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The human body seems like a “balance integrator.” On the one hand, the

body constantly actively receives various outside stimuli and signals to induce

changes. On the other hand, several internal regulations would be initiated

to adapt to these changes. In most cases, the body could keep the balance

in vitro and in vivo to reach a healthy body. However, in some cases, the body

can only get to a pathological balance. Actively exposed to unhealthy lifestyles

and passively adapting to individual primary diseases lead to a similarly inner

environment for both heart failure and cancer. To cope with these stimuli, the

body must activate the system regulation mechanism and face the mutual

interference. This review summarized the association between heart failure

and cancer from active exposure to passive adaption. Moreover, we hope

to inspire researchers to contemplate these two diseases from the angle of

overall body consideration.
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Introduction

The most hazardous and complicated diseases are heart failure and cancer. So
far, clinical and basic researchers have formed theoretical principles and related
treatments for each disease. However, according to epidemiology studies, heart failure
and cancer coexist in a similar population. Although not very comprehensive, the
new emerging Cardiac-Oncology has been set up to mainly focus on the heart
toxic during the anti-cancer treatment process. Many reviews have given excellent
summaries about their associations from the co-incidence, similar risk factors, and
correlated regulation mechanisms, which indicated some underlying clues for both
diseases (1, 2). Considering each individual as a whole study subject, heart failure and
cancer are different manifestations of physical problems but can originate from similar
physical backgrounds.

Heart failure and cancer populations tend to actively expose themselves
to similar lifestyles or have to adapt to their pre-existing physical condition
(Figure 1). These stimulations may disturb the primary balance of the individual.
They will activate several regulation systems to amend those unbalance,
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FIGURE 1

Balance in the human body. The human body keeps the balance through people actively exposing to their lifestyles, which leads to various
inter-environment. Some of them have to face their basic diseases. The body has to passively adapt to this inter-environment by arousing the
system regulation to correct those temporary unbalance or compensate to a certain pathological state. Furthermore, cancer and heart failure
have mutual interference.

even though some are not physical but pathological, such as
the neuroendocrine system, immune system, gut microbiome,
and intercellular communication via various cytokines
and molecules. Furthermore, both could produce mutual
interference during their progression and drug treatment. Our
review aims to focus on these two diseases and summarize their
correlation from active exposure to passive adaptation.

Active exposure

An unhealthy lifestyle leads to a vast significant influence
on the incidence of cardiovascular (CV) diseases and cancer.
Unfortunately, many unhealthy lifestyles exist for humans, such
as smoking, alcohol addiction, lack of physical exercise, loss of
sleep, and poor diet.

Smoking is an essential factor for heart failure and various
cancers. On the one hand, tobacco increases the risk of heart
failure (HF) by coronary artery disease-dependent mechanisms
(3). Continued smoking deteriorates the prognosis of patients

with HF, while suspending smoking could decrease the risk
of major adverse cardiac events (3). On the other hand,
smoking has essential effects on various kinds of cancers,
such as lung cancer (4), breast cancer (5), cervical cancer
(6), and liver cancer (7). The mechanisms involve several
secondary toxicities of tobacco, including irritants, carcinogens,
pro-inflammatory stimuli, and oxidizing agents (8). Among
them, nicotine contributes to the pathogenesis of CV diseases
and cancer (9, 10). It could directly depress apoptosis and
promote angiogenesis (8). Likely, smoking-related cancer is also
prevalent in patients with CV diseases (11).

Although low-to-moderate alcohol consumption might be
beneficial for cardiac function, a chronically large quantity
of ethanol consumption is toxic to the heart and vascular,
even progressing to heart failure (12). In addition, pre-
existing cardiovascular diseases may be deteriorated by alcohol
abuse, such as hypertension and cardiomyopathy. Again, about
4% of cancer in the global world is caused by alcohol
consumption (13). In addition, it could increase the risk of
digestive system cancer and sex-related cancer, such as breast
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cancer (13). Harriet Rumgay has reviewed the mechanism by
which ethanol could produce metabolite to acetaldehyde, which
could cause DNA damage and inhibit DNA synthesis and
repair (13).

Physical activity has been widely studied as a protection
factor for HF patients. Exercise can provide primary prevention
for past onset HF and secondary prevention for present HF
and can also be used as a prognostic factor for predicting the
future of HF patients (14). A meta-analysis result indicated
that high levels of total physical activity, leisure-time activity,
vigorous activity, occupational activity, walking and bicycling
combined, and cardio-respiratory fitness could reduce the
risk of heart failure (15). As a comparison, in cancer, a
systematic review compared the highest to lowest physical
activity levels and summarized that approximately 10–20%
risk reduction could be reached in bladder, breast, colon,
endometrial, esophageal adenocarcinoma, renal, and gastric
cancer (16). Again, according to 18 systematic reviews and meta-
analyses, a great deal of physical activity could reduce 40–50%
risk of all-cause and cancer-specific mortality in patients with
breast, colorectal, or prostate cancer (16). About 40% reduction
in cancer incidence and cancer-related death is benefited from
increased physical activity (17).

Sleep loss could also result in harmful outcomes, including
heart diseases, certain cancers, and all-cause mortality (18–22).
According to the data from the health and retirement study
in the United States, insomnia symptoms, both cumulatively
and individually, are associated with incident HF (23). Sleep
loss is also related to various kinds of cancer, such as neck
and head cancer (24), prostate cancer (25), and malignant brain
tumor (26). Michael et al. reported that sleep loss might activate
spontaneous cellular innate immunity (27). They hypothesize
that treatments for short sleep duration have the potential to
inhibit inflammation and decrease the risk for inflammatory
disorders and some cancers in humans (27).

The habit of diet is also crucial for people. Poor diet
is present in different ways and contexts. As we all know,
some familiar diet habits could cause acute injury and chronic
toxicity to the human body. For example, hot food would
break down the esophageal mucosa and cause esophageal
cancer (28), while moldy food would produce aflatoxin and
be associated with liver cancer (29). Furthermore, some new
evidence indicated the interaction between diet habits and the
human body. For example, an excessive high-fat diet (HFD)
would induce toxicity to the heart in rats by promoting
cardiac injury biomarker leakage into plasma and altering
heart rate and electrocardiogram pattern, as well as plasma
ion levels (30). In addition, HFD could induce apoptosis
and inflammation in rat hearts, which was supported by
detecting higher expression levels of Bax and caspase-3 and
a large amount of cardiac cellular DNA fragmentation (30).
Similarly, HFD could induce colorectal tumorigenesis by
destroying the gut barrier and leading to dysregulation of

microbial and metabolomic (31). Besides, excessive intake of
red meat is related to cancer and heart failure. According to
an umbrella review, red meat consumption was related to a
growing risk of overall cancer mortality, including non-Hodgkin
lymphoma (NHL), bladder, breast, colorectal, endometrial,
esophageal, gastric, lung, and nasopharyngeal cancer (32).
A cohort study that involved 29,682 participants found that
excessive intake of processed red meat, unprocessed red meat,
and poultry, but not fish, was significantly associated with
exposure to cardiovascular diseases and all-cause mortality
(33). On the contrary, healthy diet patterns could reduce
cancer and heart failure incidence, like adequate blood sugar
control decreases the incidence of CV disease and cancer (34).
Several famous healthy diet patterns could prevent HF. For
example, Dietary Approaches to Stop Hypertension (DASH)
advocates high potassium and low sodium, sulforaphane (SFA),
and total fat (35), while MedDiet (Mediterranean) stresses
more unsaturated fatty acids (UFA) (36), which are rich
mainly in antioxidants and anti-inflammatory nutrients, and
offers a solid and inverse correlation with cardiovascular
diseases (37). MedDiet and DASH diets are particularly rich
in plant-based foods but limited in processed foods and red
meat (38).

Passive adaption

Basic diseases: Acceptation of
imperfections

Various chronic diseases would force the human body to
passively adopt these changes and create a unique background
for populations with different diseases.

For the terms of heart, hypertension, obesity, and diabetes
mellitus (DM) are harmful to vascular and metabolism, which
would finally lead to heart failure (39–47). These changes
often start with different interrelated processes but end with
HF. Obesity and diabetes mellitus always cause damage to
the vascular by inducing inflammation and atherosclerosis
to increase vessel stiffness and peripheral vascular resistance
because of long-term immersion in high blood fatty acid and
sugar. Increased vascular resistance leads to hypertension, forms
high pressure for cardiac afterload, and forces myocardial
hypertrophy. Furthermore, a high concentration of blood fatty
acid and sugar would increase the blood volume, which
increases cardiac preload. Overall, the heart always tries to
adapt to handle increased preload and afterload, but then it
would not endure them, followed by decompensation, leading
to heart failure. Some treatments can be used to reverse such
dysfunction. For example, strict glycemic control and high-
quality insulin therapy could reduce severe cardiac dysfunction
in patients with diabetes mellitus (48). Besides, it is interesting
that there is a paradox between obesity and HF. Obese people
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are more likely to develop HF, but they have a survival advantage
(49). However, the mechanism is not very clear.

In terms of cancer, although the underlying mechanisms
are not very clear, a series of reports supported the significant
relationship between chronic diseases and cancer. A large
prospective cohort study of over 400,000 subjects indicated
that chronic diseases (CV, diabetes, chronic kidney disease,
pulmonary disease, and gouty arthritis) were independently
related to cancer incidence based on a regular risk score
(50). Moreover, the accumulative score of chronic diseases
has a dose-dependent relationship with cancer incidence and
mortality (50). For example, in patients with hypertension, a
10mmHg increment in blood pressure was associated with an
increased risk of cancer incidence (HR 1.07, 95% CI 1.04–
1.09) in men and cancer-related mortality (HR 1.12, 95% CI
1.08–1.15 and HR 1.06, 95% CI 1.02–1.11, respectively) both
in men and women (51). Obesity is associated with a chronic
pro-inflammatory state, which could induce DNA damage and
cancer incidence (52). Fatty tissue also plays the role of a sizeable
endocrine organ, which could produce a great deal of estrogen
and promotes hormone-related cancers, such as ovarian and
breast cancer (53). Furthermore, adipose tissue could secrete
many adipokines related to cellular survival. For example, leptin
was one of the well-known adipokines with cell-proliferative
effects (54), while another well-known adipokine, adiponectin,
was reported to have anti-proliferative effects (54). Besides,
insulin and insulin-like growth factors (IGF-1) were increased
in obese subjects. High levels of IGF-1 were reported to relate
to the development of cancer (55), which was hypothesized
and observed to increase cancer incidence by promoting cell
proliferation (56–58). Therefore, lowering weight or reducing
the weight loss by surgery would reduce cancer risk (59, 60).

Systematic adjustment

Immune system: Chronic inflammation
The immune system is involved in developing cancer

and HF (61, 62). Atsushi Anzai has a well-reviewed immune
system in CV diseases (63). There are several stages during
the HF process. In the early stage after myocardial infarction
(MI), different immune cells move to the injury area and
try to constrain and restore the primary damage. While
in the late stage, a low grade of chronic activation could
induce heart modification (64, 65). First, neutrophils rapidly
move to the damaged area and activate a pro-inflammatory
phase after MI. The infiltrated neutrophil population changed
along with the healing process and gradually acquired
surface lectin SiglecF (66). Then, macrophages infiltrate and
resolute the necrotic tissue and start the process of scar
formation in the coming 3–30 days. In HFpEF (heart failure
with preserved ejection fraction) heart, cardiac macrophages

induce myocardial cell death and interstitial fibrosis. Stefan
Frantz et al. have systematically reviewed the function of
macrophages in different stages of ischemic heart diseases
(67). Interestingly, macrophages show heterogeneity because
of their sources. CCR2+ (C-C chemokine receptor +)
macrophages come from embryonic, the primary resident
population in a healthy heart. However, ischemic cardiac injury
induces monocyte-derived CCR2− macrophages to infiltrate
the heart (68, 69). Engulfment results in increased fatty
acid in macrophages, activate mitochondrial respiration, and
initiate anti-inflammatory responses during the wound healing
process (68, 70). The following remodeling phase will involve
low-grade inflammation and non-infarcted myocardium, which
are regulated by cytokines and innate immune receptors. It
is a long, complicated process involving not only various
kinds of immune cells but also numerous pro-inflammatory
cytokines, which are increased and may contribute to the
development of HF (71). Activated dendritic cells induce B-
and T-cell proliferation by migrating from injury myocardium
to pericardial adipose tissue fat-associated lymphoid clusters
(FALCs) (66, 68). In response to acute injury of the heart, a
group of innate B cells within FALCs expressed a considerable
amount of granulocyte-macrophage colony-stimulating factor
(GM-CSF), induced interleukin-23 (IL23), and interleukin-17
(IL17) secreted from immune cells (66, 68). However, some
regulation mechanisms play protective effects. A subpopulation
of macrophages with GATA binding protein 6 (GATA6)
expression could inhibit excessive cardiac fibrosis (68), while
Group 2 Innate lymphoid cells (ILC2) population stimulated
by interleukin-2 (IL2) expanded in pericardial adipose tissue to
protect cardiac function (68).

In cancer, the abnormal immune system is also related to
cancer progression and metastases (72). Currently, immune
therapy focused on the immune checkpoint has obtained
spectacular results (73). However, limitations were revealed by
the wide use of these drugs. Targeting the tumor immune system
may be at the cost of deteriorating the myocardial immune
system (74). Meijers et al. reported that new-onset cancer could
be predicted by high-sensitivity C-reactive protein and mid-
regional pro-adrenomedullin (75).

Inflammation could also play a crossroads between CV
diseases and cancer. In Canakinumab Antiinflammatory
Thrombosis Outcome Study (CANTOS) trial, the interleukin-
1 (IL-1) blocker canakinumab was used to test whether IL-
1 inhibition could attenuate coronary events in future (76).
Compared with placebo, canakinumab can reduce about 25%
of major adverse CV events (HR 0.75, 95% CI 0.66–0.85)
(76). More interestingly, treatment with canakinumab could
also decrease the incidence of lung cancer and mortality in a
significant dose-dependent manner [Incidence: HR 0.33, 95% CI
0.18–0.59, P < 0.0001; Mortality: HR 0.23, 95% CI 0.10–0.54,
P = 0.0002] (77).
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Oxidative stress
Oxidative stress originates from unbalancing between

reactive oxygen species (ROS) generation and antioxidant (78),
which was defined as an excessive accumulation of ROS relating
to antioxidant defense (78). ROS can be produced through
several sources (78). Among them, mitochondria produce ROS
by transporting a single electron to molecular oxygen (78).
Mitochondrial oxidative phosphorylation provides high energy
to support the heart’s function and is involved in cancer
progression (79).

In HF, Hill and Singal reported that antioxidant deficits and
oxidative stress coexist in patients of HF after MI, which may
affect cardiac function (80). Also, ischemia or hypoxia would
induce ROS increase and be related to myocyte damage of MI
(81). Because of abnormal mitochondrial metabolism in HF,
glycolysis increases lactate production in a failing heart (82).

In cancer, altered mitochondrial metabolism promotes the
glycolysis to adapt to the rapid proliferate tumor cells. Pyruvate
dehydrogenase (PDH) and PDH kinase (PDK) are two key
modulators. PDH controls the rate of glucose oxidation, while
PDK inhibits PDH (82). Interestingly, PDK upregulation and
PDH inhibition are in both HF and tumor cells (83). On
the one hand, dichloro (a PDK inhibitor) could enhance
PDH activity to lower ischemic injury and improve cardiac
function. On the other hand, it could also reduce cancer
development (83).

Neuroendocrine: Non-coordinated activation
As we all know, the neuroendocrine system plays the

most crucial role in cardiovascular regulation. For the
cardiovascular system, there are many neurohormonal
pathways, firstly serving as a compensation mechanism,
including the renin-angiotensin-aldosterone system (RAAS),

sympathetic nervous system (SNS), and natriuretic peptides
system (NPS) (Figure 2). They could be promptly activated
to react to cardiovascular events when a certain balance
was disrupted at a sudden time. Still, gradually chronic
neuroendocrine non-coordinated activation contributes to
disease progression by promoting cardiac remodeling and
deteriorating heart function (84).

However, compared to the heart, local RAAS hormones
and receptors differ in various cancers (85). For example,
angiotensin II receptor type 1 (AT1R) increased expression
during cancer progression, while Ang II/At2R signaling exerts
the opposite effect (85) (Figure 2). Over-activity of SNS
may result in carcinogenesis via the β-arrestin-1 signaling
pathway (86). It also could induce cell proliferation through
specific molecular pathways, such as cAMP-response element
binding protein (CREB), nuclear factor-k-gene binding (NF-
kB), and activator protein-1 (AP-1) (87). Besides, it confers
resistance to apoptosis through various mechanisms, such
as inhibition of p53 (87), proapoptotic protein BAD (bcl2
associated death promoter) (88), and anoikis (89). Because of
the broad expression of β1 and β2 ARs (β1 and β2 adrenoceptor
agonists) in cancer, β-blockers might be a candidate target
for cancer treatment (90, 91). The SNS could also modify the
cancer microenvironment (92). For example, in response to the
β-adrenoceptor agonist (βAR) stimulation, tumor-associated
macrophages release prostaglandin E2 and stimulate vascular
endothelial growth factor C (VEGF-C) expression to increase
lymph and blood vessel density (93). Moreover, the SNS
could suppress natural killer cells by activating βAR activity
promoting neoplasms dissemination (94). Besides, the role of
natriuretic peptides in carcinogenesis has also been accessed
(94). In addition, N-terminal pro-brain natriuretic peptide (NT-
proBNP) has been verified to be involved in cancer progression

FIGURE 2

Neuroendocrine regulation of heart failure and cancer. Neuroendocrine system (RAAS, SNS, and NPS) is related to both heart and cancer. They
were always aroused to realize functional compensation, but following with cardiac remodeling and then leads to heart failure. In RAAS,
increased AT1R and decreased AT2R were associated with cancer progression. In SNS, various kinds of signaling pathways are related to cancer
progression (+: increased expression; -: decreased expression). In NPS, NT-proBNP could be a biomarker for monitoring anti-cancer
treatment-induced cardiotoxicity.
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and could play as a biomarker for monitoring anti-cancer drug-
induced cardiotoxicity (95).

Circulation molecules: Exosome-mediated
indirectly regulation

Microvesicles, especially exosomes, play an essential role
in various diseases. They bring nuclear acid and protein
molecules to participate in cell communication. Exosomal
miRNAs are vital in diagnosis biomarkers for certain diseases
because of the tissue specificity. For example, in the heart
of a patient with heart failure, secreted Exo-microRNA-21-5p
damages the regenerative potential of the heart (96). Exo-miR-
92b-5p has also been verified as a biomarker for HF (97).
In cancer, a massive amount of miRNAs not only regulate
cancer progression (98) but also participate in creating the
tumor microenvironment. For example, exo-miR-522 derived
from cancer-associated fibroblasts inhibited ferroptosis in the
cancer cell and led to chemoresistance in GC (gastric cancer)
(99). For example, tumor-derived exo-miR-934 can regulate
the communication between colorectal cancer cells and tumor-
associated macrophages to stimulate colorectal cancer liver
metastasis (100).

Because of tissue-specific differences, many kinds of
circulation miRNAs were studied as biomarkers of certain
diseases, such as heart failure and cancer. However, circulation
exosomal miRNAs might affect the whole body. In this review,
we summarized the function and mechanism for several kinds of
miRNAs and tried to analyze the entire effect of specific miRNAs
on both heart and cancer (Table 1).

Gut microbiome: Bidirectional regulation
The human microbiome is composed of various

microorganisms (142, 143). Bacteroidetes, Firmicutes,
Proteobacteria, and Actinobacteria are the four main bacterial
species (144). The human microbial ecosystem is not only
composed of a part of the human but also positively participates
in human health and disease by regulating the function of
the mucosal barrier, immune state, growth of pathological
organisms, and metabolisms (145–149).

Accumulating evidence indicated that changes in the gut
microbial community were involved in cardiovascular disease
(150). Coriobacteriaceae, Erysipelotrichaceae, Ruminococcaceae
(family level), and Blautia (genus level) were decreased in
chronic HF (151). Eubacterium rectal and Dorea long catena
from the Lachnospiraceae family (152) and Faecalibacterium
from the Ruminococcaceae family were decreasing in older
patients (152) and patients with HF (153). In addition, the
metabolism derived from the gut is closely related to HF.
In 2013, trimethylamine-N-oxide (TMAO) was first reported
as a predictor of CV events (154). Decreasing butyrate and
increasing TMAO have been consistently verified in heart failure
(150). TMAO accumulation stimulates platelet aggregation,

promotes foam cell formation, induces inflammation, and
reduces reverse cholesterol transport (154–157).

In contrast, the microbiome is also related to the
carcinogenesis and progression of various cancers by producing
toxic metabolites or carcinogens (158). In addition, it can
cause inflammation or immune suppression and indirectly
lead to carcinogenesis (158). In patients with CRC, the fecal
microbiota belongs to Bacteroidetes (mainly Porphyromonas
and Prevotella) and Firmicutes (mainly Enterococcus and
Streptococcus) (159). Helicobacter Pylori is GC-related bacteria.
It can suppress macrophages and T cells via protein VacA
(159) and inhibit epithelial cell apoptosis (160). Compared
to the sterile stomach in healthy individuals, the gut of GC
patients harbors a complex microbial ecosystem, including
Proteobacteria, Firmicutes, Actinobacteria, Bacteroides, and
Fusobacteriaphyla (161, 162). In liver cancer, a high-fat
diet led to the enrichment of Clostridium species and
accelerated the progression of liver cancer by producing
excess secondary BA deoxycholic acid (163). However,
growing evidence showed that bacteria could defend
gastroenteric tumors by promoting the host’s anti-tumor
immunity (164–167).

Researchers have observed massive data about the gut
microbiome changes in certain cancers or heart failure
(Figure 3). However, we lack data on cancer combined with
heart failure. The gut microbiome could not only indicate the
prognosis of cancer and heart failure but also have the potential
as probiotics to treat the two diseases. The critical point is
that the experimental design cohort should focus on combining
both cancers and heart failure so that we can find out the
categories and mechanisms of the particular gut microbiome
and consciously adjust their component to help deal with both
cancers and heart failure.

Mutual interference

The causal relationship between cancer and
heart failure

Considering the angle of the individual, it is hard
to distinguish the causal relationship between cancer and
heart failure. Apart from cancer, infection and multi-organ
failure are the second ranks of death in cancer patients
(168). However, it is still unclear about the cause of death
in advanced cancer (169). Anker et al. have proposed a
hypothesis: “advanced cancer is also a heart failure syndrome”
in their review (170). They hypothesized that cancer is
related to severe tissue inflammation, oxidative stress, and
local neurohormonal abnormal activation resulting in heart
atrophy, increasing ventricular wall stress, and arrhythmias
due to electrical instability and death (170). Furthermore,
they hypothesized that heart atrophy might be the tip of the
iceberg on the progression of loss of skeletal muscle mass
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TABLE 1 Whole effects of circulation exosomal miRNAs for both heart failure and cancers.

Exosomal
miRNA

Functions in heart failure Functions in cancers Several inspired comments or predictions for
the whole effects of both hearts and cancer

miR-92b •miR-92b-5p increased in heart failure as a biomarker (97, 101) •miR-92b suppressed CD69 on natural killer (NK) cells and
predicted the risk of post-transplant HCC (hepatocellular
carcinoma) recurrence (102);
•miR-92b was upregulated and could monitor chemoresistance in

small lung cancer (103);
•miR-92b decreased in early CRC (colorectal cancer) cancer (104).

• Increased circulation miR-92 in response to chemoresistance
might be the toxicity of anti-cancer treatment to the heart.

miR-17-92 cluster
(17/18a/20a
/19b-1/92a-1)

•miR-19a/19b related with cardiac regeneration (105);
•miR-92a increased in AHF (acute heart failure) (106);
•miR-19b-3p is a biomarker for AH (107).

•miR-17-92 cluster was related to RC (Renal Cell) cancer relapse
(108);
•miR-20a-5p was increased and correlated with recurrence of

bladder cancer (109);
•miR-17-92 cluster is increased in esophageal adenocarcinoma

and is related to progression and lymph node metastasis (110);
•miR-17-5p, diagnosis marker for non-small cell lung cancer (111);
• Tumor-derived Exo-miR-19b-3p promotes M2 macrophage

polarization and secrets Exo-LINC00273 to stimulated lung
adenocarcinoma metastasis (112);
•miR-19b-3p increased and biomarkers in prostate cancer (113).

• Increased miR-17-92 cluster members were related to the
regeneration of heart injury and the promotion of cancer
progression.
• Increased miR-19b-3p inducing M2 macrophage polarization

might lead to cardiac remodeling in one way and promote
cancer progression.

miR-21 •miR-21 could provide a diagnosis of early heart failure (114);
•miR-21 was increased and related to NT-proBNP and galectin-3

levels in acute HF combined with DM (115);
•miR-21 increased in response to an acute exhaustive exercise in

CHF (chronic heart failure) patients (116).

•miR-21-5p is associated with angiogenesis and vascular
permeability in CR (117);
•miR-21 increased in NSCLC (non-small cellular lung cancer)

patients as diagnosis and prognosis (118);
•miR-21 increased in GC patients as a detection marker (119);
•miR-21 elevated in breast cancer as an indicator (120);
•miR-21 upregulated in glioblastoma as a biomarker (121);
•miR-21 unregulated in RCC and decreased after surgery (122);
•miR-21 upregulated in gastric cancer (123).

•miR-21 increased promptly in AHF, and sensitivity to heart
function might be associated with its significant role in
angiogenesis and vascular permeability, which lead to cancer
metastasis and simultaneously induce heart regeneration.

miR-22 •miR-22 increased in heart failure, a biomarker for AHF (106);
•miR-22-5p is higher in HFrEF (heart failure with reserved ejection

fraction) patients with AF by altering Ca2 + handling and defective
cell-to-cell communication (124).

•miR-22-3p increased in NSCLC and was a biomarker for
diagnosis and drug resistance prediction (125);
•miR-22 was a biomarker for osteosarcoma (OS) diagnosis,

prognosis, and chemosensitivity prediction (126).

•miR-22 increased circulation could damage the heart function
and induce resistance to anti-cancer treatment.

miR-1306 •miR-1306-5p was positively associated with adverse clinical
outcomes in AHF (127).

•miR-1306-3p was negatively associated with the TNM (tumor
node metastasis) stage of gastric cancer and lymphatic
metastasis (128).

•miR-1306 increased indicated bad outcomes for both heart
failure and gastric cancer.

miR-30 family (30a/
30b/30c/30
d/30e)

•miR-30 family members could inhibit Ang II and reduce the
expression of inflammation molecules (129);
•miR-30 family decreasing induced increase of CTGF (connective

tissue growth factor), which could promote collagen synthesis (130);
•miR-30e-5p was a biomarker for diastolic dysfunction by altering

the endothelial cell metabolism and microvascular dysfunction (131).

•miR-30a decreased in osteosarcoma and contributed to
chemoresistance (132);
•miR-30 family inhibits breast cancer metastasis (133).

•miR-30 family might be a protective factor for anti–heart
failure and cancer because its family members decreased in
individuals would lead to heart remodeling
and cancer metastasis

miR-106a-363
cluster from X
chromosome

•miR-106a was decreased in AHF (134). •miR-106a was increased in RCC but was decreased after
surgery (122);
•miR-106a was increased in breast cancer (135);
•miR-106a was decreased in Cholangiocarcinoma (136);
• Low expression of miR-106a promotes the metastasis of prostate

cancer (137).

• The expression level of miR-106 in the heart indicated that it
might be involved in cardiac remodeling. Although the
reports were inconsistent, according to the newest review of
cancer biology (138), the proliferation of cancer cells would
be postponed when metastasis started. So miR-106 might be
related to tissue repair and proliferation.

miR-1 • Increased in response to carvedilol treatment (139);
• Downregulated in HF, a biomarker for predicting exacerbation of

HF (140).

•miR-1 was related to the changes in LVEF (left ventricular
ejection fraction) and could be a potential new biomarker of
doxorubicin-induced cardiotoxicity in breast cancer patients (141).

•miR-1 was sensitive to heart injury and could be a protective
monitor for toxicity of cancer treatment.
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FIGURE 3

Associations among gut microbiome, cancers, and heart failure. Porphyromonas, Prevotella, Enterococcus, and Streptococcus increased in
intestinal and produced DCA which lead to CRC formation and progression. Clostridium is related to HCC. Proteobacteria, Firmicutes,
Actinobacteria, Bacteroides, and Fusobacteriaphyla are related to GC. Besides, Helicobacter pylori could induce GC-related gut microbiome
which in turn lead to GC. Coriobacteriaceae, Erysipelotrichaceae, Ruminococcaceae, Blautia, and Faecalibacterium are related to heart failure
by producing TMAO and decreasing butyrate.

(170). In turn, we can also hypothesize that heart failure is
the cause of cancer. Heart failure leads to inadequate organ
perfusion, inducing tissue ischemia and hypoxia and promoting
carcinogenesis and progression. Some researchers have provided
data to support this hypothesis. For example, heart failure
patients secrete more circulating factors (serpinA3 and A1,
fibronectin, ceruloplasmin, and paraoxonase 1) to promote
cancer growth (75). For another, a meta-analysis summarized
that heart failure increased the risk of cancer incidence and
mortality (171).

Toxic to heart during the anti-cancer treatment
In a majority of anti-cancer treatments, no matter whether

for common chemotherapeutic drugs or target inhibitors, the
effects are not specific to the tumor itself. Their mechanisms
are based on cell biology, which processes in every cell, killing
cancer and causing organ damage. As we all know, the common
side effect is losing hair, vomiting, and losing weight. Besides,
the various kinds of toxicity to the heart by anti-cancer
treatments are receiving more and more attention in the present
study, which leads to the establishment of Cardio-Oncology.

In addition, the particular point is that the cardiovascular
response to cancer treatment may differ in age and sex (172–
174). Large numbers of researchers have reported related heart
toxicity mechanisms during anti-cancer treatment. Moreover,
many reviews have well summarized this part of the section
(175). We tried to list several kinds of drugs and associated
mechanisms for heart failure in Table 2.

Although many side effects on the heart have been found
during cancer treatment, some measures can be used to
reduce these side effects. For example, empagliflozin (EMPA)
could prevent doxorubicin-induced cardiotoxicity (176, 177)
by inhibiting ferroptosis, fibrosis, apoptosis, and inflammation
through nucleotide-binding oligomerization domain, leucine-
rich repeat and pyrin domain-containing 3 (NLRP3) and
myeloid differentiation factor 88 (MyD88)-related pathways
(178). Such combined treatment is deserved to be encouraged
to make more attempts.

Cancer risk and prognosis during the
cardiac-related treatment

It is challenging to clarify the relationship between CV
drugs and cancer risk. According to a large meta-analysis,
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TABLE 2 Cancer therapy-induced heart toxicity.

Anti-cancer
therapy

Anti-cancer mechanisms Side effects on heart

Anthracyclines • Inhibiting DNA replication and RNA synthesis through inhibition of
topoisomerase II (179, 180);
• Damaging DNA, proteins, and cell membrane structure by Chelating

iron ions and producing free radicals (181).

• Age and dose-dependent toxicity (182, 183);
• Oxidative stress (181, 184, 185);
• Inhibits fatty acid oxidation (186);
• Interfere cellular energetic buffering and availability of

cytoplasmic ATP (187);
• Ferroptosis (188).

Alkylating agent • Producing highly reactive alkylated groups, interacting with DNA and
protein, inhibiting cell proliferation, and inducing cell apoptosis (189, 190).

• Cardiomyocytes energy alteration (191).

ICI (Immune
checkpoint
inhibitors)

• Inducing anti-cancer response by targeting PD-1/PD-L1, CTLA-4 of T
cells (192, 193).

•Myocarditis, pericardial effusion, arrhythmias, acute coronary
syndrome, vasculitis (194).

TKI (Tyrosine
Kinase Inhibitor)

• Target BCR-ABL (breakpointcluster region-Abelson leukemia virus)
tyrosine kinases (195).

• Sex-related: Males are more sensitively to cardiac toxicity than
females (172), and females’ hearts showed more fibrosis (173);
• Affect Cxs (Connexins) 43 and 26 and induce

cardiomyopathy (172).

PI (Protease
Inhibitor)

• Binds selectively and irreversibly to the constitutive proteasome and
immunoproteasome (196).

• The mechanisms are not very clear;
•Hypothesis: NF-kB signaling induced apoptosis (196);
•Hypothesis: Down-regulate autophagy and nitric oxide

homeostasis (197).

ADC (Antibody
Drug Conjugates)

• Combined some cytotoxic drugs with a specific antibody to mediate
specific anti-cancer effects (198):
HER2 (human epidermal growth factor receptor 2)
C-MET (cellular-mesenchymal epithelial transition factor)
EGFR (epidermal growth factor receptor)
TROP-2 (Trophoblast Cell-Surface Antigen 2)
CD30 (TNF receptor superfamily member 8)
BCMA (TNF receptor superfamily member 17)

• Inhibition of signal transduction, neoangiogenesis, and repair
of DNA damage (199);
• Disrupting ErbB2/ErbB4 (erb-b2 receptor tyrosine kinase

2/erb-b2 receptor tyrosine kinase 4) and NRG-1 (neuregulin
1) signaling pathway (200).

Bispecific antibodies • Target two or more kinds of sites by cell bridging method (201):
• Anti –VEGF and anti-EGF (anti-epidermal growth factor) (202);

anti-DLL4 (anti-delta like canonical Notch ligand 4) and anti-VEGF (203);
• Anti-HER2/CD3 (anti-HER2/CD3 T cell–dependent antibodies) (204);
• Anti-C-MET and anti-PD1 (205);
• Anti-C-MET and anti-PE38KDEL (anti-truncated pseudomonas exotoxin

A) (206);
• Anti-4-1BB (anti-TNF receptor superfamily member 9) and anti-PD1

(anti- programmed cell death protein 1) (207);
• Anti-CTLA-4 (anti-Cytotoxic T Lymphocyte-Associated Antigen-4) and

anti-PD1 (208);
• Anti-CD29 (anti-integrin subunit beta 1) and anti-CD73

(anti- Ecto-5′-Nucleotidase) (209).

• CRS (Cytokine Release Syndrome) and TLS (Tumor Lysis
Syndrome) (210, 211).

angiotensin receptor blockers (ARBs), angiotensin-converting
enzyme inhibitors (ACEIs), β-blockers, diuretics, and calcium
channel blockers (CCBs) caused 5–10% cancer risk or cancer-
related death (212). However, in the other two meta-analyses,
data showed an uncertain result. In type 2 DM, the overall
occurrence of cancer was negatively related to losartan [odds
ratio (OR) 0.78, 95% CI 0.63–0.97], but was positively related to
candesartan (OR 1.79, 95% CI 1.05–3.06) and telmisartan (OR
1.54, 95% CI 0.97–2.43) (213). Although aspirin was reported to
prevent adverse events in CV diseases (214), low-dose aspirin
in a low –medium CV risk population was not associated with
a lower cancer incidence (215). The mechanisms of aspirin
are different in CV diseases and cancer. Antiplatelet effects

are the prominent mechanism of aspirin in CV diseases, while
cyclooxygenase-dependent and independent mechanisms play
the leading roles in cancer (216). Compared with control, low-
dose aspirin was related to markedly higher sensitivity for
detecting advanced colorectal neoplasms (217). In this review,
we listed several main cardiovascular drugs and cancer risk
mechanisms in Table 3.

Summary

This review discussed the relationships between heart failure
and cancer from active exposure to passive adaption. People
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TABLE 3 Cardiovascular disease treatment and cancer risk.

Research Observation
region

Cohort design Treatments Cancer type Cancer risk/Prognosis
/Mechanisms

Jinhui Li
(218)

Hong Kong 6592 anti-hypertensives
users and 84,116
anti-hypertensives users
with aspirin

Anti-hypertensives
(ACEi/ARB, CCB,
β-blocker,α-blocker)
and (or) aspirin

Lung cancer Reducing the risk of lung cancer during the
anti-hypertensives exposure period.

Seung-Hwa
Lee (219)

Korea 207,794 patients ACEI, ARB Lung cancer No difference in lung cancer incidence
between patients treatment with ACEI and
patients treatment with ARB

Diana R
Engineer
(220)

Houston 262/454 patients ACEI,ARB,BBs Stage III to IV CRC Exposure to a combination of
ACEI/ARB + BB is related to increased
survival, decreased hospitalizations, and
reduced tumor progression in advanced
colorectal cancer.

Shih-Yi Lin
(221)

Taiwan 22384 patient ACEI,ARB lung cancer Compared with ARB, ACEI increased the
risk of lung cancer.
Compared with non-ARB users, ARB users
decreased the risk of lung cancer.

Phyo T Htoo
(222)

US 532 CRC/111,533
ACEI/ARB initiators

ACEI/ARB initiators CRC No association between ACEI/ARB
initiation and the short-term CRC risk.

Oliver
William
Scott (223)

New Zealand (NZ) 14,976 women β-blocker Breast cancer BB-associated risk happened in the initial
few months.
Long-term BB use may be associated with a
lower incidence of breast cancer.

Lina Jansen
(224)

Germany 1762 CRCs vs. 1708
controls

β-blocker CRC Beta-blocker use is not related to decreased
risk of CRC.
Long-term beta-blocker use and the risk of
stage IV CRC have a positive relationship.

Lovisa
Ekestubbe
(225)

Sweden 9254 patients Metoprolol, atenolol,
bisoprolol, and other
beta-blockers.

CRC No statistically significant difference in the
risk of 90-day postoperative mortality
between common β-blockers.

actively select various lifestyles, such as smoking habits, anchor,
diet, sleep, and physical activity. These would construct a
specific internal environment to passively adapt to these stimuli
and try to keep the balance of each individual by inducing
various regulation systems, like the neuroendocrine system,
immune system, gut microbiome, and intercellular molecules
communication through microvesicle transportation. Besides,
clinical treatments used in heart failure or cancer could also
cause mutual interference with each other. The above series
of outer exposures and inner system responses will help us
better understand why these two complicated diseases always
exist in a similar population and how to coordinate various
treatments for both diseases. The best aim for curing heart
failure or cancer is not only to reduce the side effect to the
lowest level but also to reach a win–win situation for both heart
failure and cancer.
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