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Sprague Dawley rats: A model of successful heart aging
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A B S T R A C T

Aging is a universal phenomenon involving the whole body and is characterized by metabolic and
physiological decline, leading to cardiovascular defects and heart failure.
To characterize the molecular basis of physiological cardiac aging, the proteomic profiles of Sprague

Dawley rat hearts of 6, 22 and 30 months were analysed by DIGE and immunoblotting.
Results indicate changes in myosin binding protein C, aldehyde dehydrogenase, serpins and sirtuin-

3 which protects from the opening of the mitochondrial permeability transition pore induced by
cyclophilin D increment.
Conversely, an increase of fusion, a decrease of mitochondrial fission and the activation of the non-

canonical autophagy pathway were observed. These results support the hypothesis of successful aging in
this rat model.
ã 2016 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

The substantial increase in life expectancy at birth combined
with medical advances pose the question of how to promote
healthier old age and how to age “successfully.”

Later in life, people can experience “usual aging” with normal
decline in physical, social, and cognitive functioning or a
“successful aging” in which functional loss is minimised [1,2].
From a molecular point of view, little is known about the successful
aging of centenarians and specifically, little is known about
molecular changes occurring in heart tissue that lead to a
successful senescence [2,3].

Cardiovascular diseases are the major causes of death among
the elderly [4] and the heart aging rate is one of the major risk
factors [5]. In humans, the intrinsic aging is defined as a slow and
progressive age-dependent myocardial degeneration that induces
cardiovascular hypertrophy making the heart vulnerable to stress,
with reduced functional reserve, contributing to morbidity and
mortality. In addition, both diabetes and hypertension accelerate
the process of cardiovascular aging leading to heart insufficiency
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and failure, making difficult the dissociation of the aging process
from other contributing factors [6].

Rodents represent a suitable model to detect markers of
intrinsic cardiac aging as they are not affected by other risk factors
(e.g. diabetes or hypertension) that can obscure the slowly
progressive age-dependent degeneration and decline in cardiac
function [5].

During aging, a swelling in size and a decrease in the number of
cardiomyocytes result in a loss of function combined with
myocardium interstitial fibrosis, accumulation of lipofuscin and
amyloid. These features are typical of aged myocardium and are
extended to the sinoatrial and atrioventricular node and to the
atrioventricular bundle leading to alterations of cardiac conductivity
[7].

Furthermore mitochondria, which represent �30% of the
cardiomyocyte volume [8], play a crucial role in maintaining
cardiac function through the balance among mitochondrial fusion,
fission and autophagy. These processes can remove and replace
damaged mitochondria preventing aging [9].

In skeletal muscles, ROS overproduction and defective mito-
chondria lead to a progressive accumulation of lipofuscins and
cytosolic protein aggregates [10] and aged muscles show a decline
of autophagy [11].

The overall aim of this study is to characterize, in a Sprague
Dawley rat, the molecular basis of the physiological cardiac aging
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analysing changes in heart proteome, autophagy and in mitochon-
drial dynamics, since these processes are strictly interrelated and
their homeostasis is associated to well-being. Under moderate
dietary restriction, this model does not develop heart disease
within an average life of �2 years [12]. Rats of 6 (young), 22 (old
adult) and 30 (senescent) months of age were analysed. The study
has been extended to senescent rats to follow changes in the heart
proteome possibly occurring in centenarians.

2. Material and methods

2.1. Animals

Sprague Dawley rats were divided into three groups: young
(n = 3, 6 months), old adult (n = 3, 22 months) and senescent (n = 3,
30 months). For sacrifice, animals were anesthetized with a hip
injection of sodium thiopental (10 mg/100 g body weight) and
heparin (500 units). Hearts were removed soon after the sacrifice
(less than 1 min), immediately frozen in liquid nitrogen and then
stored at �80 �C until use. Investigation was conformed to the
Guide for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85-23, revised
1996).

2.2. Protein extraction

For two-dimensional differences in-gel electrophoresis (2-D
DIGE) and immunoblots, an aliquot of each frozen heart was
suspended in lysis buffer (urea 7 M, thiourea 2 M, CHAPS 4%, Tris
30 mM, and PMSF 1 mM) and solubilized by sonication on ice.
Proteins were selectively precipitated using PlusOne 2D-Clean-up
kit to remove non-protein impurities and re-suspended in lysis
buffer. Protein extracts were adjusted to pH 8.5 by the addition of
NaOH 1 M solution, and sample concentrations were determined
using PlusOne 2D-Quant kit.

2.3. Proteomic analysis

Protein labelling, 2-D separation and analysis were performed
as previously described [13]. Before IEF, labelled samples were
diluted in an equal volume of 2x sample buffer containing 130 mM
DTT and 2% v/v IPG buffer (GE Healthcare). Individual samples
(40 mg) were combined with an equal amount of internal standard;
rehydration buffer (7 M urea, 2 M thiourea, 2% CHAPS, 65 mM DTT,
0.5% IPG buffer pH 3.5–9.5 and BBF in traces) was added to a final
volume of 450 mL. Samples were separated on 24 cm, pH
3–10 nonlinear (NL) gradient IPGstrips, applying the following
multistep IEF protocol: 200 V for 2 h, 500 V (2 h), 1000 V (2 h),
2000 V (1 h), 3000 V (1 h) and 8000 V until a total of 64 000 VhT
was reached, using an IPGphor electrophoresis unit (GE Health-
care). After focusing IPGstrips were equilibrated in an SDS
reducing-buffer (6 M urea, 2% SDS, 20% glycerol, 375 mM
Tris–HCl pH 8.8, 65 mM DTT) for 15 min, then alkylated for
8 min in the same buffer containing 135 mM iodoacetamide
instead of DTT. Second dimension was carried out in
20 � 25 cm2, 12%T, 2.5%C, constant concentration polyacrylamide
gels at 20 �C and 15 mA per gel using the Ettan Dalt II system (GE
Healthcare). Each sample was analysed independently and run in
triplicate.

Spot detection, background subtraction, gel normalization, spot
matching and statistical analysis were performed using DeCyder
2D software version 7.0 (GE Healthcare). Statistically significant
differences of 2-D DIGE data were computed by an independent
one-way analysis of variance (ANOVA) coupled to Tukey’s
multiple-group comparison test (p < 0.01). False discovery rate
was applied as multiple test correction in order to keep the overall
error rate as low as possible. Changed spots were further filtered on
the basis of the average ratio value provided by DeCyder 2D
software: only spots with an average ratio > 1.2 or < �1.2 were
considered as differentially expressed.

Proteins were identified by matrix-assisted laser desorption/
ionization time of flight utilizing the method previously described
[13]. Spectra were processed by the FlexAnalysis software v. 3.0
(Bruker Daltonics) and search was carried out by correlation of
uninterpreted spectra to Rodentia entries in NCBInr 20140801 da-
tabase (8.483.808 sequences; 2.914.572.939 residues) using in-
house Mascot 2.2 software.

In cases where this approach was unsuccessful, additional
searches were performed using electrospray ionization-MS/MS, as
previously described [14].

2.4. Immunoblotting

Protein extracts from young, old adult and senescent hearts,
were pooled and resolved by SDS-PAGE on 6–14% gradient
polyacrylamide gels or 12% homogeneous polyacrylamide gels
and transferred onto PVDF membranes. Each pooled sample
(50 mg) was run in triplicate. Blots were incubated with rabbit, goat
or mouse polyclonal primary antibodies diluted as follows: anti-
beclin1 (Cell Signaling Technology, CST, #3738 1:1000), anti-Bnip3
(CST, #3769, 1:1000), anti-mTor (CST, #2972, 1:500), anti-P-mTor
(CST, #2974, 1:200), anti-LC3 (CST, #2775, 1:500), anti-Bcl2 (CST,
#2876 1:1000), anti-Dlp1 (BD transduction labs, 611113, 1:500),
anti-Fis1 (Enzo life sciences, ALX-210-907, 1:200), anti-Mfn2
(Santa Cruz biotechnologies, sc-50331, 1:200), anti-OPA1 (BD
transduction labs, 612607, 1:500), anti-CypD (Santa Cruz
biotechnologies, sc-66848, 1:500), anti-Sirt3 (CST, #5490,
1:1000). Signals were visualized by chemiluminescence by ECL
prime detection kit (GE Healthcare). Images were scanned using
ImageQuant LAS 4000 mini digital imaging system (GE Healthcare)
and each band was quantitated using ImageQuant Software (GE
Healthcare). Band intensities were normalized against the total
amount of proteins stained by Sypro Ruby and subjected to a
Student’s t-test by comparing old adult and senescent versus
young, and senescent versus old adult rats. Differences were
considered significant at p < 0.05.

To confirm 2D-DIGE data, the following blots were performed
as described above: anti-Des (Santa Cruz biotechnologies,
sc-14026, 1:500), anti-Gapdh (Santa Cruz biotechnologies,
sc-25778, 1:500), anti-Hspa8 (CST, #8444, 1:1000), anti-Ldhb
(Santa Cruz biotechnologies, sc- 385256, 1:250), anti-Aldh2 (Santa
Cruz biotechnologies, sc-48837, 1:500), anti-Eno3 (Santa Cruz
biotechnologies, sc-15343, 1:500).

3. Results

3.1. Proteome profile

The proteome profiles of 6-month-old (young), 22-month-old
(old adult) and 30-month-old (senescent) rat heart tissues were
obtained through 2-D DIGE analysis and MALDI-ToF or ESI MS/MS.

Overall, 700 spots were matched among all gels, of which
284 spots (40,6%) were identified by mass spectrometry. Proteomic
analysis revealed 112 differentially expressed spots in the three
groups. Among them, 67 spots were identified and shown in a
representative 2-D DIGE map (Fig. 1). Not considering proteoforms
(as defined by Smith LM et al. [15]), these identified spots
correspond to 40 different proteins. Identified spots are listed in
supplementary Table S1 and S2 with the corresponding UniProtKB
accession numbers and degree of variation expressed as average
ratio.



Fig. 1. Representative 2-D DIGE map of rat cardiac muscle. Spots identified as
changed in old adult and senescent rats vs. young controls and in senescent vs. old
adult rats were indicated and numbered accordingly to Supplementary
Tables S1 and S2 listing.
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The differentially expressed proteins from young vs. old adult
and young vs. senescent respectively were divided into functional
classes and represented with histogram bars (Figs. 2 A, 3 A and 4 A
). The comparison between old adult and senescent was also
divided into functional classes represented as before, in supple-
mentary material (Fig. S1). Protein identification was validated
performing a random analysis via immunoblotting of 13% of the
identified proteins, not considering proteoforms (Figs. 2 B, 3 B and
4 B).

Proteomic results indicated that protein dysregulation took
place in three major cell compartments: contractile and structural,
metabolic, antioxidant/other proteins.

3.1.1. Contractile and structural proteins (Fig. 2A)
Overall, in aging we observed a decreased protein expression

compared to the young. Senescent rats were characterized by a
decrement of myosin-binding protein C (Mybpc3), paralleled by an
increase of the intermediate filament proteins, specifically,
myosins light chain (Myl4 and Myl7), troponin I (Tnni3) and actin
(Actc1). Cytoskeletal proteins, including cysteine and glycine-rich
protein 3 (Csrp3), also known as Muscle LIM protein (MLP), desmin
(Des) and vimentin (Vim) were increased whereas beta-tubulin
(Tubb4b) decreased. It should be noted that changes in old adults
affected only few proteins, in particular a decrement of Myl7 and
Tubb4b was observed.

Senescent rats were characterized by a decrement of 6 proteo-
forms of myosin-6 (Myh6) and 3 proteoforms of myosin-7 (Myh7),
whereas two different proteoforms of Myh6 and Myh7 increased.
Considering the overall protein expression, results showed a
decrement of both proteins (average ratio �1,22 and �1,24,
respectively) in senescent vs. young rats (Fig. 2A, gray frames). In
old adults, one proteoform of Myh7 was instead increased.

3.1.2. Metabolic proteins (Fig. 3A)
Among glycolytic proteins, two proteoforms of aldehyde

dehydrogenase (Aldh2) were increased and one decreased in old
adult vs. young, whereas only one was increased and two
decreased in senescent vs. young. Given the differences in
proteoforms tendency, the overall expression of Aldh2 was
considered and resulted in unchanged levels in old adult vs.
young and in a significant decrement (average ratio �1.30) in
senescent vs. young (Fig. 3A, gray frame). This trend was confirmed
by immunoblotting (Fig. 3B). Two proteoforms of beta-enolase
(Eno3), localized on the line Z of the sarcomere, were decreased
both in old adult and senescent. Glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) and phosphoglycerate mutase 2 (Pgam2)
increased in senescent, whereas L-lactate dehydrogenase B chain
(Ldhb) increased in old adult only. Changes in oxidative and in fatty
acid metabolism were prominent in senescent rats. Isocitrate
dehydrogenase [NAD] subunit alpha (Idh3a) decreased. Concern-
ing oxidative phosphorylation, the mitochondrial ubiquinone
biosynthesis protein CoQ9, also known as coenzyme
Q9 homolog (Coq9), and the cytochrome c oxidase subunit 5B
(Cox5b) decreased in senescent together with the electron transfer
flavoprotein subunit alpha and beta (Etfa, Etfb). A proteoform of
NADH dehydrogenase subunit 1 alpha subcomplex 10 (Ndufa10)
decreased, whereas another proteoform increased in aging.
Considering Ndufa10 as a whole, its level was significantly
increased in senescent (average ratio 1,22; see Fig. 3A, gray
frame). Likewise, the NADH dehydrogenase [ubiquinone] flavo-
protein 1(Ndufv1) increased. These changes were paralleled by a
reduction of acyl-CoA synthetase family member 2 (Acsf2),
mitochondrial delta(3,5)-delta(2,4)-dienoyl-CoA isomerase
(Ech1), hydroxyacyl-coenzyme A dehydrogenase (Hadh), trifunc-
tional enzyme subunit alpha (Hadha) and long-chain specific acyl-
CoA dehydrogenase (Acadl), whereas apolipoprotein A-1 (Apoa1)
increased.

3.1.3. Antioxidant defence and other proteins (Fig. 4A)
Overall, in aging six proteins involved in stress response were

changed, three of them decreased in old adult (3-mercaptopyr-
uvate sulfurtransferase, Mpst; protein disulfide-isomerase A3,
Pdia3; peroxiredoxin-2, Prdx2), whereas in senescent, a reduction
of the heat shock cognate 71 kDa protein (Hspa8), and increments
of glutathione S-transferase P (Gstp1), and ribonuclease inhibitor
(Rnh1) were observed.

The serpin proteins, were also significantly reduced in aging. In
particular, the serine protease inhibitor A3 K (Serpina3k), the
serine protease inhibitor A3L (serpina3l) and the two proteoforms
of the alpha-1-antiproteinase (Serpina1) were decreased. Notably,
annexin A5 (Anxa5), a desmosome associated protein, was
increased in senescent rats.

3.2. Autophagy and mitochondrial dynamics

The expression of some proteins involved in autophagy and
mitochondrial dynamics was determined by antigen-antibody
reaction in cardiac muscle protein extracts.

Autophagic process can be activated through a canonical serine/
threonine-protein kinase mTOR (mTor) and beclin1 pathway [16],
or through a non-canonical beclin1 independent system [17]. Both
pathways lead to the activation of an effector complex, which is
part of the microtubule-associated proteins 1A/1B light chain 3B
(LC3) complex.

A link between autophagy and apoptosis � programmed cell
death � is given by B-cell lymphoma protein 2 (Bcl2), which blocks
autophagy by blunting beclin1, whereas BCL2/adenovirus E1B
19 kDa protein-interacting protein 3 (Bnip3) can induce autophagy
destroying the interaction between Bcl2 and beclin1 [18].

The assessment of markers of autophagy (Fig. 5) indicated a
progressive decrement of Bnip3 with aging, whereas beclin1 was
not significantly changed among the experimental groups, and
Bcl2 increased, progressively. Likewise, the phosphorylated form
over the total amount of mTor protein (P-mTor/mTor) increased in



Fig. 2. A) Histograms of differential protein expression in cardiac tissue of old adult (22 months, gray bars) and senescent (30 months, black bars) rats, as detected by 2-D DIGE
analysis. Proteins significantly altered (ANOVA and Tukey, p < 0.01) were expressed as a ratio of spot volume variations in old adult and senescent rats versus young
(6 months) control, respectively. In rat hearts, 11 contractile and structural proteins were identified: Actc1, actin alpha cardiac muscle 1; Csrp3, cysteine and glycine-rich
protein 3; Des, desmin (2 proteoforms); Mybpc3, myosin-binding protein C (2 proteoforms); Myh6, myosin-6 (8 proteoforms); Myh7, myosin-7 (5 proteoforms); Myl4,
myosin light chain 4; Myl7, myosin regulatory light chain 2 atrial isoform; Tnni3, troponin I; Tubb4b, tubulin beta-4B chain; Vim, vimentin. For proteins having proteoforms
with opposite trends in the same group, the global protein expression was reported in frames. B) Validation of Des protein by immunoblotting in young, old adult and
senescent rat cardiac muscles. Statistical analysis was performed by Student’s t-test (n = 3; * p < 0.05). Data were normalized against the total amount of loaded proteins
stained with Sypro Ruby.
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aged rats. For autophagosome formation the expression of the
intact 18 kDa LC3 protein and of the lipidated 16 kDa LC3 form were
monitored. The 18 kDa LC3 was unchanged whereas the 16 kDa
increased progressively from old adult to senescent.

Mitochondrial morphology is controlled by monomeric
GTPases mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), which control
the external mitochondrial membrane fusion together with the
multimeric protein optic atrophy 1 (OPA1) [19]. Conversely,
dynamin-1 like protein (Dlp1) and fission protein 1 (Fis1), a
protein associated with the external mitochondrial membrane,
have an important role in fission.

Dlp1 and Fis1 decreased in both old adult and senescent (Fig. 6).
Concerning mitochondrial fusion, Mfn2 increased during aging,
particularly in senescent, suggesting a progressive increase of the
mitochondrial fusion. OPA1 showed an anomalous trend, as it
increased in old compared to young whereas decreased in
senescent. These changes observed in senescent could be
associated to increased protein degradation [10].



Fig. 3. A) Histograms of differential protein expression in cardiac tissue of old adult (22 months, gray bars) and senescent (30 months, black bars) rats, as detected by 2-D DIGE
analysis. Proteins significantly altered (ANOVA and Tukey, p < 0.01) were expressed as a ratio of spot volume variations in old adult and senescent rats versus young
(6 months) control, respectively. In rat hearts, 19 proteins of cellular metabolism were identified: Aldh2, aldehyde dehydrogenase (4 proteoforms); Eno3, beta-enolase
(2 proteoforms); Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Ldhb, L-lactate dehydrogenase B chain; Pgam2, phosphoglycerate mutase 2; Idh3a, isocitrate
dehydrogenase [NAD] subunit alpha; Coq9, ubiquinone biosynthesis protein CoQ9; Cox5b, cytochrome c oxidase subunit 5B; Etfa, electron transfer flavoprotein subunit
alpha; Etfb, electron transfer flavoprotein subunit beta; Ndufa10, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 (2 proteoforms); Ndufv1, NADH
dehydrogenase [ubiquinone] flavoprotein 1; Ckb, creatine kinase B-type; Acadl, long-chain specific acyl-CoA dehydrogenase; Acsf2, acyl-CoA synthetase family member 2;
Apoa1, apolipoprotein A-I; Ech1, delta(3,5)-delta(2,4)-dienoyl-CoA isomerase; Hadh, mitochondrial hydroxyacyl-coenzyme A dehydrogenase; Hadha, trifunctional enzyme
subunit alpha. For proteins having proteoforms with opposite trends in the same group, the global protein expression was reported in frames. B) Immunoblotting of selected
proteins (identified by proteomic analysis) in young, old adult and senescent rat cardiac muscles. Statistical analysis was performed by Student’s T-Test (n = 3; * p < 0.05). Data
were normalized against the total amount of loaded proteins stained with Sypro Ruby.

26 D. Capitanio et al. / EuPA Open Proteomics 12 (2016) 22–30
Finally, we evaluated the expression of the protein cyclophilin D
(CypD), a regulatory protein of the mitochondrial permeability
transition pore (mtPTP), which increased both in old adult and
senescent compared to young. Concerning sirtuin-3 (Sirt3), a
deacetylase involved in metabolism and resistance to stress, it was
increased in aging.

4. Discussion

The 2-D DIGE analysis highlighted changes in protein abun-
dance in aged heart tissue that involved only some specific
proteoforms of contractile proteins [20]. It should be of note that
changes followed a proportional progression with aging. The
proteomic results support the hypothesis that this animal model
could be associated with disease-free aging occurring in cen-
tenarians. Indeed, Sprague Dawley rats do not develop spontane-
ous cardiomyopathy, unlike Fisher 344 rats which are
characterized by myocardial degeneration, interstitial fibrosis
and chronic myocarditis (33% of males and 18% females) [21],
spontaneously hypertensive rats (SHR), a model of primary (or
essential) hypertension [22], or Obese Zucker rats characterized by
high levels of lipids and cholesterol and insulin-resistance.

Proteomic results indicated a prevalent down regulation of
proteins in senescent rats.



Fig. 4. A) Histograms of differential protein expression in cardiac tissue of old adult (22 months, gray bars) and senescent (30 months, black bars) rats, as detected by 2-D DIGE
analysis. Proteins significantly altered (ANOVA and Tukey, p < 0.01) were expressed as a ratio of spot volume variations in old adult and senescent rats versus young
(6 months) control, respectively. In rat hearts, 6 stress response and 4 other proteins were identified: Gstp1, glutathione S-transferase P; Hspa8, heat shock cognate 71 kDa
protein; Mpst, 3-mercaptopyruvate sulfurtransferase; Pdia3, protein disulfide-isomerase A3; Prdx2, peroxiredoxin-2; Rnh1, ribonuclease inhibitor; Anxa5, annexin A5;
Serpina1, alpha-1-antiproteinase (2 proteoforms); Serpina3k, serine protease inhibitor A3 K; Serpina3l, serine protease inhibitor A3L. B) Validation of Hspa8 protein by
immunoblotting in young, old adult and senescent rat cardiac muscles. Statistical analysis was performed by Student’s T-Test (n = 3; * p < 0.05). Data were normalized against
the total amount of loaded proteins stained with Sypro Ruby.
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Interestingly, among contractile proteins, comparing old adult
vs. young, a subunit of the myosin regulatory light chain (Myosin
regulatory light chain 2) atrial isoform was significantly down-
regulated (average ratio -6.17).

Comparing senescent and young heart extracts, the number of
differentially expressed spots increased. In particular, two proteo-
forms of myosin binding protein-C (Mybpc3) were changed in
advanced aging. Mybpc3 is a sarcomeric protein of thin filaments
that interacts with titin, myosin and actin and regulates the
assembly, the structure and function of the sarcomere and is also
involved in muscle cell regeneration. This protein has three tissue-
specific isoforms, exclusively expressed in skeletal (Mybpc1 and 2)
and heart (Mybpc3) muscles. Knockout mice for this protein have
an abnormal structure of the sarcomere with alteration in the size
of thin filaments and failure of M line in the contractile units.
Knockout mice are viable but develop cardiomyopathies and
contractile dysfunction at 3 months of age, indicating that the
Mybpc3 is necessary for proper organization of the sarcomere and
for cardiac function [23,24]. Furthermore, Mybpc3 proteoforms,
which were decreased in aged heart tissue, can be released into the
blood and become possible biomarkers of aging. It would therefore
be interesting to investigate these protein fragments in the
biological fluids of elderly subjects.

As regards metabolic proteins, acyl-CoA synthetase family
member 2 (Acsf2), which catalyzes the first reaction in the
metabolism of fatty acids, decreased in senescent vs. young. This



Fig. 5. Biochemical analysis of the autophagic process. Lower panel: Representative immunoblot images of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3),
Beclin-1, apoptosis regulator Bcl-2 (Bcl2), the phosphorylated/total amount ratio of Serine/threonine-protein kinase mTOR (P-mTor/mTor), cytosolic (18 kDa) and lipidated
(16 kDa) forms of Microtubule-associated proteins 1A/1B light chain 3B (LC3), in cardiac muscles of young (white bars), old adult (gray bars) and senescent (black bars) rats.
Upper panel: Histograms of protein expression normalized to the total protein stain (mean � SD). *Significant differences (Student’s t-test, n = 3, p < 0.05).
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result may indicate a restriction of fatty acids for the production of
ATP in senescent heart, with a consequent reduction of the energy
for heart contraction [25].

Among proteins involved in oxidative phosphorylation, some
proteoforms displayed significant variations in aging such as NADH
dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10
(Ndufa10) and NADH dehydrogenase [ubiquinone] flavoprotein 1
(Ndufv1), two subunits of the respiratory chain complex I. In
addition, CoQ9 protein (Coq9), involved in the biosynthesis of
ubiquinone (or coenzyme Q), decreased in senescent rats.
Comparative studies of different mammalian species indicated
that the amount of superoxide anion radical correlated directly to
mitochondrial CoQ9 content, and inversely to the amount of CoQ10
[26]. The strong decrement of protein Coq9 suggests a decrease of
free radicals production, enhancing the chances of healthy aging in
this model.

The mitochondrial protein aldehyde dehydrogenase (Aldh2) is
the enzyme responsible for the oxidation and detoxification of
acetaldehyde in ethanol metabolism [27,28]. The decrement of
Aldh2 protein in aging (average ratio �1.30) could be considered as
a putative marker for cellular aging to be specifically targeted.
Recent studies indicated that an over-expression of Aldh2 could
decrease the generation of ROS protecting cells from oxidative
stress [28,29]. In addition, the group of Li Rui-Jian demonstrated
that alpha-lipoic acid, a natural compound with antioxidant
properties, reduces the oxidative stress in patients with acute
coronary syndrome by increasing the antioxidant activity of Aldh2
[28].

Another class of proteins crucial in cardiac aging is represented
by serpins localized in plasma and in the extracellular matrix [30].
Serpins are inhibitors of plasminogen activator and urokinase,
blunting fibrinolysis and modulating both the coagulation
pathway and inflammation. A general decrease of alpha-1-
antiproteinase (Serpina1), serine protease inhibitor (Serpina3l)
and serine protease inhibitor A3 K (Serpina3k) was observed in our
study, candidating them as putative biomarkers of aging.



Fig. 6. Biochemical analysis of mitochondrial plasticity. Lower panel: Representative immunoblot images of Dynamin Like Protein-1 (Dlp1), Mitochondrial fission 1 protein
(Fis1), Mitofusin-2 (Mfn2), Dynamin-like 120 kDa protein (OPA1), Cyclophilin D (CypD), and NAD-dependent protein deacetylase sirtuin-3 (Sirt3) in cardiac muscles of young
(white bars), old adult (gray bars) and senescent (black bars) rats. Upper panel: Histograms of protein expression normalized to the total protein stain (mean � SD).
*Significant differences (Student’s t-test, n = 3, p < 0.05).
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Aside from proteomic results and in order to provide an
overview of the homeostasis of cardiac tissue, in line to what has
been recently observed by our group in muscle tissue [11], the
levels of Sirt3 and CypD, not detectable by the present proteomic
analysis, but known to be involved in the dysregulation of tissue
homeostasis, mitochondrial dynamics and in the muscle capacity
to clear damaged molecules, were considered.

Sirtuin-3 increment exerts a protective mechanism in the aging
of this murine model counteracting the oxidative stress [31].
Likewise, CypD increased in aging. This increment can lead to
mitochondrial permeability transition pore (mtPTP) activation,
triggering cell death. It has been recently reported that CypD
activity is controlled by acetylation [32]. In recent papers, authors
hypothesized that the hypertrophic phenotype associated with
aging in Sirt3-deleted mice is mediated by hyperactivation of the
mtPTP via acetylated CypD [32–34]. To this point, the increment of
Sirt3 deacetylase could be another important mechanism of
cardioprotection activated in this animal model.

The role of mitochondrial dynamics in aging was assessed by
quantitating some proteins involved in fission, fusion and in
autophagy by immunoblotting. As expected, a decrease in proteins
involved in fission (Fis1 and Dlp1), and an increase, albeit of
borderline significance, of fusion proteins were observed [10].
Concerning autophagy, a decrement of the mTor-beclin1-induced
signal, paralleled by an increment of LC3 suggest the presence of a
non-canonical autophagy, which is independent from mTor.
Similar results were obtained from cell cultures of centenarians,
making the use of this model reasonable [35]. It is still unclear why
the non-canonical autophagy was activated; we could assume that
it might be an adaptive mechanism to prevent the blockage of
autophagy [17].

In conclusion, aside from the typical changes of aging (i.e. a
defective activation of the classical pathway of autophagy, a
decrease in the generation of new mitochondria for fission and an
increase in the mitochondrial fusion), the activation of protective
mechanisms (such as limited ROS production, increased resistance
to apoptosis, inhibition of mtPTP opening, and activation of the
non-canonical autophagy) suggests that these elements of heart
protection could be present in disease-free aging, which occurs in
centenarians.

Further progress will be possible by comparing the pattern of
physiological aging with other models of cardiovascular disease.
The comparison will clarify if candidate biomarkers for monitoring
aging can anticipate the manifestation of heart disease or if they
themselves have a causal role. It would be desirable to translate the
results from the animal model to humans in order to identify new
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targets for the prevention or treatment of cardiovascular diseases
associated with aging.
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