stronger for chromosomes with a large average

number of loops compared to linear chains. To assess whether

these results are dependent on the chain length, and therefore the

level of coarse-graining used, we have plotted the same results for

chain lengths N~128,256 and 512 in Figure S1. Obviously, the

dependence on chain length using the scaled center-of-mass

distance is rather subtle, indicating that the level of coarse-graining

used in simulations does not affect the results on the large scale.

This is well-known to be true for self-avoiding walks and ring

polymers, where the effective potential at full overlap adopts a

constant value in the order of 1 kBT in the limit of infinite chain

length. For the Dynamic Loop model, a comparison is more

difficult, since the effective potential is also a non-trivial function of

the looping probability p. Importantly, the repulsive potential

increases most strongly in the range where r&1{2Rg, i.e. around

the size of the chromosome territory, indicating a huge energy cost

for a high degree of intermingling of chromosome territories.

To demonstrate how the data can be mapped onto physical

units, we use model polymers of chain length N~256. We set one

coarse-grained bead to 400 kb in order to model a sufficiently long

stretch in the size range of a typical chromosome. To determine

the spatial extend of this stretch of chromatin, we employ long

distance experimental data from human chromosome 11 [19]. In

principal, such a mapping is always connected with a lot of

uncertainy: The detailed Kuhn length is not known, disallowing

for a precise mapping on the short scale; as chromatin is organized

much more complex than a linear chain, other parameters

(looping, binding, heterogeneity) enter the calculations. To obtain

a simple mapping, we adjust the plateau level of the model

polymers to that of experimental data. Figure 2A shows the results

of the mapping using 177 nm for one lattice unit. Clearly, given

such a coarse-graining approach, each polymer segment has to be

considered as a bunch of chromatin, making it impossible to

resolve the detailed interactions leading to the loop on a molecular

basis. Importantly, the model displays well the leveling-off

observed in experiments for intermediate looping probabilities

(the cyan symbol m corresponds to 131 loops on average). The

effective potential Ueff (r) in units of kBT is displayed in Figure 2B.

While the effective potential profile is rather flat for self-avoiding

Figure 1. The effective potential Ueff (r) between the centers of
mass of looping polymers. Simulations have been conducted using
the DL model for chain length N~256 and different looping
probabilities p. The average number of loops per monomer resulting
from the parameter p is indicated by the color bar. Data is scaled with
the radius of gyration of isolated polymer chains to allow comparison
between different parameters sets. The effective potential increases
strongly with looping probability p. In Figure S1 we furthermore find
that the order of magnitude of repulsive interactions is independent of
chain length N in the range studied.
doi:10.1371/journal.pone.0014428.g001

Repulsion of Chromosomes
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walks, the existence of loops leads to a strong increase in the

potential at distances of about 2–3 mm, the region where the

experimental data displays a leveling-off. Importantly, these results

are independent of the looping lifetime (Figure S2).

The quantitative increase in the effective potential of looping

polymers over linear chains (self-avoiding walks) is shown in

Figure 3. The factor Ueff (r=Rg)=USAW(r=Rg) by which the

effective potential of the model chromosomes is larger than that of

the linear chain is plotted on the y-axis. Standard errors are in the

size range of the symbols and therefore not displayed. Likewise,

the abscissa shows the center-of-mass distance scaled by the radius

of gyration Rg. We find that the repulsive potential is stronger by

more than one order of magnitude for chains in the parameter

range where leveling off occurs.

Looping polymers become aspherically elongated
Chromosomes, when brought in close proximity, not only reveal

a strong repulsion between their centers of mass; besides this, their

structural properties undergo significant changes. Here, we

investigate how size and shape of a model chromosome changes

in presence of a second one. Such effects play an important role

inside the cell nucleus, as chromosomes are located in a complex

environment being typically separated by only a few mm;

comparison to linear chains allows us to learn something about

the effect of looping. The change in dimensionality is measured by

the swelling factor s, given by

s~Rg(r)=Rg(r~?) ð1Þ

Here, Rg(r) denotes the root mean squared radius of gyration

for a chromosome being in a distance r to a second one. Rg:
Rg(r~?) denotes the corresponding quantity for isolated

chromosomes. In a recent study on topological effects between

ring polymers [17] it has been shown that both linear chains as

well as ring polymers swell when being brought together, the

swelling factor being about 10% for rings and slightly smaller for

linear chains.

While linear chains and ring polymers only show a mild swelling

in the presence of a second chain, we find that model

chromosomes swell enormously. Figure 4A displays s for different

looping probabilities p, i.e. different values of the average number

of loops, in relation to the scaled center-of-mass distance r=Rg. To

demonstrate similar behaviour independent of the level of coarse-

graining, results are shown for different chain length N . Swelling

factors s are strongly dependent on the average number of loops,

increasing by a factor in the order of 2–10 for the range of looping

probabilities where a leveling-off is observed (cf. also Figure 2A). In

fact, s diverges for large loop numbers, indicating that the chains

can not be approached closer than approx. 1{2Rg.

The swelling of the chromosomes might suggest that they open

up to create space for the monomers of the other chromosome, i.e.

allow for intermingling. In the following, we will show that this is

not the case, rather the contrary is observed. To achieve this, we

Figure 2. Mapping of coarse-grained polymers to physical parameters. Shown are results for a chain length of N~256 using different
looping probabilities. Experimental data shows results from FISH measurements [19] on human chromosome 1 and 11. The chain is mapped to
chromosome 11 by assuming one bead to comprise a 400kb-stretch of chromatin. Consistent with the experimental data, this is set equal to 480 nm.
A. This panel shows the mean square distance in relation to genomic separation of model and experimental data to assess the quality of the
mapping. B. The potential of mean force between two model chromosomes in relation to physical distance r between the centers of mass. The
effective potential strongly increases with increasing looping number at a separation of about 2–3 mm, i.e. the size range of the assumed
chromosome territories.
doi:10.1371/journal.pone.0014428.g002

Figure 3. Ratio between the effective potential of looping
polymers and linear chains. The data shows the ratio
Ueff (r=Rg)=USAW(r=Rg) for chains of length N~256 and different
looping probabilities p. The data is plotted against the center-of-mass
separation scaled by the radius of gyration Rg of isolated polymers. The
figure symbols and color codes are the same as in Figure 2.
doi:10.1371/journal.pone.0014428.g003
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investigate how the shape of the chromosomes changes when

being close together. The asphericity A of the gyration ellipsoid

has been established [15,25] as a measure of shape, being zero for

a spherically shaped polymer and unity for a rod-like polymer,

A(l1,l2,l3)~
(l1{l2)2z(l1{l3)2z(l2{l3)2

2(l1zl2zl3)2
: ð2Þ

Here, l1, l2 and l3 denote the eigenvalues of the gyration tensor.

To highlight the changes in asphericity when approaching two

chromosomes, we show the ratio A(r)=A? in Figure 4B, A? being

the asphericity of an isolated model chromosome with the same

parameters. While the change in asphericity for linear chains (self-

avoiding walks, no loops) is rather small even at full overlap (about

20%), we find a pronounced aspherical deformation on our model

chromosomes in the regime of looping probabilities that force a

leveling-off in the mean square distance. Asphericity values

increase by about 200–400% at genomic separations of 1Rg, i.e.

the typical size of the chromosome.

The changes in shape and dimension are visualized in

Figure 4C. Shown are the average gyration ellispoids of three

different model polymers: (i) linear chains (self-avoiding walks, 0

loops), (ii) chromosomes with 86 loops on average (purple symbol

m in Figure 2B) and chromosomes with 131 loops on average

(cyan symbol m in Figure 2B). For each set of model parameters,

the ellipsoids are displayed for three different center-of-mass

distances: isolated chains (infinite CM distance), r~1:5Rg and

r~0:5Rg. We find that isolated linear chains require a huge

amount of space, while looping polymers are pronouncedly

smaller and more spherical. When being in contact with a second

chromosome, the shape of self-avoiding walks changes only

slightly, while chromosomes with loops become markedly

aspherical compared to their isolated shape.

These findings indicate that chromosomes, similar to ring

polymers, do not swell in order to create space for the second

chromosome. On the contrary, they swell to avoid each other by

elongating in such a way that the overlapping is minimized. This is

achieved by aligning the highly aspherical gyration tensors in a

parallel way when close together.

Looping polymers avoid intermingling
To answer the question whether chromosomes swell to create

space for each other or if they rather try to avoid each other, the

mutual alignment of the polymers is studied. An established

measure for the mutual alignment is given by the average angle

v cosHw between the gyration tensors largest principal axes

[15,17]. In case of the chromosomes being adjusted independently

of each other, the average angle would adopt the value of

Figure 4. Structure of chromosomes being in proximity of a second one. A. The swelling factor s~Rg(r)=Rg of the chromosome when
being at a center-of-mass separation r compared to the isolated case. Data is shown for different chain lengths N and looping probabilities p. The
symbols and colors used are the same as in Figure 1. B. The scaled asphericity A=A? for model chromosomes in proximity. The same data is used as
in panel A. C. Illustrations of the average gyration ellipsoids of the chromosomes. Shown is the change in shape and size of the gyration ellipsoids for
linear chains (no loops), chromosomes with an average number of 86 loops (purple symbol m in Figure 2B) and chromosomes with an average
number of 131 loops (cyan symbol m in Figure 2B).
doi:10.1371/journal.pone.0014428.g004
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v cosHw~0:5 [15]. This value arises by averaging over two

randomly oriented orientations in three-dimensional space.

Deviations from this value indicate a tendency of the polymers

to align in a certain non-random way with respect to each other.

Figure 5 displays results for linear chains (black symbols) and

chromosomes with loops in relation to the center-of-mass distance

for chains of length N~256. The symbol and color code used is

the same as in Figure 2. We find that chromosomes display a

pronouncedly stronger tendency to align perpendicular at short

center-of-mass separations than linear chains or ring polymers (cf.

5A). Similarly, a slightly parallel alignment can be found at

intermediate distances.

These findings might be explained by a tendency of the

chromosomes to minimize the overlap area. When the distance

between chromosomes is lowered to values in the order of the size

of the chromosome, they start to feel the presence of the second

chromosome. Thus, the space of accessible conformations is

reduced and the chromosome stretches in a direction perpendic-

ular to the center-of-mass axis. However, when the chromosomes

are forced even closer together, nearly overlapping completely, the

observed perpendicular alignment together with the strong

elongation minimizes the volume shared by both chains

(Figure 5B).

To quantitatively assess the amount of intermingling between

the model chromosomes in dependency of the average number of

loops, we project the monomer positions to the line connecting the

centers of mass of both chromosomes. Thus, a density distribution

can be obtained as shown in Figure 6A. Here, chromosomes with

a coarse-grained length of N~256 have been simulated. Mapping

is done according to the procedure described above. Results are

shown for different looping probabilities and a fixed center-of-

mass distance r~1 mm. The average number of loops being 0

(linear case, black symbol), 86 (purble symbol m) and 131 (purple

symbol m). Clearly, introducing loops in the chromatin structure

results in more compact polymers, the monomers being distributed

closer around the centers of mass. We determine the overlap

fraction by integrating the overlap area between the distributions

of both chromosomes. The results are shown in Figure 6B using

two different center-of-mass separations r~1 mm and r~2 mm.

For a center-of-mass distance of 2 mm, being comparable to the

size of chromosomal regions [19], we find that the overlap fraction

decreases strongly from about 0.7 down to less than 0.1 for large

loop numbers. Interestingly, in the range where leveling-off occurs,

overlap fractions are in the range of 20–30%. These values are,

however, an overestimate, as the projection procedure does not

capture segregation in the direction perpendicular to the line

connecting the centers of mass. Although not directly comparable

to experimental results, these values are in the size range of

experimental data from FISH cryo sections, where an overlap

volume of 20% has been observed [26].

Discussion

In this paper, we have analyzed the effect of loops on the repulsive

interactions between polymers. As a measure for these interactions

we applied the theory of effective potentials, where monomeric

degrees of freedom in the partition sum are traced out. The resulting

effective potential Ueff (r) gives the interaction between both

polymers in dependence of their center-of-mass distance r. Ueff (r)
has been determined for self-avoiding walks in recent decades [24]

and for ring polymers [17]. Both linear polymers and rings display a

repulsive interaction at full overlap (r~0), asymptotically converg-

ing to a finite value in the order of 1 kBT in the limit of large chain

lengths. Here, we applied the concept of effective interactions to the

Dynamic Loop model, which has been proposed as a model for

chromatin organization in Ref. [18].

The major finding of this study is that introducing dynamic

loops in the structure of chromatin results in a strong increase of

the repulsive interactions by about one order of magnitude

(Figure 1). Using a mapping to physical units based on recent

FISH experiments, we found that the repulsive forces are strongest

at center-of-mass separations of 2{3 mm, i.e. the size of the

chromosome territory (Figure 2). These observations indicate that

chromatin looping plays a dominant role in the entropy-driven

segregation of chromosomes.

Moreover, we found that the existence of loops introduces strong

changes in the size and shape properties of the chromosomes.

Indeed, when being brought close together, looping polymers swell

Figure 5. Mutual alignment of the gyration ellipsoids. A. The average angle v cosHw is shown in dependency of the center-of-mass
separation r for chains of length N~256. Black symbols correspond to a linear chain (SAW), colored symbols to chromosomes with loops, the color
coding being the same as in Figure 2. Error bars are smaller than the symbol size and therefore not shown. The grey line corresponds to a random
orientation of the gyration ellipsoids, showing that chromosomes with loops induce a non-random mutual alignment. B. Two chromosomes with a
fixed center-of-mass separation r. The left-hand image shows chromosomes in the regime where perpendicular alignment is observed (r~0:5Rg), the
right-hand image displays chromosomes with a center-of-mass separation of r~1:7Rg .
doi:10.1371/journal.pone.0014428.g005
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and become pronouncedly aspherical, the observed effect being

multi-fold larger than for linear chains or ring polymers.

Chromosomes in proximity display a highly non-random orienta-

tion of their gyration ellipsoids. Increasing the number of loops leads

to a significant decrease in the overlap fraction.

Clearly, the modelling approach pursued here is simplified with

regard to the cellular system. In reality, we have a dense system of

chromosomes with a chromatin content of about 10%. It remains

to be studied in further publications, whether bringing multiple

chromosomes together leads to even stronger effects. Here, for

ease of simplicity, we focussed on a two-chromosome-system

because it allows best to highlight pairwise interactions between

chromosomes and the effect of loops while keeping simulational

effort reasonable. Studying the impact of multiple chromosome in

a dynamic system the future might also shed light on the question

whether the proximity between chromosomes reversly might affect

looping probabilty. This, however, is not possible in the framework

of the Dynamic Loop Model as presented here because it takes the

looping probability as an input parameter.

Our findings indicate that chromatin loops not only play an

important role in transcriptional regulation. Rather, they help to

impose a certain state of order and segregation. Thus, loops seem

to constitute a highly efficient regulatory mechanism concerning

gene regulation as well as chromatin compartmentalization. The

Dynamic Loop model used in this study refrains from assuming

active driving mechanisms for loop formation, rather loops form

by diffusional motion, minimizing the energy cost.

Materials and Methods

Computer simulations of chromosomes
Model chromosomes are simulated using the Dynamic Loop

model introduced in Ref. [18]. The Dynamic Loop model is

implemented employing lattice Monte Carlo simulations [27] in

order to simplify the handling of excluded volume. Calculation of

excluded volume interactions thereby is reduced to checking whether

one lattice site is already occupied or not. To allow for more

flexibility than a simple local-move algorithm on a cubic lattice, we

employ the bond-fluctuation method introduced by Carmesin [28]

allowing 108 different bond vectors; the length of a bond can take the

values 2,
ffiffiffi

5
p

,
ffiffiffi

6
p

,3,
ffiffiffiffiffi

10
p

[29]. The bond-fluctuation model is

especially suited for dense and compact systems where a lattice

algorithm would no longer be feasible due to high rejection rates

during the Monte Carlo process. The simulation method applied

fulfills the following important features: (i) it produces unbiased

results, i.e. each possible conformation out of the ensemble is

sampled with equal probability, (ii) it takes into account excluded

volume interactions, i.e. two monomers are not allowed to occupy

the same region in space and (iii) using some restrictions on the

moves and bond vectors it ensures that no bond crossings can occur

during a Monte Carlo step, i.e. it preserves the topological state of the

conformation. The algorithm conducts only local moves in order to

resemble the dynamics of real polymers [28]. Using a coarse-grained

lattice approach is reasonable as we are only interested in features of

looping chromatin independent on local structure. Coarse-graining

allows us to abstract from the complex environment and highlight

the main driving forces and effects of chromatin folding.

We perform simulations of isolated chromosomes with coarse-

grained lengths ranging from N~128 to N~512. Chromosomes

are initially equilibrated as self-avoiding walks using local moves of

a monomer to one of the nearest neighbors on the lattice. After the

initial equilibration steps, the Monte Carlo algorithm allows for

the formation of loops. After each Monte Carlo trial move, one

monomer is selected at random. It is then checked whether

another monomer on the same chain is in the neighborhood, i.e.

co-localized. The co-localization condition is fulfilled whenever the

distance between the monomers is less than 3 lattice units. If the

two monomers are co-localized, then a loop is formed with a

certain probability p. If the loop i<j is created, it is assigned a

certain lifetime tloop which is drawn from a Poissonian distribution

P(tloop; t)~
t

tloop

tloop!
e{t ð3Þ

where the parameter t determines the average lifetime of the

loops. The lifetime of the loops is chosen here to be

t1~0:01tint t2~1tint t3~100tint ð4Þ

Figure 6. Segregation of chromosomes with loops. A. This panel shows the monomer density distribution projected onto the line connecting
the centers of mass of both chromosomes. A distance of 0 indicates the point halfway between the centers of mass, which are in this example
separated by 1 mm. Results are shown for chain lengths of N~256 using the mapping of Figure 2. B. The degree of intermingling is measured by the
overlap area of the monomer distributions from both chromosomes in panel A. The overlap fraction is given for two different center-of-mass
separations: (i) 1 mm and (ii) 2 mm. Results show that the overlap fraction, i.e. the degree of intermingling decreases strongly with the average number
of loops in the system.
doi:10.1371/journal.pone.0014428.g006

Repulsion of Chromosomes
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As it has been shown [17] that the chosen lifetime t does not

strongly influence equilibrium properties, parts of the analysis

presented here are restricted to the choice t~t1~0:01tint.

Since subsequent conformations in the Markov chain created by

the Monte Carlo algorithm are highly correlated, one has to

perform a certain number of Monte Carlo steps to obtain two

independent conformations. For each set of parameters (chain

length N, looping probability p and lifetime of loops t) we

determine the autocorrelation function C(t) (see e.g. Ref. [30]) of

the squared radius of gyration R2
g(t). The integrated autocorre-

lation time tint is then determined using the windowing method

introduced by Sokal [31].

Calculation of the effective potential
To analyze the strength of the repulsive interactions, the

potential acting between the chromosomes’ centers of mass is

determined using the method introduced by Dautenhahn and Hall

[24]. In short, two equilibrated isolated chromosome conforma-

tions are selected and shifted such that the distance between their

centers of mass equals r. If the excluded volume condition is

satisfied, i.e. no lattice site is occupied by more than one bond, the

conformation is accepted, otherwise it is rejected. The fraction of

accepted conformations Naccepted to the total number K of trial

conformations defines the effective potential at distance r,

Ueff (r)~{kBT ln
Naccepted

K

From the set of accepted two-chain conformations, the confor-

mational properties can be calculated.

Supporting Information

Figure S1 The effective potential Ueff(r) between the centers of

mass of looping polymers. Simulations have been conducted using

the DL model for different chain lengths N and different looping

probabilities p. The average number of loops per monomer

resulting from the parameter p is indicated by the color bar. Data

is scaled with the radius of gyration of isolated polymer chains to

allow comparison between different parameters sets. The effective

potential increases strongly with looping probability p, but is

basically independent of the level of coarse-graining (i.e., the chain

length) used.

Found at: doi:10.1371/journal.pone.0014428.s001 (0.14 MB

PDF)

Figure S2 Mapping of coarse-grained polymers to physical

parameters. Shown are results for a chain length of N = 256 using

different looping probabilities. Experimental data shows results

from FISH measurements on human chromosomes 1 and 11. The

chain is mapped to chromosome 11 by assuming one bead to

comprise a 400-kb stretch of chromatin. Consistent with the

experimental data, this is set equal to 480nm. Different symbols

indicate different looping lifetimes (Black triangle: t= 0.01\tint;

Diamond: t= tint; Bullet: t= 100\tint, see Materials and Meth-

ods). (A) This panel shows the mean square distance in relation to

genomic separation of model and experimental data to assess the

quality of the mapping. (B) The potential of mean force between

two model chromosomes in relation to physical distance r between

the centers of mass. The effective potential strongly increases with

increasing looping number at a separation of about 2–3 mm, i.e.,

the size range of the assumed chromosome territories.

Found at: doi:10.1371/journal.pone.0014428.s002 (0.15 MB

PDF)
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