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Abstract

Background: An accurate understanding of interactions among genes plays a major role in developing therapeutic
intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of
prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental
design. Under such a strategy, the experiments with high priority are suggested to be conducted first.

Results: The authors have already proposed an optimal experimental design method based upon the objective for
modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method
utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost
resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum
expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention
for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive
when the size of the network is large. In this paper, we propose a computationally efficient experimental design
method. This method incorporates a network reduction scheme by introducing a novel cost function that takes
into account the disruption in the ranking of potential experiments. We then estimate the approximate expected
remaining MOCU at a lower computational cost using the reduced networks.

Conclusions: Simulation results based on synthetic and real gene regulatory networks show that the proposed
approximate method has close performance to that of the optimal method but at lower computational cost. The
proposed approximate method also outperforms the random selection policy significantly. A MATLAB software
implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/
supplementary/roozbeh15a/.

Background
A key area in the field of translational genomics is to
derive therapeutic intervention that can beneficially alter
cell dynamics in such a way as to avoid cancerous
phenotypes. The first step to derive therapeutic inter-
ventions is to understand the regulatory relationships
among genes. The interactions among genes are studied
in the context of gene regulatory networks (GRNs).
GRN models often possess high uncertainty. This inher-
ent uncertainty might be due to many factors such as

the complex nature of biological phenomena, lack of
enough training data, etc. Uncertainty in GRNs can
affect the accuracy and performance of the therapeutic
interventions. Therefore, biologists aim at reducing
uncertainty of GRN model via conducting additional
biological experiments. However, there are many limita-
tions for carrying out experiments. Biological experi-
ments are usually expensive and time consuming as they
need to be done on living organisms. On the other
hand, the resources are limited which prevents research-
ers from conducting all experiments they need for iden-
tification of GRN. Thus, it is prudent to prioritize
potential experiments based on the information they
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provide and then conduct the most informative. This
process is called experimental design.
Boolean networks (BNs) have been extensively used

for the study of GRNs. They have been shown to be
effective in capturing the multivariate relationships
among entities within a cell. BNs also facilitate the use
of the well-studied Markov decision theory for deriving
beneficial interventions. To date, intervention methods
for BNs have been categorized in two different groups:
structural interventions, and dynamical interventions.
While structural interventions [1-4] permanently change
the behavior of a network via one-time change in the
underlying regulatory structure, the goal in dynamical
interventions [5-8] is to interfere with the signaling of
GRN through flipping or not flipping the expression
state of genes over time. The assumption behind most
of these intervention methods is that the network being
studied is perfectly known. Thus, presence of uncer-
tainty can degrade the performance of the intervention
methods.
From a translational perspective it is crucial to reduce

uncertainty pertinent to the objective, such as interven-
tion. Hence, uncertainty should be quantified in such a
way that the objective for modeling GRN is taken into
account. Mean objective cost of uncertainty (MOCU)
[9] quantifies the uncertainty of model in terms of the
expected increased cost due to the presence of uncer-
tainty. An experimental design method based on
MOCU has been proposed in [10]. The experimental
design method in [10] evaluates the effect of each
potential experiment in reducing the model uncertainty,
which is measured in terms of MOCU, and suggests
that the experiment which results in the minimum
expected remaining MOCU should be conducted first.
The long-run performance of the experimental design
method in [10] is guaranteed to be optimal in terms of
reducing the error of interventions obtained after con-
ducting the chosen experiments.
Although, the method in [10] is optimal, it is computa-

tionally expensive. Because our final objective is to
improve the performance of the therapeutic interven-
tions, method in [10] involves finding optimal interven-
tions for all networks which are compatible with the
prior knowledge. Finding optimal interventions is com-
putationally expensive whose complexity grows exponen-
tially with the number of genes in network. Therefore,
the computational complexity of finding optimal experi-
ment can be prohibitively high for large networks. Thus,
it is inevitable to construct a smaller network via deleting
some genes from the original large size network and then
estimate the optimal interventions using the resulting
reduced network. Generally the goal in network reduc-
tion methods is to produce networks of smaller size
while the dynamical behavior of the original network is

preserved. There have been some efforts for network
reduction to reduce the complexity of designing interven-
tions [11-13].
In this paper, we propose a novel cost function for the

gene deletion process which takes into account the dis-
ruption in the order of potential experiments when they
are ranked according to the experimental design method
in [10]. Since experiments are ranked based upon the
expected remaining MOCU or the MOCU that is
expected to remain after performing the experiment, we
desire that the network reduction step has a low effect
on the expected remaining MOCU corresponding to the
potential experiments. When the gene (or genes) sug-
gested by the cost function are deleted from network,
the optimal (and robust) interventions are estimated
using the reduced networks and then they are used for
calculating expected remaining MOCU for prioritizing
potential experiments. We show the effectiveness of our
proposed cost effective experimental design method
through simulations on synthetic and real networks.
The simulation results verify that our method can per-
form comparable to the optimal experimental design
method in [10] with much lower computations.
MOCU-based optimal experimental design is very

general and does not even require a Markovian network
[10]. As we will see, finding the best gene to delete is
also very general; however, once the genes are deleted,
the regulatory structure of the original network must be
mapped onto a corresponding regulatory structure on
the reduced network, an optimal intervention must be
found on the reduced network, and that intervention
must be induced to the full network. Reduction and
inducement are nontrivial and depend on the nature of
the regulatory structure. The problem has been
addressed for Boolean networks in [13], to which we
refer, and a theoretical analysis is given in [11], where it
is noted that the methodology applies to probabilistic
Boolean networks (PBNs) [14] by applying the reduction
to each of constituent BN of the PBN. Moreover,
whereas we will restrict intervention to rank-one pertur-
bations [2], which provide a one-time alteration of the
regulatory logic, the reduction-inducement paradigm
applies to other forms of intervention [11,13].

Methods
Boolean networks
Gene regulatory network models are increasingly used
as a tool to study interactions among genes [15,16].
Boolean networks (BNs) [17] and probabilistic Boolean
networks (PBNs) [14] are widely used models for GRNs
that have been shown to be effective in capturing these
interactions [18-24]. A Boolean network on n genes is
defined by a pair (V, F). V = {X1, X2,..., Xn} is a set of
binary variables that represent the expression state of
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genes with Xi = 0 and Xi = 1 corresponding to gene i
being OFF and ON, respectively. The ON state means
that a gene is translated into a protein whereas the OFF
state means that the gene is not translated. It has been
shown that significant biological information can be
extracted from binarized gene expression data [25,26].
The gene values at each time step are updated according
to the list of Boolean functions F = { f1, f2,..., fn} with
Xi = fi(Xi1, Xi2,..., Xiki) where Xi1, Xi2,..., Xiki are ki predic-
tor genes for Xi. The state of the BN at time t is the
vector X(t) = (X1(t), X2(t),..., Xn(t)), which is called gene
activity profile (GAP). A BN with n genes possesses 2n

different states. The state of a BN for the next time
instant t + 1 is updated as X(t + 1) = F(X(t)). In a Boo-
lean network with perturbation (BNp), there is a pertur-
bation probability of each gene flipping its value
independently from other genes. Thus, in the presence
of perturbation X(t+1) = F(X(t)) with probability (1 − p)
n and with probability 1 − (1 − p)n at least one gene
flips its value. The sequence of states of a BNp over
time can be viewed as the states of a Markov chain with

transition probability matrix (TPM) P =
[
pij

]2n

i,j=1 where

pij is the probability that state i transitions into state j.
Positive perturbation probability p > 0 makes the Mar-
kov chain ergodic and irreducible, thereby possessing a
unique steady-state distribution (SSD) πT = πT P, where
πi is the steady-state probability of state i and T is the
transpose operator. More details on how to compute
TPM can be found in [2]. The long-run behavior of a
BNp is characterized by its SSD, which is indicative of
phenotypes. From a translational perspective, the states
of a BNp can be partitioned into the set of desirable
states D containing those states associated with healthy
phenotypes and undesirable states U containing states
associated with cancerous phenotypes. The goal of ther-
apeutic interventions is to drive the network away from
undesirable states and consequently reduce the steady-
state probability mass of undesirable states, πU = ∑Uπi.
Without loss of generality regarding the experimental
design analysis, in this paper we will assume that the
undesirable states are determined by a single gene,
called the “target gene” with the aim of intervention
being to flip an undesirable value of the target gene to a
desirable value. Two intervention approaches are com-
monly considered: (1) Structural interventions change
the long-run behavior of the network by altering its
underlying rule-based structure [1-4], and (2) dynamical
interventions affect the dynamical evolution of the net-
work by manipulating the expression states of some
“control genes” [5-8].
This paper considers optimal structural intervention

via rank-one function perturbations [2]. In a rankone
function perturbation intervention, the relation between

the TPM before intervention, P, and after intervention,

P̃, is P̃ = P + abT where a and b are two arbitrary vectors
satisfying bT e = 0, where e is an all unity column
vector. Single-gene perturbation, a special case of rank-
one function perturbation, changes the regulatory func-
tion F for only one state. If originally F(u) = w, then the
single-gene perturbation (u, v) means that for the regu-
latory function F̃after intervention, F̃(u) = v and
F̃(i) = F(i) for i ≠ u. For this intervention, all entries of
P and P̃ would be identical except for two entries.
p̃uw = puw − (1 − p)n and p̃uv = puv + (1 − p)n. The steady-
state probability of state i after intervention (u, v) is
found using the following equation:

π̃i(u, v) = πi +
(1 − p)nπu(zvi − zwi)

1 − (1 − p)n(zvu − zwu)
, (1)

where π̃i(u, v) is the steady-state probability mass of
state i after single-gene perturbation (u, v) and zvi, zwi,
zvu, and zwu belong to the fundamental matrix Z =
[I−P+eπT]−1 where I is the n × n identity matrix. The
undesirable steady state probability mass after single-gene
function perturbation (u, v) is π̃U(u, v) =

∑
i∈U π̃i(u, v). To

find the optimal intervention, one needs to search among
all possible 2n × 2n state pairs (u, v).

Optimal experimental design
This section briefly reviews the optimal experimental
design method in [10]. Suppose θ1, θ2,..., θk are k uncer-
tain parameters in the network model. They compose
an uncertainty vector θ = (θ1, θ2,..., θk ), the set of all
such vectors being denoted Θ. The collection of all net-
works corresponding to θ ∈ Θ constitute an uncertainty
class, denoted by Θ. Let Ψ be a class of potential inter-
ventions (in this paper, Ψ consisting of all single-gene
function perturbations). Let ξθ (ψ) denote the error of
applying intervention ψ ∈ Ψ to the network with uncer-
tainty vector θ ∈ Θ. In case of intervention, ξθ (ψ) can
(and will) be the steady-state probability mass of unde-
sirable states after intervention, denoted π̃U,θ (�). For a
network with uncertainty vector θ, the optimal interven-
tion ψ(θ) is defined by

ψ(θ) = arg min
ψ∈�

ξθ (ψ). (2)

In the presence of uncertainty, we desire an interven-
tion that performs optimally on average across the
uncertainty class. The intrinsic Bayesian robust (IBR)
intervention ψIBR(�) is defined by

ψIBR(�) = arg min
ψ∈�

Eθ

[
ξθ (ψ)

]
, (3)

where Eθ [•] denotes an expectation relative to the prob-
ability density function f (θ) governing the uncertainty
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class Θ. Note that althoughψIBR(�) has the best expected
performance across the uncertainty class, it is not guaran-
teed to have the best performance for each network inside
the uncertainty class. The mean objective cost of uncer-
tainty (MOCU) relative to Θ and Ψ is defined by [9]

M�(�) = Eθ

[
ξθ (ψIBR(�)) − ξθ (θ))

]
, (4)

the expression inside the expectation being called the
objective cost of uncertainty. MOCU is the expected dif-
ference between the performance of the robust interven-
tion and the optimal intervention for each network
inside Θ. MOCU is an uncertainty quantification
scheme which measures uncertainty by taking into
account the objective of operator design, herein, net-
work intervention. MOCU can effectively capture the
amount of uncertainty and tries to quantify the uncer-
tainty based on a specific objective (such as interven-
tion) to gauge how much it is going to affect the
objective [9].
MOCU has been used to design experiments that can

maximally enhance the performance of the interventions
[10]. Suppose that there are k potential experiments E1,
E2,..., Ek corresponding to k uncertain parameters θ1,
θ2,..., θk . It is assumed that experiment Ei, which might
be a complex experiment consisting of several sub-
experiments, fully identifies θi. The goal of experimental
design is to find out which experiment Ei, 1 ≤ i ≤ k
should be conducted first, or how to rank potential
experiments effectively. Although we do not know the
actual outcome of an experiment before conducting it,
we do know the possible outcomes. Suppose the out-
come of experiment Ei is j. We define the remaining
MOCU, given θi = j, as

Mψ(�i,φ) = E
θ

(i)
φ

[
ξ
θ

(i)
φ

(ψIBR(�i,φ)) − ξ
θ

(i)
φ

(ψ(θ (i)
φ ))

]
,

where θ
(i)
φ , called the conditional uncertainty vector,

has ith parameter equal to φ and other parameters are
still random, and Θi,j is the remaining uncertainty class
when θi = j, i.e., Θi,j = {θ|θ ∈ Θ, θi = j}. The expecta-
tion is taken over the conditional density function

f (θ (i)
φ ) = f (θ |θi = φ) that governs the remaining uncer-

tainty class Θi,j. ψIBR(�i,φ) is the robust intervention for
Θi,j and is found in a similar way as (3).
Corresponding to each experiment Ei, we define the

expected remaining MOCU after conducting that
experiment as:

M�(�, i)

= Eθi

[
M�(�i,θ i

)
]

= Eθi

[
E

θ
(i)
θi

[
ξ
θ

(i)
θi

( � υ IBR(�i,θ i
)) − ξ

θ
(i)
θi

( � υ(θ (i)
θi

))
]]

,

(6)

where Eθi[•] is the expectation relative to the marginal
density function f(θi) of uncertain parameter θi. Then
we find the minimum expected remaining MOCU:

i∗ = arg min
i=1,2,...,k

M�(�, i).

Ei* is the optimal experiment to be conducted first
[10].

Approximate experimental design method
According to (5) and (6), calculating the expected
remaining MOCU requires finding the optimal interven-
tion ψ(θ) for each θ ∈ Θ and the robust intervention
ψIBR(�i,φ) for each possible remaining uncertainty class.
The complexity of finding optimal interventions grows
exponentially with network size n. For finding an opti-
mal single-gene structural intervention, we need to
search among all possible 2n × 2n state pairs and calcu-
late the new steady-state probability π̃i for each state i
in the set of undesirable states U. Thus, the complexity
is O(23n). This heavy computational cost motivates us to
reduce the size of network in order to reduce the com-
plexity of finding optimal interventions, thereby redu-
cing the complexity of the experimental design.
Assuming that gene g is deleted from a network with

regulatory function F, we define a regulatory function
Fred for the reduced network. Doing this for each net-
work with uncertainty vector θ in Θ produces the
uncertainty class, Θg, of reduced networks via the map-
ping θ ® θg.
To approximate the optimal intervention for a net-

work in Θ, we use the corresponding network in Θg,
find the optimal intervention for the reduced network
ψ(θg), and then induce the intervention to the original
network in Θ. This approximate optimal intervention
denoted by ψ(θ;g) is called the induced optimal interven-
tion. Also, to find the induced robust intervention,

ψ ind
IBR(�; g), for Θ, first we find the robust intervention,

ψIBR(�g), for Θg using (3) and then find the induced
robust intervention ψ ind

IBR(�; g) from ψIBR(�g).
As illustrated in Figure 1, in the proposed approxi-

mate experimental design method, we find the best gene
g* for deletion via a novel cost function c(g) and then
obtain the induced optimal and robust interventions
needed for the MOCU calculations in the experimental
design step by inducing interventions from uncertainty
class of reduced networks Θg* to the original uncertainty
class Θ.
We now aim to find a gene whose deletion results in

minimum degradation in the experimental design pro-
cess. Keeping in mind that the experimental design is
based on the expected remaining MOCU for potential
experiments, let Mg

�(�i,θi ) be the remaining MOCU
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when uncertain parameter i has value θi and we delete
gene g,

Mg
�(�i,θi ) = E

θ
(i)
θi

[
ξ
θ

(i)
θi

(ψ ind
IBR(�i,θ i;g)) − ξ

θ
(i)
θi

(ψ(θ (i)
θi

))
]

. (8)

We define the cost of deleting gene g by

c(g) =
k∑

i=1
|Mg

�(�, i) − M�(�, i)|, (9)

where

Mg
�(�, i) = Eθi

[
Mg

�(�i,θ i
)
]

. (10)

The gene g* minimizing the cost function in (9) is
selected for deletion:

g∗ = arg min
g∈1,2,...,n

c(g). (11)

The intuition behind this cost function is that our
choice of optimal experiment is based upon the
expected remaining MOCU corresponding to each
experiment. Therefore, we desire that the network
reduction step has minimum effect on these quantities.
Deleting genes increases the inherent uncertainty of the
network because the induced robust intervention cannot
perform better than the original robust intervention on
average. We want to reduce this increase in the uncer-
tainty of model caused by network reduction. Since

E
θ

(i)
θi

[
ξ
θ

(i)
θi

(ψ ind
IBR(�i,θ i;g))

]
≥ E

θ
(i)
θi

[
ξ
θ

(i)
θi

(ψIBR(�i,θ i
))

]
, (12)

Mg
�(�, i) ≥ M�(�, i). Hence, we can omit the abso-

lute value operator in (9) to obtain

g∗ = arg min
g

k∑
i=1

(Mg
�(�, i) − M�(�, i))

= arg min
g

k∑
i=1

Mg
�(�, i),

(13)

where the second equality follows from the fact that
MΨ(θ,i) does not depend on the gene being deleted.

Expanding Mg
�(�, i) yields

g∗ = arg min
g

{
k∑

i=1

Eθi

[
E

θ
(i)
θi

[
ξ
θ

(i)
θi

(ψ ind
IBR(�i,θ i

; g)) − ξ
θ

(i)
θi

(ψ(θ (i)
θi

))
]]}

= arg min
g

k∑
i=1

Eθi

[
E

θ
(i)
θi

[
ξ
θ

(i)
θi

(ψ ind
IBR(�i,θ i

; g))
]]

.

(14)

The minimization problem in (14) is equivalent to the
one in (11). Based on the cost function in (14), for each
gene g, we find the expected performance of the induced
robust intervention ψ ind

IBR(�i,θ i
; g) across the remaining

uncertainty class Θi,θi, then take the expectation of this
average performance relative to the marginal distribu-
tion of the uncertain parameter θi, and finally sum all
values found for the k uncertain parameters.
Algorithm 1 Approximate experimental design
1: input: Θ, Ψ, f (θ), θ = (θ1,..., θk)
2: output: Ei*, i

* ∈ {1,..., k}: the estimated optimal
experiment to be conducted first
3: for g = 1 : n do
4: cost(g) ← 0
5: for i = 1 : k do
6: for all θi do
7: build remaining uncertainty class of reduced

networks �
g
i,θi

8: compute conditional density function f (θ (i)
θi

)
9: find induced robust intervention � ind

IBR(�i,θi ; g)

10: hg(θi) ← E
θ

(i)
θi

[
ξ
θ

(i)
θi

(ψ ind
IBR(�i,θ i

; g))
]

11: cost(g) ← cost(g) + Eθi[hg (θi)]

12: g∗ ← arg min
g=1,2,...,n

cost(g)

13: for i = 1 : k do
14: for all θi do
15: build remaining uncertainty class �i,θi

16: compute conditional density function f (θ (i)
θi

)
17: compute Mg∗

� (�i,θi ) via equation (5) using

� ind
IBR(�i,θi;g

∗) and � ind(θ (i)
θi

; g∗)
18: Mg∗

� (�, i) ← Eθi

[
Mg∗

� (�i,θi )
]

19: i∗ ← arg min
i=1,2,...,k

Mg∗
� (�, i)

20: return i*

Figure 1 An illustrative view of the general approach of the proposed approximate experimental design method.
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After removing gene g*, we find the expected remain-
ing MOCU corresponding to each experiment using

equation (6) by replacing ψ(θ (i)
θi

) with ψ ind(θ (i)
θi

; g∗) and

ψIBR (�i,θ i
) with ψ ind

IBR
(�i,θ i

; g∗). An abstract form of the

proposed experimental design method has been given in
Algorithm 1. A step by step toy example illustrating
Algorithm 1 is also provided in the Additional file 1.
This procedure for estimating optimal experiment via

deleting one gene can be easily extended to the deletion
of two or more genes. For example, to delete two genes,
we need to evaluate the cost function in (14) for all pos-
sible two-gene combinations and delete the pair whose
cost is minimum.
Reduction mappings and induced interventions
If we want to delete gene g from network, we need to
find the regulatory function Fred for the reduced net-
work. Following [13], every two states of the original
network that differ only in the value of gene g can be
collapsed to find the transition rule of the reduced net-

work. Let sg
1 and sg

0 be two states with value 1 and 0 for

gene g, respectively, and identical values for other genes.

State sg can be obtained from either sg
1 or sg

0 by remov-

ing the value of gene g. If for the original network, the
transition rules for these two states are F(sg

1) = p and

F(sg
0) = q, then for the reduced network, Fred(sg) = pg if

πsg
1

> πsg
0 and otherwise Fred(sg) = qg, where pg and qg are

found from states p and q via removing the value of
gene g, respectively. Following this procedure, we find
the regulatory function Fred for all states in the reduced
network.
Algorithm 2 Finding induced optimal interventions
1: input: ψ(θ g) = (û, v̂),
2: output: ψ ind(θ ; g) = (uind

g , vind
g )

3: ũg
1 ← place 1 in the gth coordinate of ũ

4: ũg
0 ← place 0 in the gth coordinate of ũ

5: if πũg
1

≥ πũg
0 then

6: uind
g ← ũg

1
7: else
8: uind

g ← ũg
0

9: ˜ g
1 ← place 1 in the gth coordinate of ˆ

10: ˜ g
0 ← place 0 in the gth coordinate of ˆ

11: if πv̂g
1
≥ πv̂g

0 then
12: υ ind

g ← υ̃
g
1

13: else
14: υ ind

g ← υ̃
g
0

As illustrated in Algorithm 2, we find the induced
optimal intervention from the optimal intervention for
the reduced network. Suppose that the optimal interven-
tion for the reduced network θg is ψ(θ g) = (û, v̂). The
two corresponding states to û in the original network
are ũg

1 and ũg
0, which are found by placing 1 and 0 in the

gth coordinate of û, respectively. Similarly, there are two
states ṽg

1 and ṽg
0 in the original network corresponding to

state υ̂ The induced optimal intervention for the original

network is ψ ind(θ ; g) = (uind
g , vind

g ), where uind
g is the one

among ũg
1 and ũg

0 having larger steady-state probability

in the original network and vind
g is the one among ṽg

0 and

υ̃
g
0 with larger steady-state probability in the original
network.
Analogous to the induced optimal intervention, the

induced robust intervention ψ ind
IBR

(�; g) is found from the

robust intervention ψ
IBR

(�g) according to Algorithm 3;
however, here we choose the two states possessing lar-
ger expected steady-state probability across Θ using the
expected SSD, π(Θ) = Eθ [π(θ)], where π(θ) is the SSD
of the network with uncertainty vector θ in uncertainty
class Θ. We can use this procedure to find the induced
robust intervention for each remaining uncertainty class
Θi,j.
Algorithm 3 Finding induced robust interventions
1: input: ψIBR(�g) = (û, υ̂), π(θ)∀θ ∈ �

2: output: ψ ind
IBR(�; g) = (uind

g , υ ind
g )

3: π ← Eθ [π(θ)]
4: ũg

1 ← placing 1 in the gth coordinate of û
5: ũg

0 ← placing 0 in the gth coordinate of û
6: if πũg

1
≥ πũg

0 then
7: uind

g ← ũg
1

8: else
9: uind

g ← ũg
0

10: ṽg
1 ← placing 1 in the gth coordinate of υ̂

11: ṽg
0 ← placing 0 in the gth coordinate of υ̂

12: if πυ̃
g
1

≥ πυ̃
g
0 then

13: υ ind
g ← υ̃

g
1

14: else
15: υ ind

g ← υ̃
g
0

Preliminary gene elimination via the coefficient of
determination
To further reduce the computational cost of the experi-
mental design, we utilize the coefficient of determina-
tion (CoD) [27] to eliminate some genes from the
optimization problem without evaluating the cost func-
tion and then search among the remaining genes for
choosing genes to be removed using the cost function
(14). The CoD measures the strength of relationship
between a target gene Y and a vector X of predictor
genes as the difference between the error of the best
estimation of gene Y in the absence of other genes and
in the presence of genes in X. The CoD is between 0
and 1 and a larger CoD means a stronger connection
between the target and predictor genes, in our case the
target gene being the aim of intervention. We use the
intuition that genes possessing large CoD in relation to
the target gene are not likely among the genes that
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should be deleted because they have strong connection
to the target gene. The CoD of the target gene Y, rela-
tive to a vector X = (X1,..., Xm) of predictor genes is
defined by

CoDX(Y) =
εY − εX,Y

εY
(15)

where εY is the error of the best estimation of Y with-
out any predictors,

εY = min[P(Y = 0), P(Y = 1)], (16)

and εX,Y is the error of the optimal estimation of Y
upon observing X. By assuming that the value of the
binary vector X of predictor genes changes from 1 to
2m, εX,Y can be calculated by

εX,Y =
2m∑
j=1

P(X = j) min[P(Y = 0|X = j), P(Y = 1|X = j)].
(17)

If CoDX(Y ; θ) denotes the CoD of Y relative to X in a
network with uncertainty vector θ, then given the uncer-
tainty class Θ the expected CoD of Y relative to X is
given by

CoDX(Y; �) = Eθ [CoDX(Y; θ)]. (18)

Genes possessing strong connection with the target
gene in terms of CoDX(Y ; Θ) are not considered for
deletion. When excluding genes using the CoD it is
important to recognize the possibility of intrinsic multi-
variate prediction [28], where a set of genes may have
low individual CoDs with respect to the target gene but
may have significant CoD when used together for multi-
variate prediction. First we calculate CoDX(Y ; Θ) for all
3-gene combinations and pick the one with largest CoD.
We compute CoD for 3-gene predictors because it has
been shown in [17] that the average connectivity of the
model cannot be too high providing that the model is
not chaotic and it is commonplace to assume 3-gene
predictivity in BNs. If we want to exclude less than 3
genes from the search space, then among the 3-gene
combination with the largest expected CoD, we choose
those genes that have larger expected individual CoD. If
we want to exclude more than 3 genes, then in addition
to the three genes in the combination with the largest
CoD, we choose those genes in the 3-gene combination
with the second largest CoD that have larger expected
individual CoD and do not belong to the first 3-gene
combination. We repeat this process until we reach the
desired number of genes to exclude.
If there are initially n genes and we want to delete 3

genes, then we need to evaluate cost function (14) for
all C(n, 3) 3-gene combinations, where C(n, k) denotes

the number of combinations of n objects taken k at a
time; however, if we exclude s genes from search space
then the number of evaluations of (14) decreases to
C(n − s, 3).
Having performed the CoD-based exclusion process

and excluded s genes, X′
1, X′

2, ..., X′
s, we search for the

genes to be deleted using the cost function in (14)
among the remaining genes, {X1, X2,..., Xn} −
{X′

1, X′
2, ..., X′

s}.

Computational complexity analysis
The first step for the optimal experimental design in
[10] is estimating optimal interventions ψ(θ) for each
network in Θ. We also need to compute the robust
intervention ψIBR(�i,θi ) for each possible remaining
uncertainty class Θi,θi. Most of the computations are
devoted to this step. Finding robust interventions does
not require additional calculations because we can store
the error of each intervention ψ ∈ � for the network θ
when finding optimal interventions and later use these
errors to find robust interventions. Therefore, complex-
ity analysis requires computing the complexity of esti-
mating the optimal interventions.
With n genes that take on binary expression levels, the

network has 2n states. Finding an optimal single-gene
function intervention requires searching among all pos-
sible 22n state pairs (u, v) according to (1). Assuming
without loss of generality that states 2n−1 to 2n are
undesirable, (1) must be evaluated 2n−1 times for each
state pair. Thus, the complexity of finding the optimal
intervention ψ(θ) is O(23n). If there are k uncertain para-
meters and each can take on l different values, then the
uncertainty class Θ contains lk different networks for
which an optimal intervention must be found. Hence,
the complexity of the optimal experimental design
method in [10] is O(lk × 23n).
To analyze the complexity of the proposed approximate

method, suppose p genes are to be deleted. Then the cost
function in (14) must be evaluated for all C(n − 1, p)
p-gene combinations, n − 1 instead of n because the target
gene cannot be deleted. The complexity of finding an
induced optimal intervention for each network after delet-
ing p genes isO(23(n−p)). Therefore, the complexity of the
approximate method is O(C(n − 1, p) × lk × 23n−3p). For
large n, it is possible that for small p the complexity of the
approximate method can exceed that of the original
method; however, by deleting more genes the complexity
of the approximate method drops sharply because by
deleting each additional gene the complexity of estimating
the optimal intervention decreases by eight-fold.
By incorporating the CoD-based gene exclusion step

in the approximation method and excluding s genes we
are able to decrease the number of p-gene combinations
from C(n − 1, p) to C(n − s − 1, p), which reduces the
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complexity of the approximate method to O(C(n−s− 1,p)
× lk × 23n−3p). Define the computational gain l by

λ =
lk × 23n

C(n − s − 1, p) × lk × 23n−3p
=

23p

C(n − s − 1, p)
, (19)

which is the ratio of the complexity of the optimal
method in [10] to the complexity of the approximate
method when deleting p genes using the cost function
in (14) and excluding s genes from the search space
using the CoD-based gene exclusion step.
Figure 2 shows the computational gain l when delet-

ing p genes and excluding s genes from the search
space for network size of 10 and 15. Note that for large
n, if we delete very few genes the complexity might
exceed that of method in [10] but as more genes are
deleted the complexity of the approximate method
becomes much smaller. For example when n = 15,
searching over all genes and deleting 1, 2, and 3 genes,
l = 0.5741, l = 0.7, and l = 1.4, respectively, but for
p > 3, l grows rapidly, reaching l ≈ 600 when deleting
7 genes. Greater computational gain results from
excluding some genes using the CoD-based step. For
instance, excluding 3 genes from the search space
results in l = 1.16 and l ≈ 6350 when deleting 2 and 7
genes, respectively.
Table 1 shows the approximate processing times for

performing the optimal and proposed experimental
design methods for networks of different size with 4
unknown regulations. Simulations have been run on a
machine with 8 GB of RAM and Intel(R) Core(TM) i7
CPU, 3.1 GHz. The run times grow exponentially as the
number of genes increases. This table clearly suggests
that the optimal experimental design method can be
applicable to networks of at most n = 11 genes but
using the proposed approximate experimental design
method we can still increase the number of genes in
the network. For example, for n = 12 genes, optimal

experimental design takes around 17 hours to complete
but when we use the proposed method and delete 5
genes it takes around 8 minutes without gene exclusion
and 3 minutes with 2-gene exclusion - a significant sav-
ing in processing time. Note that the ratios between
times in Table 1 do not exactly follow the computa-
tional gain in (19), especially when the size of the
reduced network is very small, because the times in the
table also include the time required for calculating the
SSD, TPM, and fundamental matrices for original net-
works in Θ.

Results and discussion
This section evaluates the performance of the approximate
method for both synthetic and real GRNs where the
majority vote rule is used as the transition rule. Majority
vote rule [29-33] is popular in systems biology, especially
when we are interested in the overall dynamics of the net-
work. For example, majority vote is used in [32] to model
the dynamics of yeast cell-cycle network. For the majority
vote rule, a regulatory matrix R is defined component-

wise by Rij =

⎧⎨
⎩

1 gene j activates gene i
−1 gene j suppresses gene i
0 no relation from gene j to gene i

..

Figure 2 Computational gain (l) of using the proposed approximate method. Different number of genes are deleted and s genes are
excluded from the search space. (a) Networks with n = 10 genes. (b) Networks with n = 15 genes.

Table 1. Comparing the approximate processing times (in
seconds) of the optimal and approximate experimental
design methods when p genes are deleted and s genes
are excluded for networks of size n with 4 uncertain
regulations

n = 10 n = 11 n = 12

468 4846 60169

Proposed s = 0 s = 2 s = 0 s = 2 s = 0 s = 2

p = 3 81.71 39.64 830 407 9795 5026

p = 4 23.61 12.98 215 93 2355 1057

p = 5 8.68 8.36 58 35 450 181
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According to this rule, gene i takes value 1 if the
number of genes that are ON and activate it is more
than the number of genes that are ON and suppress it:

Xi(t + 1) = fi(X(t))

=

⎧⎨
⎩

1 if
∑

j RijXj(t) > 0
0 if

∑
j RijXj(t) < 0

Xi(t) if
∑

j RijXj(t) = 0
.

Uncertainty is introduced by assuming that the exact
values of some of the nonzero components of R are
unknown; that is, for some regulations it is not known
whether they are activating or suppressive. Each uncer-
tain parameter θi can be −1 or 1. Conducting experiment
Ei determines the value of parameter θi. Let μ = (μ1,..., μk)
denote the true value for the uncertainty vector θ =
(θ1,θ2,..., θk). Conducting experiment Ei results in a
remaining uncertainty class �i,μi consisting of networks
with θi = μi and other uncertain parameters being −1 or
1. For �i,μi we can determine a robust intervention
ψIBR(�i,μi ). We evaluate the effectiveness of experiment
Ei in terms of the error of the resulting robust interven-
tion obtained after experiment on the underlying true
network, ξμ(ψIBR(�i,μi )). We define the gain of conduct-
ing the chosen experiment Ei* over a random experiment
Ernd (chosen randomly without using any experimental
design) by

ρ = ξμ(ψIBR(�rnd,μrnd )) − ξμ(ψIBR(�i∗,μi∗)). (20)

If r > 0, then the chosen experiment outperforms the
random experiment; if r < 0, then the random experi-
ment outperforms the chosen experiment; and if r = 0,
then they perform the same.

Simulation results based on the synthetic BNps
For the performance evaluation based on synthetic
BNps, we generated 1000 networks randomly and chose
50 different sets of k regulations in each to be unknown
- 50000 simulations in total. We assigned 3 random pre-
dictor genes to each gene where each one can be ran-
domly activating or suppressive. The gene perturbation
probability was set to 0.001. Without loss of generality,
we assume that states with up-regulated X1 are undesir-
able. We removed the regulatory type of those regula-
tions that have been assumed to be uncertain and
retained other regulatory information of the network.
We assume that all uncertain parameters are indepen-
dent from each other and have uniform marginal distri-
bution. The analysis can be easily extended to other
distributions. Because X1 is the target gene, it was
excluded from the reduction process. Hence, we look
for the best p-gene set to be deleted among {X2,..., Xn}.
Figure 3 shows the average gain r for networks with

n = 7 genes and k = 2, 3, 4, 5 uncertain regulations. For
each k, we delete 1, 2, and 3 genes. Given the deletion

Figure 3 Evaluating the effectiveness of the proposed cost function for 7-gene networks with k uncertain regulations. The average gain
of conducting the chosen experiments by the proposed approximate method with respect to the random experiments when deleting different
genes is shown. (a) Deleting one gene. (b) Deleting two genes. (c) Deleting three genes.
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of p genes, to evaluate the effectiveness of the proposed
cost function in (14), we rank all p-gene combinations
based on this cost function and compare the perfor-
mance of the proposed approximate method when
deleting each of these sets. For example in Figure 3(a),
there are 6 different choices for a single gene to be
deleted or in Figure 3(b) there are C(6, 2) = 15 different
selections for two genes to be deleted. In all subfigures
in 3, the average gain when the order of the deleted set
is 0 corresponds to optimal experimental design [10].
This figure shows that for different number of uncertain
regulations and different number of deleted genes, delet-
ing those sets that correspond to a lower cost function
results in larger average r. Denoting average r by ρ̄, for
k = 5, where ρ̄ = 0.0411 for the optimal method, if we
delete the gene with minimum cost, then ρ̄ = 0.0408,
but if we delete the gene with maximum cost, then
ρ̄ = 0.0302. When deleting two genes, corresponding to
the best pair of genes (corresponding to the minimum
cost) ρ̄ = 0.0395 but for the pair corresponding to the
largest cost (15th set) ρ̄ = 0.0248. When deleting three
genes, for the best set of deleted genes ρ̄ = 0.0378 and
for the worst set ρ̄ = 0.0219.
Figure 4 provides the box plots for 7-gene networks

possessing 5 uncertain regulations when 1, 2, and 3
genes are deleted. The box extends from the first quar-
tile (25th percentile) to the third quartile (75th

percentile) of the data. The lines extending vertically
from the box are called “whiskers”. Herein we set whis-
ker length to the interquartile range (distance between
the first and third quartiles). The red line in the box
represents the median. Note that in the given box plots
median and first quartile might not be distinguishable as
they are very close to each other but in fact they have
different values. The number on the x-axis is the rank-
ing of the set of deleted genes, running from the mini-
mum cost of deletion on the left to the maximum cost
of deletion on the right. For optimal experimental
design the first quartile, median and third quartile are
−1.57 × 10−5, 5.38 × 10−5, and 0.66172, respectively. For
approximate experimental design, as we delete gene(s)
whose corresponding cost function is larger, the first
quartile, median, and third quartile decrease. For exam-
ple, in case of deleting 3 genes, if we delete the set of
genes corresponding to the minimum cost of deletion
the first quartile, median, and third quartile are −3.53 ×
10−5, 1.51 × 10−6, and 0.04816, respectively but if we
delete the set of genes with the maximum of deletion
cost the first quartile, median, and third quartile would
be −0.00055, 0, and 0.022948 respectively. These box
plots indicate the promising performance of the pro-
posed cost function because the boxes cover larger
values when we delete set of genes possessing smaller
cost function.

Figure 4 The box plot of the gain of conducting the chosen experiment by the proposed approximate method with respect to the
random experiment when deleting different genes. 7-gene networks with 5 uncertain regulations are considered. (a) Deleting one gene. (b)
Deleting two genes. (c) Deleting three genes.
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Figure 5 shows performance evaluation for 8-gene net-
works with k = 4 uncertain regulations, deleting up to
four genes from the original networks. Again, this figure
verifies the promising performance of the proposed cost
function. It can be observed that when gene sets posses-
sing larger cost are deleted, the resulting average gain
decreases. For example, when we delete 4 genes
ρ̄ = 0.0390 for the optimal method and ρ̄ for the
approximate method decreases from 0.0352 to 0.0175 if
we delete the 35th set of 4 genes according to the cost
function instead of the first set. We also provide the box
plots for the performance of the approximate method
for 8-gene networks in the Additional file 1.
To consider larger networks, we generated 100 ran-

dom 13-gene networks and in each chose one set of 4
regulations to be unknown. We used the approximate
experimental design method and deleted 5 genes. For
this size of network it is not possible to perform the
optimal experimental design method or compute origi-
nal optimal and robust interventions to calculate the
gain of the chosen experiment over a randomly selected
experiment. Hence, we use the induced robust interven-
tion obtained by deleting the set of 5 genes having the
minimum cost of deletion as in (14). Therefore, here
gain r is defined as

ρ = ξμ(ψ ind
IBR(�rnd,μrnd ); g∗) − ξμ(ψ ind

IBR(�i∗,μi∗); g∗)

where g* is the set of 5 genes with minimum cost of
deletion. For this set of simulations, the average gain ρ̄

is 0.0192. Note that here the average gain might not be
very accurate owing to the small number of simulations.
The approximate run time for each simulation was
around 5700 seconds.
We now evaluate the proportion of times that we

obtain the optimal experiment found by [10] when using
the approximate method. Figure 6 shows the percentage
of finding the optimal experiment when using the
approximate method and deleting different number of
genes from 7-gene networks. In this figure, there are 6,
15, and 20 values for deleting 1, 2, or 3 genes, respec-
tively. We observe that deleting the set of genes corre-
sponding to the minimum of the cost function yields the
highest likelihood of obtaining an optimal experiment,
which is what we would hope for from an efficient
approximate method. According to Figure 6, when we
delete the gene which attains the minimum cost, 90.72%
of the simulations yield an optimal experiment, whereas
this percentage is 55.73% when deleting the gene with
the largest value of the cost function. Similar behavior is
observed when deleting 2 or 3 genes. A salient reason
that the largest average gain of the approximate method
over random experiments is when we delete genes corre-
sponding to the minimum cost function is that it is more
likely to get an optimal experiment.

Figure 5 Evaluating the effectiveness of the proposed cost function for 8-gene networks with 4 uncertain regulations. The average gain
of conducting the chosen experiments by the proposed approximate method with respect to the random experiments is shown. (a) Deleting
one gene. (b) Deleting two genes. (c) Deleting three genes. (d) Deleting four genes.
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An issue that arises when evaluating experimental
design on synthetic networks, as opposed to real biolo-
gical networks, which typically manifest substantial
controllability on account of their need to maintain
functionality within changing contexts, a large portion
of randomly generated networks might not be control-
lable and therefore not be responsive to intervention.
Hence, intervention has negligible effect on their SSDs
and including them in the analysis masks the effect of
optimality. To address this issue, we define controll-
ability Δ as the percentage decrease of undesirable
probability mass after applying optimal intervention:

 =
πU − π̃U

πU
× 100%, (21)

where πU and π̃U are the undesirable probability
masses before and after applying optimal intervention to
the network, respectively. A larger Δ means that a net-
work is more controllable. Figure 7 considers the effect
of controllability on the performance of experimental
design when networks have n = 8 genes and k = 4
uncertain regulations. The figure shows the average gain
ρ̄ for the optimal method and the proposed approximate
method for networks possessing controllability greater
than a given threshold. We observe that ρ̄ increases
when networks are more controllable, regardless of the
number of genes deleted from network. Note that as
controllability increases, the difference between the per-
formance of different methods increases. For example,
for all networks the average gain for the optimal method
and the proposed method when deleting one, two, three,
and four genes is 0.0390, 0.0384, 0.0380, 0.0369, and
0.0352, respectively; but for networks with Δ ≥ 40% the

average gains are 0.0509, 0.0503, 0.0498, 0.0484, and
0.0463, respectively.
To evaluate the effectiveness of the CoD-based gene

exclusion algorithm, we compare the average gain of the
approximate method when excluding genes from the
search space using the CoD-based exclusion algorithm
against the average gain when excluding randomly
selected genes from the search space. Figure 8 shows
the average gain ρ̄ for networks with n = 7 genes and
k = 2, 3, 4, 5 uncertain regulations. For deleting p genes,
we exclude up to 6− p −1 genes from the search space
so that for the largest number of genes excluded, the
search space contains at least p + 1 genes. For example,
when deleting p = 1 gene, we exclude 1, 2, 3, and 4
genes; when deleting p = 2 genes we exclude 1, 2, and 3
genes; and so on. For each number of uncertain regula-
tions, we observe that the average gain when excluding
genes using the CoD-based algorithm is always larger
than random gene exclusion, regardless of the number
of deleted genes. For example, when k = 5, for deleting
one gene and excluding 1, 2, 3, and 4 genes randomly,
ρ̄ = 0.0407, 0.0404, 0.0401, and 0.0392 respectively
but using the CoD-based scheme and excluding the
same number of genes, ρ̄ = 0.0408, 0.0405, 0.0403,
and 0.0399 respectively. If we delete three genes
ρ̄ = 0.0378 without gene exclusion, and if we exclude 1
and 2 genes, then ρ̄ = 0.0364 and ρ̄ = 0.0344, respec-
tively, when we exclude genes randomly and ρ̄ = 0.0371
and ρ̄ = 0.0355, respectively, when we exclude genes
based on CoD. Note that when deleting more genes, the
difference between random exclusion and CoD-based
exclusion increases because as more genes are deleted,
exclusion has a larger impact on the number of candidate

Figure 7 Effect of controllability Δ on the performance of the
experimental design method. Optimal method in [10] and the
proposed approximate method when deleting p genes are
considered for networks with n = 8 genes and k = 4 uncertain
regulations.

Figure 6 Percentage of finding the same experiment as the
optimal method. Different p genes are deleted for 7-gene
networks possessing k = 4 uncertain regulations. Gene sets with
larger order have higher cost function.
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sets for evaluating the cost function. For example, when
deleting 1 gene, if we exclude one gene, then the number
of candidate sets decreases from 6 to 5, but when deleting
3 genes, if we exclude one gene, then the number of candi-
date sets decreases from C(6, 3) = 20 to C(5, 3) = 10.
In Figure 9, we also show the box plot for the gain of

conducting the chosen experiment if we delete 3 genes
and exclude genes from the search space either ran-
domly or via the proposed CoD-based method for 7

gene networks possessing 5 uncertain regulations. We
observe that the first quartile, median, and third quar-
tiles are higher when excluding genes using CoD. For
example, when randomly excluding 2 genes from the
search space, the first quartile, median, and third quar-
tile are −6.645 × 10−5, 3.3289 × 10−7, and 0.04274,
respectively; however, when excluding genes using CoD
they are −5.625 × 10−5, 6.044 × 10−7, and 0.043907,
respectively.
Figure 10 is similar to Figure 8 except that it is for 8-

gene networks with 4 uncertain regulations. The
approximate method is applied deleting 1, 2, 3, and 4
genes. For each number of deleted genes, average r is
computed for random and CoD-based exclusion.
Table 2 lists the percentage that the optimal experi-

ment is found using the approximate method when
deleting p genes and excluding s genes from the search
space randomly or according to the CoD-based algo-
rithm. Results are tabulated for 7-gene networks with
k =2, 3, 4, 5 uncertain regulations and 8-gene networks
with k = 4 uncertain regulations. Note that if we are
interested in deleting p genes, p + 1 genes should
remain in the search space after the gene exclusion step.
For example, for p = 2 we exclude up to s = 3 genes
and for p = 3 we exclude up to s = 2 genes from the
search space. We use N/A in the table for those pairs of
p and s which are not applicable. We observe that the
likelihood of obtaining the optimal experiment is larger
when we exclude genes according to the CoD-based

Figure 8 Performance evaluation of the CoD-based gene exclusion scheme for 7-gene networks. The average gain of the proposed
method over the random experiments when p genes are deleted and different number of genes are excluded from the search space is shown.
(a) k = 2 uncertain regulations. (b) k = 3 uncertain regulations. (c) k = 4 uncertain regulations. (d) k = 5 uncertain regulations.

Figure 9 The box plot of the gain with respect to the random
experiment when s genes are excluded randomly or using the
proposed CoD-based procedure. 7-gene networks with 5
uncertain regulations are considered.
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Figure 10 Performance evaluation of the CoD-based gene exclusion algorithm for 8-gene networks with k = 4 uncertain regulations.
The average gain of the proposed approximate experimental design with respect to the random experiments when p genes are deleted and
different number of genes are excluded from the search space is shown.

Table 2. Percentage of finding the same experiment as [10] using the proposed approximate method with gene
exclusion from the search space

n = 7, k = 2

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 92.59 92.59 87.72 87.72 82.90 82.90

s = 1 91.78 91.96 85.85 86.44 80.05 80.85

s = 2 90.23 91.07 83.38 84.77 75.97 77.96

s = 3 88.31 89.89 79.28 82.01 N/A N/A

s = 4 85.18 87.24 N/A N/A N/A N/A

n = 7, k = 3

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 90.84 90.84 84.19 84.19 77.87 77.87

s = 1 89.78 90.07 81.94 82.67 74.46 75.49

s = 2 88.19 89.08 78.67 80.42 69.56 71.58

s = 3 85.77 87.54 73.95 76.76 N/A N/A

s = 4 82.15 84.79 N/A N/A N/A N/A

n = 7, k = 4

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 90.72 90.72 83.56 83.56 76.17 76.17

s = 1 89.65 90.06 81.11 82.00 72.44 73.67

s = 2 87.95 89.08 77.71 79.58 67.10 69.80

s = 3 85.54 87.57 72.51 76.07 N/A N/A

s = 4 81.81 84.51 N/A N/A N/A N/A
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algorithm rather than excluding them randomly. A lar-
ger proportion of experiments found by the approximate
method via excluding genes based on CoD agree with
the optimal method in [10]. These tables demonstrate
the effectiveness of reducing the number of candidate
gene sets for the optimization problem by excluding
genes based on the CoD.
We have also evaluated the performance of the approxi-

mate experimental design method when a sequence of
experiments is conducted. Suppose there are k = 5 uncer-
tain regulations and we conduct five experiments to iden-
tify all unknown regulations. For each set of unknown
regulations, at each step we utilize the experimental design
to choose one of the possible experiments, conduct the
chosen experiment, and measure the performance (unde-
sirable probability mass after intervention) of the robust
intervention obtained after the experiment on the underly-
ing true network. Continuing, for the remaining uncertain
regulations we use the experimental design method and
repeat the previous procedure until there is no more
unknown regulation remaining in the network. We also
do sequential experiments randomly where at each step
we choose an experiment randomly, measure the perfor-
mance of its corresponding robust intervention, and again
choose one experiment randomly among the remaining
ones. The difference between the undesirable probability
mass after applying the robust interventions correspond-
ing to the randomly chosen experiment and the chosen
experiment through experimental design at each step is
the gain of conducting the chosen experiment at that step.
Figure 11 shows the average gain over random selection
for the optimal method and the approximate design

method deleting up to three genes for 7-gene networks
and up to four genes for 8-gene networks. The figure indi-
cates that the approximate design method has reliable per-
formance compared to the optimal method. Moreover,
similar to the optimal method, the average gain increases
sharply in the beginning for the approximate method.
This is very important in real applications owing to the
cost and time required for conducting experiments. Note
that when we conduct all five experiments the average
gain is zero because after five experiments the network is
fully known and we can exactly calculate the optimal
intervention regardless of the approach taken to choose
experiments.

Performance evaluation based on the colon cancer
pathways
In this section, we analyze the performance of the pro-
posed experimental design method on the colon cancer
pathways used in [34]. We focus on the pathways
formed by 11 genes extracted from the complete path-
way set, as used in [35]. These are shown in Figure 12:
STAT3, RAS, IL6, HGF, PIK3CA, EGF, TSC1/TSC2,
mTOR, SPRY4, PKC, and MEK 1/2. Normal and blunt
arrows represent activating and suppressive regulations,
respectively. We modeled the pathways as a BNp with
perturbation probability 0.001. Genes are named as they
have been introduced. For example, STAT3 is X1 and
MEK 1/2 is X11.
EGF, HGF, and IL6 are three stimulation factors that

carry the external signals generated by neighboring cells
to downstream genes and activate downstream path-
ways. Signal transducers and activators of transcription

Table 2. Percentage of finding the same experiment as [10] using the proposed approximate method with gene exclu-
sion from the search space (Continued)

n = 7, k = 5

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 91.28 91.28 83.71 83.71 76.46 76.46

s = 1 90.21 90.56 81.32 82.31 72.55 73.86

s = 2 88.60 89.63 78.17 79.96 67.09 69.72

s = 3 86.33 88.14 72.66 76.26 N/A N/A

s = 4 82.64 85.58 N/A N/A N/A N/A

n = 8, k = 4

p = 1 p = 2 p = 3 p = 4

Random CoD Random CoD Random CoD Random CoD

s = 0 92.43 92.43 86.98 86.98 80.90 80.90 74.97 74.97

s = 1 91.69 92.05 85.21 85.94 78.10 79.05 70.95 72.04

s = 2 90.59 91.40 82.53 84.13 74.53 76.29 65.81 67.94

s = 3 89.03 90.58 79.47 82.00 68.98 71.91 N/A N/A

s = 4 86.83 88.85 74.51 77.93 N/A N/A N/A N/A

s = 5 83.09 86.29 N/A N/A N/A N/A N/A N/A
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(STATs) constitute a family of transcription factors that
can be activated via extracellular signaling proteins such
as cytokins and growth factors. These play a major role
in regulating downstream processes such as cell growth,
survival, and apoptosis [36]. STAT3 is an oncogene
observed to be highly activated in many cancers, in par-
ticular, colon cancer [37,38]. Hence, STAT3 has been
recognized as a legitimate target for cancer therapy [39].
We considered states with up-regulated STAT3 (X1 = 1)
as undesirable states, so that the set of undesirables
states is U = {1024,..., 2047}. Before intervention the
probability mass of undesirable states πU is 0.5525. The
optimal intervention for this network is transitioning
state 11111110101 to state 01011001101; that is,
F̃(11111110101) = 01011001101 for the regulatory function
after intervention. The undesirable probability mass after
intervention π̃U is 0.3837.
To evaluate the proposed approximate method, we ran-

domly selected 100 different sets of k = 4 regulations and
assumed that they are uncertain, meaning that their regu-
latory information is unknown. If experiments are chosen
according to the optimal experimental design method in

[10], then ρ̄ = 0.0244. Table 3 compares the average gain
ρ̄ of the experiments chosen by the approximate method
when deleting p = 5 genes and excluding s genes from
the search space using the CoD-based algorithm. The
table shows that we can obtain meaningful gain when the
approximate experimental design method is used to
select the experiment to be conducted first.

Conclusion
We have proposed a computationally effective experimen-
tal design method for reducing uncertainty in gene regula-
tory networks. This method can effectively approximate
the optimal experimental design method in [10], which is
based on the mean objective cost of uncertainty (MOCU).
To reduce computational complexity, we use network
reduction to estimate the optimal and robust interventions
needed for finding an optimal experiment. We introduced
a novel cost function for gene deletion that takes into
account the effect of gene deletion on the ranking of
potential experiments. Because potential experiments are
ranked based on the MOCU in [10], the proposed cost
function is also based on the MOCU. Simulation results on
both synthetic and real networks show that while our pro-
posed method can greatly reduce computations, its perfor-
mance is comparable to the optimal method in [10] and
much better than random gene deletion. Greater computa-
tional reduction is achieved by excluding genes from the
search space based on their CoD with the target gene
whose expression the intervention is aimed at altering.
We have assumed a uniform distribution over the

uncertainty class. If one has relevant prior knowledge,
perhaps it can be used to construct a distribution reflect-
ing it. Care must be taken because concentrating the
mass of the distribution in the wrong place can lead to
poorer results. In Bayesian terminology, the distribution
on the uncertainty class is called a prior distribution.
Putting a non-uniform prior on Θ does not change the
reduction procedure introduced in the current paper;

Figure 11 Performance comparison based on a sequence of experiments. The average gain for the optimal method in [10] and the
proposed approximate method when deleting p genes are shown for k = 5 uncertain regulations. (a) Networks with n = 7 genes. (b) Networks
with n = 8 genes.

Figure 12 The regulatory relations among key genes involved
in the colon cancer pathways. Normal arrows represent activating
regulations and blunt arrows represent suppressive regulations.
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however, some calculations are altered by including the
weights. Prior construction is a difficult problem and has
been considered in the context of gene regulation, but
not in the context of network construction. Rather, path-
way knowledge has been used to construct prior distribu-
tions governing uncertainty classes of feature-label
distributions for optimal Bayesian classification [40,41].
Prior construction is particular to each application,
examples being gene/protein signaling pathways in dis-
crete phenotype classification [42] and model-based
RNA-seq classification [43]. Prior construction for uncer-
tainty classes of the kind considered in this paper consti-
tutes an important issue for future study - and not just in
relation to the specific problem considered herein.

Additional material

Additional file 1: Supplementary Materials. This is a file in PDF format
that contains an illustrative step by step example providing details about
the proposed experimental design method. This file also includes box
plots for the simulations on 8-gene networks.
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