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Names for colors vary widely across languages, but color cat-
egories are remarkably consistent. Shared mechanisms of color
perception help explain consistent partitions of visible light into
discrete color vocabularies. But the mappings from colors to
words are not identical across languages, which may reflect com-
municative needs—how often speakers must refer to objects of
different color. Here we quantify the communicative needs of
colors in 130 different languages by developing an inference algo-
rithm for this problem. We find that communicative needs are
not uniform: Some regions of color space exhibit 30-fold greater
demand for communication than other regions. The regions of
greatest demand correlate with the colors of salient objects,
including ripe fruits in primate diets. Our analysis also reveals
a hidden diversity in the communicative needs of colors across
different languages, which is partly explained by differences
in geographic location and the local biogeography of linguis-
tic communities. Accounting for language-specific, nonuniform
communicative needs improves predictions for how a language
maps colors to words, and how these mappings vary across
languages. Our account closes an important gap in the com-
pression theory of color naming, while opening directions to
study cross-cultural variation in the need to communicate dif-
ferent colors and its impact on the cultural evolution of color
categories.

color categories | language evolution | cultural evolution |
collective behavior | information theory

What colors are “green” to an English speaker? Are they
the same as what a French speaker calls “vert?” Berlin

and Kay (1) and Kay et al. (2) studied this question on a world-
wide scale, surveying the color vocabularies of 130 linguistic
communities using a standardized set of color stimuli (Fig. 1A).
They found that color vocabularies of independent linguistic ori-
gin are remarkably consistent in how they partition color space
(1). In languages with two major color terms, one term typi-
cally describes white and warm colors (red/yellow), and the other
describes black and cool colors (green/blue). If a language has
three color terms, there is typically a term for white, a term
for red/yellow, and a term for black/green/blue. Languages with
yet larger color vocabularies remain largely predictable in how
they partition the space of perceivable colors into discrete terms
(3–6) (Fig. 1B).

What explains these shared patterns? To talk about color, a
language must represent the vast space of human perceivable
colors with a comparatively small set of color terms. The com-
pression theory of color naming (7–10) seeks to explain color
vocabularies as an efficient mapping from colors to terms, based
on the psychophysics of human color perception and the utility,
or need, to reference different colors.

Judgments of color appearance by humans with normal
color vision are remarkably stable despite genetic variabil-
ity in photoreceptor spectral sensitivities (11), age-dependent
variability in light filtering of the eye (12), and variation
in the proportion of different classes of retinal cone pho-
toreceptors (13, 14). The shared psychophysics of perception
therefore provides a common metric for color similarity, and
common limits on the gamut of perceivable colors, which

each contribute to shared patterns in color naming across
languages (1, 8, 15–22).

Recent work (23–25) has also found that color terms tend
to reflect how often speakers need to refer to different colors,
with a trend that emphasizes communication about warm hues
(red/yellow) over cool hues (blue/green). Shared communicative
needs of colors—for example, emphasizing the colors of great-
est importance to ancestral humans, such as those of ripe fruits
or dangerous animals (26)—also helps explain shared patterns in
color naming across languages.

However, estimating communicative needs is nontrivial. Sev-
eral approaches have been proposed: using the statistics of
surface reflectances in natural scenes (7), assuming a uniform
distribution over highly saturated colors (8), using a worldwide
average of capacity-achieving priors (10, 27), or extrapolating
from English word frequency corpus data (28). The aim of all
of these approaches is to approximate a single distribution of
needs common to all languages worldwide. But, unlike percep-
tion, needs may vary across cultures—and this variation might
explain why color vocabularies, though similar, are far from
identical across languages. A complete theory of color naming
must explain cross-language variation as well as shared trends.
However, to date, language-specific communicative needs are
unknown.

Here, we seek to close this gap in the compression the-
ory of color naming by providing a way to directly estimate
language-specific communicative needs of colors. Without mak-
ing strong assumptions about the origins or characteristics of
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Fig. 1. Cross-linguistic patterns in color naming and the rate−distortion hypothesis. B&K (1) and WCS (2) studied color vocabularies in 130 languages
around the world (see WCS). (A) The 330 color chips named by native speakers in the WCS study. Colors shown here are best approximations in Standard
RGB (sRGB) color space. (B) Empirical color vocabularies for two example languages in the WCS, each with six basic color terms. Color chips correspond to
A, but they have been colored according to the focal color of the term chosen by the majority of speakers surveyed (or by a mixture of the best choice
focal colors when there was more than one best choice). The languages Vagla and Martu-Wangka, although linguistically unrelated and separated by
a distance of nearly 14,000 km, have remarkably similar partitions of colors into basic color terms (2). (C) Schematic diagram of rate−distortion theory
applied to color naming. A speaker needs to refer to color x with probability p(x). The speaker uses a probabilistic rule p(x̂|x) to assign color terms, x̂, to
colors, x. This rule depends on the perceptual distortion d(~x||~̂x) introduced by substituting x̂ for the true color, x, where each term x̂ is associated with a
coordinate in color space. The choice of the term x̂ by the speaker reduces the listener’s uncertainty about the true color being referenced, measured, on
average, by the mutual information (IX; X̂). While any probabilistic mapping from colors to terms, p(x̂|x), is possible, some mappings are more efficient than
others. Rate−distortion theory provides optimal term mappings that allow a listener to glean as much information as possible, for a given level of tolerable
distortion and distribution of communicative needs p(x).

communicative needs, we derive an algorithm to solve a natu-
ral inverse problem; we infer the most conservative (maximum
entropy) distribution of communicative needs across colors con-
sistent with positions of focal colors in a language’s vocabulary—
for example, the “reddest red” and the “greenest green.” Our
approach explains focal colors as a natural part of the compres-
sion theory of color naming, and it allows us to test predictions
for term maps against independent empirical data that were not
used in fitting our model.

Applying our method, we infer the language-specific com-
municative needs for 130 languages around the world. We
confirm that shared trends in communicative needs across
languages are related to the colors of salient objects (23),
but we also find substantial variation in communicative needs
across languages. This variation is consequential: Accounting
for variation in needs substantially improves the prediction
of color terms in each language. Moreover, this variation in
needs across linguistic communities is meaningful: It corre-
lates with differences in geographic location and local bio-
geography. Our account supports an emerging, unified view
of the color word problem that integrates the shared psy-
chophysics of color perception with language-specific commu-
nicative needs for colors. We show that this view is consis-
tent with both shared patterns and observed variability across
languages.

Color Naming as a Compression Problem
In the compression model of color naming first introduced by
Yendrikhovskij (7) and with recent extensions by Zaslavsky et al.
(10), a color in the set of all perceivable colors, x ∈X , needs to
be communicated with some probability, p(x ), to a listener. The
speaker cannot be infinitely precise when referring to x , and must
instead use a term, x̂ , from their shared color vocabulary, X̂ .
Many colors in X map to the same term, so that a listener hearing
x̂ will not know exactly which color x was referenced. Color nam-
ing is then distilled to the following problem: How do we choose
the mapping from colors to color terms? Rate−distortion theory
(29–32), the branch of information theory concerned with lossy
compression, provides an answer.

Mapping colors to a limited set of terms necessarily introduces
imprecision or “distortion” in communication. The amount of
distortion depends on a listener’s expectation about what color,
x , a speaker is referencing when she utters color term x̂ . Under
the rate−distortion hypothesis, a language’s mapping from col-
ors to terms allows a listener to glean as much information
as possible about color x from a speaker’s choice of term
x̂ (Fig. 1C).

Each color x ∈X is identified with a unique position, denoted
~x , in a perceptually uniform color space. Here we use CIE (Com-
mission Internationale de l’Eclairage) Lab as in Regier et al. (8).
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The coordinates corresponding to a color term x̂ are given by its
centroid: the weighted average of all colors a speaker associates
with that term, ~̂x =

∑
x ~xp(x |x̂ ). The distortion introduced when

a speaker uses x̂ to refer to x is simply the squared Euclidean dis-
tance between ~x and ~̂x in CIE Lab, denoted d(~x ||~̂x ). Intuitively,
colors that are near ~̂x are more likely to be assigned to the term
x̂ than colors that are far (Fig. 1C), and the centroid minimizes
the average distortion of all the points assigned to that term, that
is,
∑

x p(x |x̂ )d(~x ||~̂x ).∗

The mathematics of compression provides optimal ways to
represent information for a given level of tolerable distortion.
The size of a compressed representation, X̂ , is measured by
the amount of information it retains about the uncompressed
source, X , given by the mutual information I (X ; X̂ ). Terms
represent colors by specifying the probability of using a par-
ticular term x̂ ∈ X̂ to refer to a given color x ∈X , denoted
p(x̂ |x ). Rate−distortion efficient mappings are choices of the
mapping p(x̂ |x ) that minimize I (X ; X̂ ) such that the expected
distortion, Ed(~x ||~̂x ), does not exceed a given tolerable level. Effi-
cient mappings and centroid positions can be found for a large
class of distortion functions known as Bregman divergences,
which includes the CIE Lab measure of perceptual distance (SI
Appendix, section 1).

Communicative Needs of Colors
Rate−distortion theory provides an efficient mapping from col-
ors to terms that depends on three choices: the distortion func-
tion in color space, the degree of distortion tolerated by the
language, and the probability p(x ) that each color needs to be
referenced during communication, called the “communicative
need.” Previous studies have largely focused on communicative
needs that are shared across all languages, considering distri-
butions that are either uniform across the World Color Survey
(WCS) color stimuli (5), correlated with the statistics of natu-
ral images (7) or the color of salient objects (23), approximated
by a worldwide average “capacity achieving prior” (10, 27), or
related to linguistic usage (33) as, for example, approximated by
the frequencies of words for color in English language corpus
data (28). As a result, prior studies have drawn conflicting con-
clusions about whether communicative needs matter for color
naming, and little is known about whether communicative needs
vary across languages or whether such variation is significant
for their color vocabularies. While the potential importance of
language-specific communicative needs has been discussed (33),
here we resolve these questions by directly estimating the com-
municative needs of colors for each of the 130 languages in the
combined Berlin and Kay plus WCS (B&K+WCS) dataset under
the compression theory of color naming.

Algorithm to Infer Communicative Needs. How can we infer the
underlying communicative needs of colors from limited empir-
ical data? Here we derive an algorithm that finds the maxi-
mum entropy estimate of the underlying communicative needs
p(x ) consistent with a rate−distortion optimal vocabulary with
known centroid coordinates ~̂x and term frequencies p(x̂ ), for any
Bregman divergence measure of distortion.

The estimate of communicative needs has the form q(x ) =∑
x̂ q
∗(x |x̂ )p(x̂ ), with

q∗(x |x̂ ) = arg max
q(x |x̂)∈Q

H (X ). [1]

*The property that the mean coordinates, or centroid, is the minimizer holds for the sum
of squared Euclidean distances. But this is not true for the summed Euclidean distance,
which has neither unique nor closed-form solutions in general.

In words, the optimal q∗(x |x̂ ) is the choice of q(x |x̂ ) that
maximizes the entropy, H (X ), among the set of conditional
probability distributions Q whose predicted focal color coordi-
nates match the observed coordinates for each color term. We
construct this solution via an iterative alternating maximization
algorithm (SI Appendix, section 2 for its derivation),{

qt(x̂ |x )∝ qt(x |x̂ )p(x̂ ),

qt+1(x |x̂ )∝ qt(x̂ |x )e〈~x ,~νt (x̂)〉,
[2]

where the vectors ~νt(x̂ ) are chosen so that predicted focal color
coordinates match observed coordinates (SI Appendix, section 2).

This algorithm provably converges to a unique, globally opti-
mal, maximum entropy estimate of the true communicative need
p(x ) (SI Appendix, sections 2A and 2B). Remarkably, we can
construct this solution knowing only that the observed coordi-
nates ~̂x are rate−distortion optimal centroids, without knowl-
edge of the specific distortion measure (SI Appendix, section 2C
and Fig. S1).

Inference from Focal Colors. Our algorithm infers a language’s
communicative needs from knowledge of the centroids associ-
ated with its color terms. Berlin and Kay (1) measured the “focal
color” of each color term by asking native speakers to choose,
from among the Munsell stimuli (Fig. 1A), the “best example”
of that term. We propose that the measured focal colors are, in
fact, the centroids for each term.† This hypothesis may appear
problematic, since laboratory experiments suggest focal colors
and category centroids are distinct points in color space (34–
36). However, centroids in those studies were calculated under
the implicit assumption of uniform communicative needs, leav-
ing open the possibility that focal colors are centroids under the
true distribution of nonuniform needs (SI Appendix, section 1C).

Our approach provides an entropy-maximizing inference of
language-specific communicative needs that does not make
strong assumptions about the form of p(x ) or depend on addi-
tional, unmeasured quantities for each WCS language. Prior
work on a universal distribution of needs relies on strong assump-
tions about the form of p(x ) (SI Appendix, sections 2C and
4), and so applying it to individual languages in the WCS
produces implausible inferences (SI Appendix, Fig. S4). Alter-
natively, there is a prior language-specific approach based on
word frequency data, but this approach cannot be applied to the
vast majority of languages in the WCS that lack this informa-
tion (SI Appendix, section 4A and Fig. S10B). Moreover, unlike
prior work, our inference of language-specific needs does not rely
on knowing the empirical mapping from colors to terms, p(x̂ |x ),
which is the quantity that we ultimately wish to predict from any
theory of color naming (SI Appendix, Fig. S9).

Different Colors, Different Needs. Our analysis reveals extensive
variation in the demand to speak about different regions of color
space (Fig. 2A). Averaged over all 130 B&K+WCS languages,
the inferred communicative needs emphasize some colors (e.g.,
bright yellows and reds) up to 36-fold more strongly than others
(e.g., blue/green pastels and browns). This conclusion stands in
sharp contrast to prior work that assumed a uniform distribution
of needs (8) and attributed color naming to the shape of color
space alone.

Our ability to predict the color vocabulary of a language
is substantially improved once we account for nonuniform
communicative needs (Fig. 2B). We find improvement in an
absolute sense, as measured by the root-mean-squared error
(RMSE) between predicted and empirically measured focal

†More precisely, we propose the measured focal colors are the best approximation to
the true centroid among the set of WCS color stimuli.
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Fig. 2. Inferred distributions of communicative needs. (A) The mean inferred distribution of communicative need, p(x), averaged across the WCS and B&K
survey data (n = 130 languages). Color chips correspond to those shown in Fig. 1A. We infer 36-fold variation in communicative need across color chips,
with greater demand for communication about yellows and reds, for example, than for blues and greens. (B) The color vocabulary of a language predicted
by rate−distortion theory better matches the empirical vocabulary when we account for variation in the need to communicate about different colors.
(Top Left) The error between the predicted and empirical focal color positions across n = 130 languages, where predictions are rate−distortion optimal
vocabularies assuming either a uniform (red) or the inferred (blue) distribution of communicative needs. RMSE is measured in units of CIE Lab perceptual
distance (denoted ∆E?; RMSE of Focal Color Predictions). Reference lines show RMSE when empirical focal points are compared to random focal points
(“random”), displaced by one WCS column or row (off-by-one), and by sampling from participant responses (“WCS variability”) (see SI Appendix, section
3A). (Bottom Left) The relative improvement (reduction in error) using the inferred versus uniform distribution of communicative need. (Right) Difference in
focal point positions of rate−distortion optimal vocabularies, under inferred versus uniform communicative needs. (C) Two example languages, Múra-Pirahã
(Left), and Colorado (Right), that illustrate how predicted term maps are improved when accounting for nonuniform communicative needs of colors. The
region corresponding to each term is colored by the WCS chip closest to the term’s focal point (white points). The predicted term maps (Top) based on the
inferred distribution of communicative needs and (Bottom) based on a uniform distribution of communicative need; (Middle) the empirical term maps in
the WCS data.

colors, and also in a relative sense, measured by percent
improvement over a uniform distribution of needs. The typical
change in predicted focal color once accounting for nonuni-
form needs is easily perceivable, corresponding to a median
change of two WCS color chips (Fig. 2B, Right). Not only
are the predicted focal points in better agreement with the
empirical data, once accounting for nonuniform needs, but the
entire partitioning of colors into discrete terms is substantially

improved, as seen in the example languages Múra-Pirahã and
Colorado (Fig. 2C).

We infer communicative needs and predict color terms using
data from the first of two experiments in the WCS, which
measured focal colors (Fig. 3A). This inference and prediction
requires fitting one parameter that controls the “softness” of
the partitioning and one hyperparameter to control overfitting
(SI Appendix, section 3). Without any additional fitting, we can

A B C

Fig. 3. Inference and prediction within the WCS. (A) WCS (2) included two separate experiments with native speakers of each language. In this study, we
used only the WCS focal color experiment to infer the communicative needs of colors, p(x), and to predict a language’s mapping from colors to terms,
p(x̂|x). Without any additional fitting, we then compared the predicted term maps to the empirical term maps observed in the second WCS experiment.
(B) Predicted term maps tend to agree with the observed term maps (Fig. 2C and SI Appendix, Fig. S2C). Moreover, the predicted term maps show better
agreement with the empirical data than would predictions assuming a uniform distribution of communicative needs. Shown are the rank ordered mean
percentage improvement in predicted versus observed term maps using the inferred communicative need p(x) compared to a uniform communicative need,
with 95% CIs (bootstrap resampling; see Measuring Distance between Distributions over Colors). Languages (points) colored black have 95% CIs overlapping
0%; blue indicates significant improvement. Languages that do worse under the inferred distribution of needs (red points) violate model assumptions.
(C) Over all languages, the mean percentage improvement (and 95% CIs) in predicted vocabularies when using language-specific commutative needs
compared to uniform needs (“inferred over uniform”), language-specific versus average needs over all languages (“inferred over average”), and average
versus uniform needs (“average over uniform”). Some improvement in predictive accuracy is attributable to commonalities in communicative needs across
languages (third comparison), and yet more improvement is attributable to variation in needs among languages (second comparison).
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Fig. 4. Inferred distributions of communicative needs correlate with the colors of salient objects. (A) Human participants in the MSRA salient object study
were asked to identify the foreground object in 20, 000 images; example foreground mask is illustrated in gray. (B) WCS color chips ordered by their
rank frequency in the foreground of MSRA images [rows “MSRA”; see Gibson et al. (23)], and in the inferred distribution of communicative need (rows
“inferred”), averaged across the n = 130 languages in the B&K+WCS survey data. There is a weak positive correlation between the colors that are considered
salient, in the MSRA dataset, and the colors with greatest inferred communicative need, across all WCS color chips (Top). This relationship is strengthened
after removing achromatic chips (WCS column 0, rows B and I) from the comparison (Bottom). (C) Colors of unripe (Top) and midripe and ripe (Bottom) fruit
in the diets of catarrhine primates, derived from fruit spectral reflectance measurements collected in the Kibale Rainforest, Uganda, by Sumner and Mollon
(38, 39). The colors of ripe fruit tend to correspond with the colors of greatest inferred communicative need. (D) Average log-probability in the inferred
distribution of communicative need of color corresponding to unripe, midripe, and ripe fruit; n denotes the number of fruit species, and m denotes the
total number of spectral measurements. Error bars show 95% CIs of the means (nonparametric bootstrap by species).

then compare the predicted mappings from colors to terms to
the empirical term maps measured in the second WCS experi-
ment. For nearly all of the WCS languages analyzed (n = 110),
the color term maps predicted by rate−distortion theory are
significantly improved once accounting for nonuniform commu-
nicative needs (improvement in 84% of languages; Fig. 3B).
Only 15% of languages show little or no improvement, with an
additional single outlier, Huave (Huavean, Mexico), that may
violate model assumptions in some significant way (see Discus-
sion). The substantial improvement in predicted term maps can
be attributed both to universal patterns in communicative needs,
shared across languages, and to language-specific variation in
needs (Fig. 3C).

In contrast to prior work on the compression model of
color naming (10, 28), no part of our inference procedure uses
empirical data on a language’s mapping from colors to terms,
p(x̂ |x ).‡ Nor are our predicted color terms simply an out-of-
sample prediction, since the predicted quantities, p(x̂ |x ), are
not used to parameterize the model. Therefore, our analysis is
not simply a fit of the compression model to data but rather
an empirical test of its ability to predict color naming from first
principles.

‡Nor do we use empirical term maps for selection among the small set of nonunique
rate−distortion optimal solutions. In this study, selection is based on focal points alone.
See SI Appendix, section 3.

Communicative Needs and the Colors of Salient Objects. We can
interpret the inferred communicative needs of colors by compar-
ing them to what is known about the colors of salient objects.
Prior work (23) suggests a warm-to-cool trend in communica-
tive need, related to the frequency of colors that appear in
foreground objects as identified by humans in a large dataset
of natural images (37) (Fig. 4A). We find that the same cor-
relation holds, at least when restricting to the middle range of
lightness (color chips in rows C–H in Fig. 4C; two-sided Spear-
man’s ρ= 0.3, p < 0.001, n = 240). However, the pattern of
communicative needs is more complex than this warm−cool
gradient alone. Pastels that are greenish blue or blue, as well
as brownish greens, need to be communicated less often than
dark green or dark blue, for example. Moreover, dark col-
ors in general (e.g., color chips in rows I and J in Fig. 4C)
show a relatively high communicative need under our inference
compared to their frequency in foreground objects of natural
images (Fig. 4B).

We also compared communicative needs to spectral measure-
ments by Sumner and Mollon (38, 39) of unripe and ripe fruit in
the diets of catarrhine primates, which have trichromatic color
vision and spectral sensitivities similar to humans. When pro-
jected onto the WCS color chips (SI Appendix, Fig. S6), unripe,
midripe, and ripe fruit occupy distinct regions of perceptual color
space (Fig. 4C) corresponding to low, medium, and high val-
ues of inferred communicative need, respectively (Fig. 4D). The
morphological characteristics of fruit, including color, are known
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Fig. 5. The communicative needs of colors vary across languages, and they are correlated with geographic location and ecological region. (A) The inferred
distribution of communicative needs for two example languages (Top). For each language, many color chips have significantly elevated (red border) or
suppressed (blue border) communicative need compared to the across-language average (Bottom; deviations that exceed σ/2 with 95% confidence are
highlighted in red or blue). (B) The approximate locations of WCS native language communities (red points) shown on a world map colored by ecoregions
(47). (C) Languages spoken in closer proximity to each other and sharing the same ecoregion tend to have more similar inferred communicative needs
(type II Wald χ2 tests; χ2= 20.98, df = 1, p< 0.001; and χ2= 12.91, df = 1, p< 0.001), whereas shared language family does not have a significant effect
(χ2= 1.022, df = 1, p = 0.31). Distance and shared ecoregion each substantially improve the fit of GLMMs predicting the distance between pairs of inferred
communicative needs. GLMMs were fit using log-normal link function and a random effects model designed for regression on distance matrices (69) (see
Correlates of Cross-Cultural Differences in Communicative Need); k denotes the total number of fixed and random effects in each model.

to be adapted to the sensory systems of frugivores that act as
their seed dispersers, for vertebrates in general (40–42) and pri-
mates in particular (43–45). Therefore, our results support the
hypothesis that shared communicative needs in human cultures
emphasize the colors of salient objects that stand out or attract
attention in our shared visual system across a typical range of
environments.§

Cross-Cultural Variation. Languages vary considerably in their
needs to communicate about different parts of color space (Fig.
5A and SI Appendix, Figs. S11–S27). The inferred needs for the
language Waorani (Ecuador), for example, emphasize white and
midvalue blues, while deemphasizing yellows and greens, rela-
tive to the average needs of all B&K+WCS languages, whereas
Martu-Wangka (Australia) emphasizes pinks and midvalue reds,
as well as light greens, while deemphasizing blues and dark
purples (Fig. 5A). In fact, the median distance between language-
specific communicative needs and the across-language average

§Note that these results do not imply that shared communicative needs are determined
by the need to name fruit specifically.

needs is nearly as large as the distance between the average needs
and uniform needs (9.9 and 11.2, respectively, in units of ∆E?).

Why do language communities vary in their needs to commu-
nicate different colors? Detailed study of this question requires
language-specific investigation beyond the scope of the present
work. However, we can at least measure how variation in lin-
guistic origin, geographic location, and local biogeography (Fig.
5B) relate to differences in communicative needs. We quantified
these factors for pairs of languages by determining 1) whether or
not they belong to the same linguistic family in Glottolog (46);
2) the geodesic distance between communities of native speak-
ers; and 3) whether or not language communities share the same
“ecoregion,” a measure of biogeography (47) that delineates
boundaries between terrestrial biodiversity patterns (48). Our
statistical analysis also controls for differences in the number
of color terms between languages, because we seek to under-
stand cross-cultural variation above and beyond any relationship
between vocabulary size and (inferred) communicative needs
(SI Appendix, section 3C).

While language differences are largely idiosyncratic, we find
a small but measurable impact of distance and biogeography on
communicative needs (Fig. 5C and Correlates of Cross-Cultural
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Differences in Communicative Need). In particular, increasing the
geodesic distance between language communities by a factor of
10 decreases the mean similarity in their communicative needs
by a factor of 2.9% ([1.7%, 4.2%] 95% CI), while sharing the
same ecoregion increases the mean similarity by a factor of 8.4%
([3.9%, 12.7%] 95% CI). By contrast, we find no significant effect
of language genealogy on communicative needs, at least at the
coarse scale of language family. Taken together, these results
suggest that color vocabularies are adapted to the local context
of language communities.

Discussion
We have inferred language-specific needs to communicate
about different colors, using an algorithm that applies to any
rate−distortion Bregman clustering. Accounting for nonuniform
needs substantially improves our ability to predict color vocab-
ularies across 130 languages. Neither our predictions of term
maps nor, in contrast to prior work, our inferences of needs use
empirical information on the mappings from colors to terms,
allowing us to test the compression model of color naming
against independent data.

The distribution of communicative needs, averaged across
languages, reflects a warm-to-cool gradient, as hypothesized in
Gibson et al. (23), and it is related to object salience more gen-
erally, as indicated by the positioning of ripe fruit coloration
in regions of highest need. This is true even though the needs
p(x ) that we infer by maximum entropy differ from the notion
of communicative efficiency, or surprisal, used in prior work
(SI Appendix, section 3F.1). We also document extensive vari-
ation across languages in the demands on different regions of
color space, correlated with geographic location and the local
biogeography of language communities.

Our analysis provides clear support for the compression model
of color naming. Whereas prior work has established the role
of shared perceptual mechanisms for universal patterns in color
naming, our results highlight communicative need as a source of
cross-cultural variation that must be included for agreement with
empirical measurements. A catalog of language-specific needs
(SI Appendix, Figs. S11–S27) will enable future study into what
drives cultural demands on certain regions of color space, and
how they relate to contact rates between linguistic communities,
shared cultural history, and local economic and ecological con-
texts. Our methodology also provides a theoretical framework
and inference procedure to study categorization in other cog-
nitive domains, including other perceptual domains of diverse
importance worldwide (49), and even in nonhuman cognitive sys-
tems that exhibit categorization [e.g., Zebra finches (50, 51), the
songbird Taeniopygia guttata].

Several languages have been advanced as possibly invalidat-
ing the universality of color categories (52–54). Languages are
known to vary in the degree to which different sensory domains
are coded (49, 55, 56), and, in Pirahã and Warlpiri, the exis-
tence of abstract terms for colors has been disputed (57, 58).
Moreover, the color vocabularies in Karajá and Waorani notably
lack alignment with the shape of perceptual color space (5).
Once we account for communicative needs, however, we find
that the color terms of Karajá and Waorani are well explained
by rate−distortion theory. Likewise, while Pirahã may seem
exceptional when assuming uniform communicative needs, we
recover accurate predictions once accounting for a nonuniform
distribution of needs (Figs. 2C and 3B).¶

Nevertheless, several languages show little or no improvement
in predicted term maps using inferred versus uniform com-

¶Note that this result does not imply that color terms in Pirahã are abstract necessarily;
see Regier et al. (59).

municative needs, and Warlpiri is among these cases. Before
drawing conclusions about exceptionalism, however, we note that
several technical assumptions of our analysis may be violated for
these languages. For one, we assumed that basic color terms are
used with equal frequency, to first approximation. This is a rea-
sonable assumption given that basic color terms are elicited with
roughly equal frequency under a free naming task in, for exam-
ple, English (36). Moreover, the inferred distribution of needs
for WCS and B&K languages are relatively insensitive to nonuni-
formity of color term frequency, up to variation by a factor 1.5 (SI
Appendix, section 3B and Fig. S2D). Still, this assumption may
not be accurate enough for all languages, and the frequencies of
color terms require future empirical study. Another possibility is
that the choice of the WCS stimuli themselves, that is, the set
of Munsell chips, X , may work well for identifying focal colors
of most languages, but may be too restrictive in the languages
that show little improvement. Future field and laboratory work
could remedy this by broadening the range of color stimuli used
in surveys.

Another limitation of the WCS is variability in chroma
across the Munsell color chips used as stimuli, which might
bias participants’ choice of focal color positions (25, 60–63).
While there is no relationship between chroma and language-
specific communicative needs (SI Appendix, section 3F.2 and Fig.
S8B), we do find a small but statistically significant correlation
(two-sided Spearman’s ρ= 0.13, p = 0.019, n = 330) between
chroma and the inferred distribution of communicative need
averaged across WCS languages. However, if this bias domi-
nated the choice of focal colors in the WCS, then we would
not expect distributions of need inferred from focal colors to
improve predictions of color term maps. The fact that we do
see substantial improvement suggests that, whatever bias this
effect may have, it is evidently not large enough to impact
the relationship between focal color positions and color term
maps for most languages. Nor would chromatic bias in stim-
uli explain the cross-cultural variation in communicative needs
that we observe, since the set of stimuli was held constant across
languages.

Our study has focused on how languages partition the vast
space of perceivable colors into discrete terms, and how com-
municative needs shape this partitioning. Why some languages
use more basic color terms than others remains an open topic
for cross-cultural study. In principle, the issue of tolerance to
imprecision in color communication is orthogonal to the distri-
bution of communicative needs in a community. In practice, the
number of color terms has a small impact on the resolution of
inferred needs (SI Appendix, Fig. S3A), which we control for in
cross-cultural comparisons (SI Appendix, Fig. S3B). Nonetheless,
languages that have similar vocabulary sizes tend to have more
similar communicative needs across colors, and this covariation
is greater than any effect of vocabulary size on the resolution
of our inferences (SI Appendix, Fig. S3). These results suggest
that causal factors driving vocabulary size may also influence a
culture’s communicative demands on colors—a hypothesis for
future research.

Future empirical work may begin to unravel why cultures vary
in their communicative demands on different regions of color
space. It is already known that natural environments vary widely
in their color statistics (64, 65), and this variation matters for
color salience (66). The need to reference certain objects, as
well as their salience relative to similar backgrounds, may help
explain why communities that share environments prioritize sim-
ilar regions of color space, as we have seen. Therefore, shared
environment, physical proximity, and shared linguistic history at
a finer scale than language family are all plausible avenues for
future study on the determinants of color demands. Beyond these
factors, there remains substantial interest in cultural features
that we have not studied here, including religion, agriculture,
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trade, access to pigments and dies, and different ways of life, that
can all shape a community’s needs to refer to different colors,
and the resulting language that emerges.

Materials and Methods
WCS. Berlin and Kay (1) and Kay et al. (2) surveyed color naming in 130
languages around the world using a standardized set of color stimuli. The
stimuli (Fig. 1A), a set of Munsell color chips, were designed to cover
the gamut of human perceivable colors at maximum saturation, across a
broad range of lightness values.# Native speakers were asked to choose
among the basic color terms in their language to name each color chip,
one at a time, in randomized order. The WCS study surveyed 25 native
speakers in each of 110 small, preindustrial language communities; the
B&K study surveyed one native speaker in each of 20 languages from a
mixture of both large (e.g., Arabic, English, and Mandarin) and compara-
tively small (e.g., Ibibio, Pomo, and Tzeltal) preindustrial and postindustrial
societies.

The stimuli provided by the Munsell color chips are a function of the
color pigment of the chips and the ambient light illuminating them. The
ambient light source was approximately controlled by conducting the survey
at noon and outdoors in shade, corresponding to CIE standard illuminant C.
To the extent possible, participants were surveyed independently, although
preventing the discussion of responses among participants was not always
possible [discussed in Regier et al. (59)].

In our treatment of the color naming data, for each language, we include
all recorded terms that had an associated focal color, was used by at least
two surveyed speakers (unless a B&K language, in which case only one
speaker was surveyed), and was considered the best choice for at least one
WCS color chip.

The 20 B&K languages were included in our analyses where appropri-
ate: comparisons based on focal colors and inferred communicative needs.
They were excluded from term map comparisons, because the methods of
estimating term maps differed methodologically from those in the WCS
(67), and they do not provide straightforward estimates of p(x̂|x). In addi-
tion, B&K languages with significant geographic extent, for example, Arabic
and English, were excluded from statistical analysis of the correlates of
cross-cultural differences in communicative needs, because estimating geo-
graphic distance or local biogeography would make little sense for these
languages.

RMSE of Focal Color Predictions. Language-specific focal color positions were
compared to model predictions using the RMSE between observation and
prediction in units of CIE Lab ∆E?, computed for each WCS language i
according to

RMSEi ,

 1

3ni

∑
x̂∈X̂i

3∑
j=1

(
~̃x(j)− ~̂x(j)

)2


1
2

, [3]

where the superscript (j) specifies the coordinate in the CIE Lab color space
of position vectors ~̃x and ~̂x, corresponding, respectively, to the predicted and
empirically observed coordinates of the focal color for term x̂ in language
i’s vocabulary, X̂i . Here ni = |X̂i| denotes the number of basic color terms in
language i’s vocabulary.

Spectral Measurements of Ripening Fruit. Spectral measurements of ripening
fruit in the diets of catarrhine primates were obtained from the Cambridge
database of natural spectra. Reflectance data for fruit taken from the Kibale
Forest, Uganda, were converted to CIE XYZ 1931 color space coordinates
using CIE standard illuminant C. We then converted points from XYZ to CIE
Lab space using the XYZ values for CIE standard illuminant C (2◦ standard
observer model) as the white point, in order to match the WCS construction
of CIE Lab color chip coordinates. Calculations were performed in R (v3.6.3)
using the package colorscience (v1.0.8).

#The Munsell color system was created as a means to index human perceivable color
by hue, value, and chroma, at empirically measured perceptually uniform intervals
along each dimension. In the WCS notation, rows correspond to equally spaced Mun-
sell values, and columns 1–40 correspond to equally spaced Munsell hues. For column 0,
Munsell chroma is 0; for all other columns, Munsell chroma was chosen as the maximum
for the given hue and value.

Indicators of fruit ripeness include color, odor, and smell. Therefore, to
measure visual salience, we considered only fruit that had a discernable
(in terms of CIE Lab ∆E?) difference between unripe and ripe measure-
ments (see SI Appendix, Fig. S6A for determination of statistical threshold
on change in chromaticity). For fruits with detectable changes in chromatic-
ity, we projected their unripe, midripe, and ripe positions onto the WCS
color chips such that absolute lightness, L?, and the ratio of a? to b? was
preserved (SI Appendix, Fig. S6B).

Measuring Distance between Distributions over Colors. We quantified the
perceptual difference between any two distributions over the WCS color
chips in terms of their Wasserstein distance (used in Fig. 5C), defined as

W[p‖q], min
r(x,x′ )∈R

∑
x,x′

r(x, x′)‖~x−~x′‖2, [4]

where R is the set of joint distributions satisfying
∑

x r(x, x′) = p(x′) and∑
x′ r(x, x′) = q(x). The CIE Lab coordinates of x and x′ are given by ~x and

~x′, respectively, and the Euclidean distance between them approximates
their perceptual dissimilarity, by design of the CIE Lab system. Under this
measure, a small displacement in CIE Lab space of distributional empha-
sis is distinguishable from a large displacement. For example, for discrete
distribution p(x) =α when x = xp ∈X , and p(x) = (1−α)/(|X |− 1) other-
wise, let distribution q(x) be defined identically except substituting xq ∈
X for xp. Then the Wasserstein distance between p and q will increase
with the Euclidean distance between xp and xq, whereas, for example,
the Kullback–Leibler divergence between p and q would remain constant
for any xp 6= xq.

We used a generalization of this distance measure to quantify the match
between predicted and measured term maps. To make this comparison, we
find the minimum-CIE ∆E? partial matching between predicted and mea-
sured term map categories, p(x̂|x), for each term x̂ (used in Fig. 3B). To
do this, we find the minimum cost achievable by any assignment of chips
empirically labeled by x̂ to those predicted to be labeled x̂, weighted by
the measured and predicted p(x̂|x). The best partial matching accommo-
dates for the fact that predicted and measured categories can differ in total
weight. This measure is known as the Earth mover’s distance (68), which
has the Wasserstein distance as a special case with matching total weights.
Both measures were computed in R (v3.6.3) using the emdist (v0.3-1)
package.

Correlates of Cross-Cultural Differences in Communicative Need. We mod-
eled the pairwise dissimilarity in communicative need between B&K+WCS
languages as a log-linear function of the geodesic distance between lan-
guage communities, shared linguistic family, and shared ecoregion, using a
maximum-likelihood population effects model (MLPE) structure to account
for the dependence among pairwise measurements (69). For languages
j = 2, . . . , n, i = 1, . . . , j− 1, we use a generalized linear mixed effects model
(GLMM) with form

η
(ij)

= ~θ
ᵀ~d(ij)

+ τi + τj , [5]

~d(ij)
=
[
1, d(ij)

geo, δ(ij)
fam, δ(ij)

eco, ∆
(ij)
terms

]
ᵀ, [6]

τ1, . . . , τn∼N (0,σ2
τ ), [7]

w(ij)∼N (eη
(ij)

,σ2
w ), [8]

where w(ij) is the Wasserstein distance between the inferred distributions
of communicative need for languages i and j; d(ij)

geo is their estimated
geodesic distance (Haversine method) in standardized (normalized by SD)
units based on geographic coordinates in Glottolog (and restricting to
languages with small geographic extent); δ(ij)

fam is a binary indicator of
being in the same linguistic family or not (one or zero, respectively);
δ

(ij)
eco is a binary indicator of being in the same ecoregion or not (one or

zero, respectively); and ∆
(ij)
terms is the difference in their number of color

terms, which we include as a control. The random effects τ1, . . . , τn model
the dependence structure of the pairwise measurements. Model diagnos-
tics suggest reasonable behavior of residuals using a log-link function
(SI Appendix, Fig. S7). Fitted coefficients indicate a positive increase in
dissimilarity with geodesic distance, and a decrease in dissimilarity with
ecoregion, but no significant effect of shared language family (SI Appendix,
Fig. S7). GLMM fits were performed in R (v3.6.3) using the lme4 (v1.1-
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21) package, with MLPE structure based on code from resistanceGA (70).
Model diagnostics based on simulated residuals were done using package
DHARMa (v0.2.6).

Pseudo-R2 measuring overall model fit was computed as R2
cor =

cor(w(ij), ŵ(ij))2, where ŵ(ij) is the model-predicted value for w(ij), based
on Zheng and Agresti (71). For our model, R2

cor = 0.64. However, there is
no standard, single measure of R2 for models with mixed effects. A recent
proposal (72, 73) suggests reporting two separate quantities, a conditional
and marginal R2, which can be interpreted as measuring the variance
explained by both fixed and random effects combined (R2

GLMM(c)), and the

variance explained by fixed effects alone (R2
GLMM(m)). For our model, we

computed these as R2
GLMM(c) = (σ2

~θ
+ 2σ2

τ )/σ2
total and R2

GLMM(m) =σ2
~θ
/σ2

total,

respectively, where σ2
total =σ2

~θ
+ 2σ2

τ + log
(

1 +
σ2

w
(Ew)2

)
based on Nakagawa

and Schielzeth (73). For our model, conditional R2
GLMM(c) = 43.3%, and

marginal R2
GLMM(m) = 12.7%. We based the inclusion of fixed effects on AIC

(Akaike Information Criterion) (Fig. 5C) following best practices for MLPE
models (74).

Data Availability. All data came from preexisting datasets. Color vocabulary
data were sourced from the WCS online repository (www1.icsi.berkeley.
edu/wcs/data.html) (75). Additional language data were sourced through
Glottolog v3.4, available online (https://glottolog.org/meta/downloads)

(76). Data on biogeographic regions were provided by the World
Wildlife Foundation, available online (https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world) (77). Fruit reflectance
data came from the Cambridge database of natural spectra, avail-
able online (vision.psychol.cam.ac.uk/spectra) (78). Salient object data
originating from the Microsoft Research Asia (MSRA) dataset are not
publicly available, but were kindly provided to us on request by the
corresponding authors of Gibson et al. (23). Data generated by our
inference method and used to estimate the average communicative
needs across languages (Fig. 2A) and language-specific communicative
needs (SI Appendix, Figs. S11–S27) is shared under a creative commons
license and is available in both our supporting information and online
(https://github.com/crtwomey/twomey2021). Custom code was developed
to infer communicative needs using the algorithm derived in this paper (SI
Appendix, section 2). This code is open source (GNU GPLv3) and publicly
available online (https://github.com/crtwomey/twomey2021).
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