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In silico analysis predicting effects 
of deleterious SNPs of human 
RASSF5 gene on its structure 
and functions
Md. Shahadat Hossain1,3, Arpita Singha Roy1 & Md. Sajedul Islam  2,3*

Ras association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, 
generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional 
differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as 
predict the structural changes associated with the mutants that hamper the normal protein–protein 
interactions. We adopted both sequence and structure based approaches to analyze the SNPs of 
RASSF5 protein. We also analyzed the putative post translational modification sites as well as the 
altered protein–protein interactions that encompass various cascades of signals. Out of all the SNPs 
obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP 
prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the 
protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization 
score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that 
P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R 
shows the most remarkable deviation. Protein–protein interaction analysis revealed that RASSF5 acts 
as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to 
disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the 
reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and 
therapeutic interventions.

Ras association domain-containing protein 5 (RASSF5) is the leading member of Ras effector super family protein 
that prevents tumor growth by facilitating G1/S arrest of cell cycle1–6. RASSF5 is a proapoptotic component of 
Ras and induces p53 mediated apoptosis4. RASSF5 is implicated in a range of cell reactions including apoptosis, 
senescence, cell cycle regulation, differentiation and cell proliferation5. Inactivation of RASSF5 is found to be 
associated in the oncogenesis, proliferation and weak diagnosis of human cancers5. In various tumor tissues, 
low RASSF5 expression has been discovered and can therefore be considered as a prospective biomarker for 
tumors. RASSF5, in a range of human cancers, is shown to play crucial functions and is identified as a putative 
tumor suppressor7.

The complete length of RASSF5 gene is 81 kb and it is located at the locus 1q32.1 that covers several isoforms 
resulting from alternative mRNA splicing and differential promoter usage, which may have different roles in 
oncogenesis3. NORE1A, with a molecular weight of around 47 kDa, is a bigger isoform of the RASSF5A gene 
that encodes a protein of 418 amino acids8. The RASSF5A protein structure includes an N-terminal proline-rich 
section containing prospective SH3-binding sites, and a nuclear localization signal, a cysteine-rich C1-type zinc 
finger (C1) domain, a Ras-association (RA) domain that interacts with GTP-bound H-Ras or several other Ras 
subfamily GTPases, and a Salvador-RASSF-Hippo9 domain that contains C-type carboxy-terminal tail (Fig. 1), 
which is essential for binding to pro-apoptotic kinases MST1/215 and interaction factors WW45/SAV110,11. 
While RASSF5 has a large degree of homology with other RASSF members, only the RASSF5A contains a single 
proline-rich motif (PPxY)4.
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Human genome shares about 99.9% identical DNA sequences globally and the rest 0.1% of the genome 
contains individual variations. This variation in the individual genome is resulted from random mutations12. 
Among them, the most common type of mutation is single nucleotide polymorphism (SNP), which is a single 
base substitution in the alleles13. SNPs occur throughout the genome at the rate of 1 in 1,000 base pairs and 
the most significant SNPs are found in the coding regions12. Till now, about 500,000 SNPs are enlisted in the 
coding regions13. Amongst them, there are mainly two categories of SNPs observed, which are: Synonymous 
and Non-synonymous (nsSNP) SNPs. Synonymous SNPs refer to the conditions where mutations in the DNA 
sequences do not alter the amino acid sequences, whereas, non-synonymous SNPs, especially Missense SNPs, 
are responsible for amino acid substitutions and protein variations in human14. Previous studies show that nsS-
NPs are responsible for around 50% of the mutations involved in various genetic diseases15,16 along with several 
autoimmune and inflammatory diseases17–19.

Deleterious or neutral impacts on protein structure or function can result from functional differences through 
SNPs20. Detrimental effects consist of damage to protein structures and gene regulation21. Moreover, alterations 
in the protein sequence may ultimately affect alteration of protein charge, geometry, hydrophobicity22, dynam-
ics, translation, and inter/intra protein interaction6,23,24 putting cells in danger25. This information confirms that 
nsSNPs, especially missense SNPs, are associated with various human diseases. Recent studies on the nsSNPs 
using computational approaches reveal the potential impact of mutation in understanding the molecular mecha-
nisms of various diseases26–28. Structural and functional analysis of nsSNPs may facilitate the development of 
personalized medicine based on genomic variation. The impact of nsSNPs on RASSF5 protein regarding disease 
pathogenesis is not yet well-understood. Thus, in the present study, we explored various bioinformatics tools and 
servers to find out the functional effects of nsSNPs of RASSF5 protein.

Results
SNP annotation.  We retrieved RASSF5 SNPs using NCBI dbSNP database that contained 37,426 SNPs in 
intronic region, 215 SNPs in 5′UTR region, 1,720 SNPs in 3′UTR region, and 757 SNPs in coding sequence. Out 
of the SNPs in coding sequence, 495 SNPs were missense (nsSNPs) and 236 SNPs were synonymous SNPs. For 
our current study, we only selected nsSNPs for further analyses as the change in codon results in different amino 
acids. Overview of the whole methodological approaches is summarized in a schematic diagram (Fig. 2).

Identification of deleterious nsSNPs.  We used six different in silico nsSNP prediction tools (SIFT, 
PANTHER, PolyPhen-2, SNPs&GO, PROVEAN, and PredictSNP) to find out the deleterious SNPs that can 
significantly alter the structure or function of RASSF5 protein. Out of 495 nsSNPs, a total of 25 were predicted 
to be deleterious SNPs in all computational algorithms (Table 1).

Identification of nsSNPs on the domains of RASSF5.  InterPro, a domain identification tool, predicts 
the domains and active sites of a protein through the functional analysis of protein families. It predicted three 
functional domains of RASSF5, which are Zinc finger domain (122–170), Ras-association domain (274–364), 

Figure 1.   Protein structure of RASSF5 (adapted and modified from Shuofeng et al. 201883).

Figure 2.   Schematic diagram summarizing the study.
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and SARAH domain (366–413) and demonstrated that 20 out of 25 nsSNPs are positioned on these domains 
(Figure S1).

Determination of protein structural stability.  To predict the changes in the stability of RASSF5 in 
terms of RI and free energy change values (DDG), we used I-Mutant tool that introduced point mutation in the 
RASSF5 protein. The outcome revealed that 17 out of 20 deleterious nsSNPs decreased stability (Table 2).

Evolutionary conservation analysis.  The evolutionary conservancy of amino acid residues of the native 
RASSF5 was determined by ConSurf web server. It identified structural and functional residues of the 20 high 
risk nsSNPs of RASSF5 protein using evolutionary conservation and solvent accessibility. We found that R277, 
K317, P350, P375, N379, and E388 are exposed and functional whereas, C154, S294, L306, A319, L335, R345, 
V367, F372, and S373 residues are buried and structural. All 15 of these residues are highly conserved (Table S1). 
Additionally, G328 is predicted to be moderately conserved and exposed whereas, C137, and F321 are conserved 
and buried (Fig. 3).

Structure analysis of wild type and mutant models.  We used Phyre2 homology modeling tool to 
produce the 3D structure of native and 20 mutants of RASSF5 protein. We selected 1rfh (113–171), 3ddc (205–
362), 4lgd (366–405) templates for zinc finger domain, Ras-binding domain and SARAH domain respectively 
using Phyre2. The 20 deleterious nsSNPs were individually replaced in the native sequence of the three templates 
and 3D models for all of the mutants were predicted.

Structural similarities between native and mutant models were investigated based on TM-score and RMSD 
scores using TM-align tool. The mutant models for the two nsSNPs found in zinc finger domain and seven nsS-
NPs found in SARAH domain showed high TM-score and low RMSD value in comparison with low TM-score 
and high RMSD value of the eleven nsSNPs found in Ras-binding domain (Table S2). As higher RMSD value 
indicates greater structural dissimilarity between wild type and mutant models, we considered the 11 nsSNPs 
found in the Ras-binding domain for further analyses. To substantiate the validity of this finding, we used 
I-TASSER for further structural analysis of these 11 nsSNPs in RASSF5 protein. Mutant models with lowest 
C-score were selected for superimposition over native structure.

Furthermore, 3D structures of the aforementioned 11 nsSNPs of RASSF5 protein were analyzed by SWISS 
MODEL to study protein solvation and torsion. The template used for the investigation of these nsSNPs was 
3ddc.1.B. The result showed that values for solvation and torsion for wild type structure were − 0.16 Å2 and − 1.03° 
(degree) respectively but the values deviated significantly for the mutant structures (Table S3).

Table 1.   High risk nsSNPs identified by six in silico programs.

SNP Id AA change SIFT Polyphen2 Panther SNPs&GO PROVEAN PredictSNP

rs1344063691 C137R Deleterious Damaging Damaging Disease Deleterious Deleterious

rs781984025 C154Y Deleterious Damaging Damaging Disease Deleterious Deleterious

rs199649479 G234S Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782389172 G238D Deleterious Damaging Damaging Disease Deleterious Deleterious

rs369854759 R247W Deleterious Damaging Damaging Disease Deleterious Deleterious

rs545894272 R248Q Deleterious Damaging Damaging Disease Deleterious Deleterious

rs539554161 S260F Deleterious Damaging Damaging Disease Deleterious Deleterious

rs4845112 R277W Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782500219 S294G Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782662751 L306H Deleterious Damaging Damaging Disease Deleterious Deleterious

rs200663011 K317R Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782205958 A319V Deleterious Damaging Damaging Disease Deleterious Deleterious

rs1054565713 F321L Deleterious Damaging Damaging Disease Deleterious Deleterious

rs144913020 G328R Deleterious Damaging Damaging Disease Deleterious Deleterious

rs746023356 L335P Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782213884 R345H Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782615062 R345C Deleterious Damaging Damaging Disease Deleterious Deleterious

rs1171545733 P350R Deleterious Damaging Damaging Disease Deleterious Deleterious

rs563800378 V367A Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782710434 F372L Deleterious Damaging Damaging Disease Deleterious Deleterious

rs374894198 S373C Deleterious Damaging Damaging Disease Deleterious Deleterious

rs150973687 P375R Deleterious Damaging Damaging Disease Deleterious Deleterious

rs368719396 N379T Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782097670 N379H Deleterious Damaging Damaging Disease Deleterious Deleterious

rs782502649 E388Q Deleterious Damaging Damaging Disease Deleterious Deleterious
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Structural effect of point mutation on human RASSF5 protein.  Project HOPE server revealed that 
the mutant residues of R277W and P350R with bigger sizes are more hydrophobic than the wild type residues 
and these variation in size and hydrophobicity can disrupt the H-bond interactions with the adjacent molecules. 
Moreover, P350 provides special backbone conformation but Arginine replacement may interrupt that forma-
tion (Fig. 4). In case of R345H and R345C mutants, disruption of both salt bridge and hydrogen bond were 
observed. Flexibility and rigidity of a protein structure is essential for exhibiting specific function. Here, the 
analysis showed that amino acid substitution in G328R can disrupt the flexibility whereas introducing Glycine 
in S294G can disturb the required rigidity of RASSF5 protein. Besides this, L306P, K317R, A319V, F321L, L335P 
mutants exposed different properties and hence may significantly affect the functional Ras associating domain 
(Table S4).

Missense3D tool presented that L335P variant introduced a buried Proline that provides constrained back-
bone conformation. Furthermore, R345H disrupted the side-chain and main-chain H-bond(s) formed by wild 
type buried Arginine residue and R345C substitution causes the enlargement of cavity volume by 98.064 Å3 
exceeding the cutoff value (Table S5). Structural changes along with energy state was also observed in the 11 
mutant models of RASSF5 protein obtained from Swiss PDB viewer mutation tool. The total energy of the wild 
type structure was found to be − 17,442.365 kJ/mol after energy minimization. Molecular simulation result 
showed that K317R (− 17,579.576 kJ/mol) significantly decreased total energy whereas, P350R (− 16,379.468 kJ/
mol) (Fig. 5), F321L (− 16,381.121 kJ/mol), and R277W (− 16,448.330 kJ/mol) were the top three substitutions 
which increased total energy after energy minimization (Table S6).

Molecular docking analysis.  Molecular docking studies represented the binding affinity of the mutated 
RASSF5 protein with H-Ras protein (Fig. 6). Out of 11 nsSNPs, four (4) mutants (P350R, A319V, F321L, and 
R277W) significantly reduce the binding affinity with H-Ras protein (Table 3). The binding affinity (kcal/mol) 
and bonding interaction patterns of these docked complexes were studied using UCSF Chimera software. P350R 
variant disclosed the most significant reduction in binding affinity with H-Ras protein. The wild type peptide 
sequence forms five (5) hydrogen bonds with binding affinity − 8.3 kcal/mol whereas the mutant forms three 
hydrogen bonds with the target protein and reduced the binding affinity to − 7.0 kcal/mol.

Prediction of post translational modification site.  The GPS-MSP 1.0 tool predicted R277 as meth-
ylation site in RASSF5 protein with 90% specificity. We used NetPhos 3.1 and GPS 3.0 servers to predict the 
phosphorylation sites (Fig. 7). Both tools predicted that wild type residues S294, S373 and mutant residues T379, 
Y154 would undergo phosphorylation (Table S7). Moreover, UbPred tool predicted a total of eight (8) Lysine 
residues for ubiquitinylation but none was present in our highly risk nsSNPs. For further analysis of the 20 del-
eterious nsSNPs on PTM process, ModPred server was used to detect the proteolytic cleavage, ADP ribosylation, 
disulfide linkage, O-linked glycosylation, amidation sites in RASSF5. It predicted PTM sites in both wild and 
mutant residues of C137R, S260F, K317R, and R345H (Table S8).

Table 2.   Effect of nsSNPs on protein stability predicted by I-MUTANT 2.0

Serial no. SNP ID AA substitution I-Mutant RI DDG-Free energy change value (kcal/mol)

1 rs1344063691 C137R Decrease 4 − 0.9

2 rs781984025 C154Y Decrease 3 0.82

3 rs4845112 R277W Decrease 6 − 0.83

4 rs782500219 S294G Decrease 7 − 1.6

5 rs782662751 L306H Decrease 9 − 2.43

6 rs200663011 K317R Increase 3 − 0.05

7 rs782205958 A319V Decrease 3 − 1.71

8 rs1054565713 F321L Decrease 8 − 2.56

9 rs144913020 G328R Decrease 7 − 1.36

10 rs746023356 L335P Decrease 5 − 1.46

11 rs782213884 R345H Decrease 9 − 1.37

12 rs782615062 R345C Decrease 6 − 1.14

13 rs1171545733 P350R Decrease 7 − 1.59

14 rs563800378 V367A Decrease 9 − 0.34

15 rs782710434 F372L Decrease 6 − 1.37

16 rs374894198 S373C Increase 0 − 0.89

17 rs150973687 P375R Decrease 7 − 0.72

18 rs368719396 N379T Increase 0 − 0.53

19 rs782097670 N379H Decrease 7 − 1.8

20 rs782502649 E388Q Decrease 1 0.06
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Protein interacting network analysis.  Cytoscape (v3.7.2) was used to build up the protein interaction 
network of RASSF5 protein and it predicted that RASSF5 protein is functionally associated with 18 proteins 
among which, HRAS, KRAS, NRAS, RRAS, RALGDS, RAP1A, RRAS2, RAP1B, MRAS, RAP1GAP, MLLT4, 
RAPGEF4 form one cluster and RASSF1, STK3, STK4, SAV1, MOB1A, MOB1B form another cluster. RASSF5 
protein acts as a hub of these two clusters of proteins (Fig. 8). If any change occurs in this RASSF5 protein, it 
may affect the overall protein network interaction among all these 18 proteins. Cytoscape also detected degree, 

Figure 3.   Evolutionary conservancy of RASSF5 produced by Consurf.
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average shortest path length, betweenness centrality, closeness centrality, neighborhood connectivity of all 18 
proteins interacting with RASSF5 protein (Table S9, S10).

Discussion
Ras association domain-containing protein 5 (RASSF5), through their interaction with active GTP-bound Ras, 
acts as tumor suppressor in various human malignant tumors3,29–33. Inactivation of RASSF5 has been found in 
several human cancers, such as lung cancer5, colorectal cancer5, gastric cancer34 etc. Changes in the structural 
conformation of RASSF5 protein during bio-molecular interactions play a vital role in executing its function35 but 
nsSNPs may cause aberrant conformations, which may lead to inactivation of its tumor suppressive properties36,37. 
Therefore, it is necessary to find out the effects of deleterious nsSNPs of RASSF5 and thereby, their association 
with various diseases. Here, we attempted computational analysis to find out the most deleterious nsSNPs and 
their effects on the structure and function of RASSF5 protein.

Among 495 nsSNPs found in NCBI database, we finally screened out 25 significantly deleterious nsSNPs using 
six in silico SNP prediction tools: SIFT, PANTHER, Polyphen-2, SNP&GO, PROVEAN, and PredictSNP. These 
25 deleterious nsSNPs were selected on the basis of prediction scores generated by these six tools. We further 
used InterPro tool to determine the location of these nsSNPs on different domains of RASSF5. It revealed 20 
nsSNPs in three different domains of the protein, where two nsSNPs were positioned in the Zinc finger domain 
that interacts with Ras association (RA) domain38, eleven (11) nsSNPs were located in the RA domain3, which 
serves as the binding site for active GTP-bound Ras, and the rest seven (7) nsSNPs were present in the SARAH 
domain that is crucial for cell apoptosis39.

Protein stability is essential for the structural and functional activity of a protein40. By using the I-Mutant tool, 
we obtained the deleterious nsSNPs that may affect the stability of the RASSF5 protein. Therefore, we focused on 
the consequences of the aforementioned 20 deleterious nsSNPs on the RASSF5 protein stability. Among these 20 
nsSNPs, 17 nsSNPs decreased the stability of the protein. Protein stability governs the conformational structure 
of the protein and thus determines the function. Any alteration in protein stability may cause misfolding, deg-
radation or aberrant conglomeration of proteins41. Moreover, evolutionary conservancy in the protein sequence 
is vital to determine whether a mutation has any negative effect on the host. Using the ConSurf web server, we 
found that highly deleterious nsSNPs having high conservation scores were located in the highly conserved 
regions, therefore, increases the risk of tumorigenesis by inactivating RASSF5.

The investigation continues with the analysis of the structural consequence of these deleterious nsSNPs using 
Phyre2 homology modeling tool. Using the three templates, we generated the wild type and mutant protein 
models for three domains of RASSF5 protein. Moreover, we used Tm Align tool that predicted RMSD and TM 
score of these wildtype and mutant protein models, which were generated by Phyre2. Higher RMSD and lower 
TM score signify higher deviation of mutant protein structure from native ones25. On the basis of these criteria, 
we finally selected 11 deleterious nsSNPs positioned in the RA domain. Remaining 9 nsSNPs show lower RMSD 
and higher TM score that indicates less deviation of mutant protein structure from wild type protein. I-TASSER 
provided more accurate structural and functional information of wild type and mutant protein models with 
C-score and Swiss Model provided the QMEN, solvation, torsion scores for our targeted 11 nsSNPs.

Project Hope server predicted that these 11 highly risky nsSNPs negatively affect the structure of the protein 
among which, 7 nsSNPs were structural and 4 nsSNPs were functional residues according to Consurf. Further-
more, Missense 3D tool predicted the consequences of the 7 structural nsSNPs and showed that 5 nsSNPs delete-
riously affect the structural conformation of RASSF5 protein. Later on, we analyzed the energy minimization state 
of these 7 structural and 4 functional residues using Swiss PDB viewer, as the lowest energy conformation of the 

Figure 4.   Structural alteration of the wild type residue P350 by the mutant R350 illustrated by Project Hope. 
The wild type residue is presented as green and the mutant residue is shown in red.
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modeled protein is closer to the experimental structure42. The energy minimization score of wild type RASSF5 
protein (− 17,442.365 kJ/mol) is significantly deviated in P350R (− 16,379.468 kJ/mol), F321L (− 16,381.121 kJ/
mol), and R277W (− 16,448.330 kJ/mol). It was found that P350 forms three H-bonds with L347 (3.21 Å), E353 
(3.26 Å), and V354 (2.92 Å) whereas, the mutant R350 clashes with V354. Besides this, variation in the energy 
minimization score compared to the wild type protein was observed in A319V, L335P, R345C, and R345H 
mutants as well.

Docking analysis confirmed that out of the 11 nsSNPs, four variants (P350R, A319V, F321L, and R277) 
significantly reduced the binding affinity with H-Ras protein compared to the wild type residues. The most 
remarkable change in binding affinity was observed in P350R where noticeable loss of H-bond interactions 
was found in the binding pocket. In the docking complex, Glu353 formed H-bonds with G60, G13, and G15 
with distances of 2.477 Å, 2.516 Å, 2.495 Å, and 2.163 Å respectively and L347 formed H-bond with E31 with 
a distance of 2.163 Å. These H-bonds were disrupted when Arginine replaced Proline at 350th position, which 
altered the binding affinity. In short, molecular docking analysis revealed that the aforementioned variants can 
significantly affect the functional activity of RASSF5 protein.

GPS-MSP 1.0 predicted methylation site for R277 whereas, the variant W277 did not undergo methylation. 
Wild type residues (S294, S373) and mutant residues (T379, Y154) were the phosphorylation sites predicted by 
both NetPhos 3.1 and GPS 3.0 tools.

The protein interaction network of RASSF5 was determined based on degree, average shortest path length, 
betweenness centrality and closeness centrality using the Cytoscape tool. With the shortest path length as well 

Figure 5.   Structural Effect of P350R on the native structure of RASSF5 presented by Swiss PDB Viewer. (a) 
P350 forms three H-bonds with T347 (3.21 Å), E353 (3.26 Å), and V354 (2.92 Å), which are indicated by green 
discontinuous lines. (b) R350 forms a clash with V354 (1.53 Å) presented by pink discontinuous line along with 
the three H-bonds.
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as higher closeness and betweenness centrality, the result exhibited strong network interaction of RASSF5 with 
HRAS, KRAS, NRAS, RRAS, RALGDS, involved in the regulation of the signal transduction pathways, essen-
tial for cell growth, differentiation, migration, and apoptosis43. RAS bound with RASSF5, activate MST1/235,44 
to form STK3/MST2 and STK4/MST1 complexes in the hippo signaling pathway that plays a crucial role in 
tumor suppression by limiting proliferation and stimulating apoptosis where SAV1, MOB1A/B act as effector 

Figure 6.   Molecular docking analysis of wild type and mutant peptide of P350R with H-Ras protein. (a) Native 
peptide sequence (P350). (b) Superimposed image of native peptide sequence and H-Ras protein. E353 forms 
two H-bonds with Gly60, one H-bond with G13 and another with G15. L347 forms one H-bond with E31. (c) 
Mutant peptide sequence (R350). (d) Superimposed image of mutant peptide sequence with H-Ras protein. 
Three new H-bonds are formed with the H-Ras protein where G353 forms two H-bonds with T35, and D33. 
Moreover, D351 forms single H-bond with K147.

Table 3.   Docking results of RASSF5 with H-Ras.

Residue Binding affinity (kcal/mol) Residue Binding affinity (kcal/mol)

R277 − 7.3 W277 − 6.9

S294 − 7 G294 − 7.3

L306 − 5.9 H306 − 6.9

K317 − 7.7 R317 − 7.9

A319 − 7.6 V319 − 7

F321 − 7 L321 − 6.5

G328 − 7 R328 − 6.7

L335 − 6.7 P335 − 6.9

R345 − 6.9 H345 − 6.8

R345 − 6.9 C345 − 7.3

P350 − 8.3 R350 − 7
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molecules45,46. Due to non-synonymous mutations in RASSF5, the signaling cascade might be disrupted, which 
in turn, may lead to tumorigenesis.

Ras association domain (RA) is required for the interaction between Ras family members and all Ras effec-
tors. RASSF5 forms complex with active Ras through the RA domain, which thereby, activates MST1/232,39. 
Activation of MST1/2 facilitates degradation of YAP1, whose over expression causes cancer35. If any deleterious 
mutation happens to occur in this RA domain, the overall tumor suppressive activity of RASSF5 will be signifi-
cantly reduced. No such experimental study was documented till date for the protein RASSF5. So, this study will 
provide a substantial framework for the identification of functional SNPs.

Methods
Retrieving nsSNPs.  From the National Center for Biotechnology Information (NCBI) dbSNP database 
(https​://www.ncbi.nlm.nih.gov/proje​cts/SNP), we retrieved the information of SNPs (SNP ID, protein accession 
number, location, residue alteration, and worldwide minor allele frequency (MAF)47. We filtered all the 495 
nsSNPs for screening.

Identifying the most deleterious SNPs.  We recruited six distinct bioinformatics tools namely, SIFT 
(Sorting Intolerant From Tolerant)48,49 (https​://sift.jcvi.org/www/SIFT_seq_submi​t2.html), PANTHER (Protein 

Figure 7.   Post translational modification (methylation and phosphorylation) sites predicted by GPS-MSP 1.0, 
NetPhos 3.1 and GPS 3.0 (using IBS software).

Figure 8.   Protein interaction network of RASSF5 protein.

https://www.ncbi.nlm.nih.gov/projects/SNP
https://sift.jcvi.org/www/SIFT_seq_submit2.html
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Analysis Through Evolutionary Relationship)50 (https​://www.panth​erdb.org/tools​), PolyPhen-2 (Polymorphism 
Phenotyping v2)51 (https​://genet​ics.bwh.harva​rd.edu/pph2/), and SNPs&GO52 (https​://snps.biofo​ld.org/snps-
and-go/snps-and-go.html), PROVEAN (Protein Variation Effect Analyzer)53 (https​://prove​an.jcvi.org/index​
.php), and PredictSNP54 (https​://losch​midt.chemi​.muni.cz/predi​ctsnp​) to predict functional effects of the nsS-
NPs collected from dbSNP database. This ensured the accuracy and stringency of the results and we considered 
those SNPs as high-risk, which were anticipated as deleterious by all the six programs.

SIFT server uses sequence homology to interpret the effect of amino acid substitution to identify the tolerated 
and deleterious SNPs. Substitution of amino acid at a particular position with a probability < 0.05 is considered 
as deleterious and intolerant, whereas, probability ≥ 0.05 is predicted as tolerant29. PANTHER program classi-
fies the proteins on the basis of evolutionary relationship, molecular functions and their interactions with other 
proteins. It analyzes substitution based on position specific evolutionary conservation scores, which is calculated 
from alignment of various proteins that are evolutionarily related50. PolyPhen-2 predicts the functional effect 
of amino acid substitutions on the protein structure and functions based on sequence based characterization51. 
SNPs&GO server estimates the human disease related mutations based on support vector machines (SVM)52. 
PROVEAN, a web server that uses sequence homology to predict the functional effect of an amino acid substitu-
tion. The cutoff value of PROVEAN is set at -2.5. Substitutions of amino acid that exceed the cut off value were 
considered as deleterious. PredictSNP tool is a consensus SNP classifier, developed by exploiting six prediction 
programs (MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP) to predict disease related mutations.

Identification of nsSNPs on the domains of RASSF5.  To identify the location of nsSNPs on the 
conserved domains of RASSF5 we used InterPro9 (https​://www.ebi.ac.uk/inter​pro/) tool, which can recognize 
motifs, and domains of a protein and thereby identify the functional characterization of a protein by using the 
database consisting of protein families, domains and functional sites55.

Analyzing the effect of the nsSNPs on protein stability.  While engineering a protein, it is important 
to observe the extent to which a mutation affects the structure and stability of the protein. Thus, to serve this 
purpose, we used I-Mutant 2.056 (https​://foldi​ng.biofo​ld.org/i-mutan​t/i-mutan​t2.0.html), which is a web server 
based on a support vector machine that predicts the stability of a protein after being mutated. This program uti-
lizes the ProTherm-derived dataset, which is the largest database of experimental data on protein mutations57. 
We submitted the input data of 20 nsSNPs of RASSF5 in FASTA format.

Analyzing protein evolutionary conservation.  To identify the evolutionary conservation of the amino 
acids in the protein sequence we employed ConSurf58 (https​://consu​rf.tau.ac.il) that performs its function by 
analyzing the phylogenetic relationships between homologous sequences59,60. We considered those nsSNPs of 
RASSF5 that were found to be conserved for further analyses.

Prediction of structural effect of nsSNPs on human RASSF5 protein.  To understand the effect of 
the nsSNPs on the structure of the protein we recruited HOPE61 (https​://www3.cmbi.umcn.nl/hope). HOPE is a 
web-server that identifies the structural effects of the point mutations in a protein sequence. We used Q8WWW0 
(UniProt-Accession Code of RASSF5) and the 20 SNPs individually as the input.

Moreover, we also used Missense 3D62 (https​://www.sbg.bio.ic.ac.uk/~misse​nse3d​/) and Swiss-PDB 
Viewer63,64 (v4.1.0) (https​://spdbv​.vital​-it.ch/) to ensure the accuracy and stringency of our result. Missense 3D 
predicts the structural changes introduced by an amino acid substitution, whereas, Swiss-PDB Viewer is a stand-
alone software that can generate mutated models of the proteins for the corresponding amino acid substitutions. 
The “Mutation Tool” of Swiss-PDB Viewer allows browsing through a rotamer library of the mutated models 
and the “best” rotamer of the mutated model can be selected. Then we performed energy minimization for the 
three-dimensional structures of the mutated models by utilizing Nomad-Ref server, which utilizes Gromacs as 
the ideal force field for energy minimization purpose41.

Visualization of the effects of nsSNPs through 3D protein modeling.  To create the 3D models of 
the mutated protein we used three different online tools: SWISS-MODEL65 (https​://swiss​model​.expas​y.org/), 
Phyre266 (https​://www.sbg.bio.ic.ac.uk/phyre​2), and I-TASSER67–69 (https​://zhang​lab.ccmb.med.umich​.edu/I-
TASSE​R/). As there was no crystal structure of RASSF5 available, we utilized Phyre2 and I-TASSER to predict 
the 3D structure and function of this protein. I-TASSER, especially, constructs full-length protein structures by 
splicing continuous threading alignments and then generates the structure by utilizing replica exchanged Monte 
Carlo simulations67–69. We used Ras domain-containing family protein 5 (3ddc.1.B), Ras association (RalGDS/
AF-6) domain family 5 (1rfh.1.A), Ras association domain-containing protein 5 (4lgd.H) as models for this pur-
pose. The templates were selected based on the score of confidence and sequence identity, generated by Phyre2 
modeling tool (Table S11). These two factors are crucial in determining the probable accuracy of the model. 
Confidence denotes the probability of true homology based on the similarity between query sequence and tem-
plate. Percentage of sequence identity between query and template needs to be above 30–40% for high accuracy 
model. After that we used TM-align70 (https​://zhang​lab.ccmb.med.umich​.edu/TM-align​/) to compare between 
native and mutated protein structures, which calculates template modeling-score (TM-score) and root mean 
square deviation (RMSD) and then superposes the structures. TM-score provides the result in 0 and 1, where 
1 indicates perfect match between the structures. On the other hand, greater RMSD denotes greater variation 
between the native and the mutated structures. Finally, SWISS-MODEL was exploited, which is an automated 
protein structure homology-modeling server that uses the crystal structure of comparable protein as a model to 
assess native and mutant structures with various parameters.

https://www.pantherdb.org/tools
https://genetics.bwh.harvard.edu/pph2/
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Molecular docking.  To determine the effect of deleterious point mutations over the binding affinity of 
RASSF5, we performed molecular docking using the PyRx virtual screening tool71 (https​://pyrx.sourc​eforg​
e.io/). We prepared suitable target protein from crystal structure complex of RASSF5 with active Ras protein 
found in PDB using Discovery Studio72 (v4.5). The peptide sequences from mutated RASSF5 protein containing 
nsSNPs are used as the ligands for the docking procedure. The PDB format of these input ligands were converted 
into pdbqt format using Python Molecular Viewer with Autodock instruments, AutodockVina73,74. We maxi-
mized the grid box size along the axes X = 38.709, Y = 43.839, Z = 43.929 respectively. The docking result and 
the binding interaction between ligand and receptor proteins were visualized by UCSF Chimera 1.13rc tool75.

Prediction of different post‑translational modification sites.  Post-translation modifications 
(PTM) influence a range of significant biological procedures including cell signaling, metabolic pathways etc. 
Putative PTM sites in the human RASSF5 protein were identified by using the web-server ModPred76 (https​://
www.modpr​ed.org/). To predict potential sites which can accommodate phosphorylation, we utilized NetPhos 
3.177 (https​://www.cbs.dtu.dk/servi​ces/NetPh​os/) and GPS 5.078 (https​://gps.biocu​ckoo.cn/). NetPhos 3.1 server 
predicts the Serine, Threonine and Tyrosine phosphorylation sites in the protein by using ensembles of neural 
networks. Residues in the protein those have the score greater than 0.5 indicates phosphorylation. Similarly, 
higher score in the GPS 5.0 corresponds to higher probability of getting phosphorylated.

Apart from identifying the phosphorylation sites, we also predicted the potential sites for methylation by 
GPS-MSP 1.078 (https​://msp.biocu​ckoo.org/), ubiquitylation by UbPred16 (https​://www.ubpre​d.org) and BDM-
PUB (https​://www.bdmpu​b.biocu​ckoo.org), and SUMOylation by using the tool GPS-SUMO79,80 (https​://sumos​
p.biocu​ckoo.org/).

Prediction of molecular interaction networks.  Maintaining the interactions among proteins is very 
crucial to conserve homeostasis of the system. Cytoscape81 (v3.7.2) is a freely available Java based software 
program that was used to visualize molecular interaction networks of human RASSF5 protein with other associ-
ated proteins. Visualization of interacting networks of several types of a protein can be done only if the data is 
introduced in Simple Interaction Format (SIF) or GML format82.

Conclusion
RASSF5 protein plays a vital role as tumor suppressor. One of the functional domains of this protein is the Ras-
association (RA) domain that interacts with GTP-bound H-Ras to execute its tumor suppressive role. Thus, the 
structural conformation of this domain is very crucial for exerting its functional role. This in silico analysis of 
the functional SNPs of RASSF5 provides significant insight into the deleterious effects that the nsSNPs might 
cause to the protein. This is the first study that predicts the impacts of nsSNPs on the structure and function of 
RASSF5 protein. Our study reports that four nsSNPs (P350R, A319V, F321L, and R277W) in the RA domain 
reduce the binding affinity with H-Ras, where P350R shows the most significant reduction. As this protein has 
been found to be involved in various tumors, our findings will serve as important guide in the studies of potential 
diagnostic and therapeutic interventions which require experimental mutational validation and clinical trial-
based studies on a large population.

Data availability
All data generated or analyzed during this study are included in this article and its Supplementary Information 
files.
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