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Abstract
The clinical presentation of patients with schizophrenia has long been described to be very heterogeneous. Coherent
symptom profiles can probably be directly derived from behavioral manifestations quantified in medical
questionnaires. The combination of machine learning algorithms and an international multi-site dataset (n= 218
patients) identified distinctive patterns underlying schizophrenia from the widespread PANSS questionnaire. Our
clustering approach revealed a negative symptom patient group as well as a moderate and a severe group, giving
further support for the existence of schizophrenia subtypes. Additionally, emerging regression analyses uncovered the
most clinically predictive questionnaire items. Small subsets of PANSS items showed convincing forecasting
performance in single patients. These item subsets encompassed the entire symptom spectrum confirming that the
different facets of schizophrenia can be shown to enable improved clinical diagnosis and medical action in patients.
Finally, we did not find evidence for complicated relationships among the PANSS items in our sample. Our collective
results suggest that identifying best treatment for a given individual may be grounded in subtle item combinations
that transcend the long-trusted positive, negative, and cognitive categories.

Introduction
Schizophrenia psychopathology is characterized by

variability in several clinical aspects. Three symptom
groups are commonly thought to be predominant: posi-
tive, negative and cognitive1,2.
The investigation of the pathophysiological processes

leading to schizophrenia symptoms involves the use of
standardized rating scales. Various psychological instru-
ments were proposed to quantitatively describe schizo-
phrenia phenomenology. Such clinical assessment tools
include the Scale for the Assessment of Negative Symp-
toms3, the Negative Symptom Assessment4, the Scale for

the Assessment of Positive Symptoms5, the Schedule for
Deficit Syndrome6 and the Brief Psychiatric Rating Scale7.
These questionnaires were mostly developed to assess two
major dimensions of the psychopathology: the positive
and negative syndromes3,5,8–10. However, psychometric
standardization has not been attested to most of these
assessment scales11,12. The same goes for the validity of
these clinical assessment tools, including the inter-rater
reliability, the assessment that the scale's score is not
influenced by confounds of no interest, and the coherence
of its construction.
In particular, Kay and colleagues13 have developed the

Positive And Negative Syndrome Scale (PANSS) to
increase the measure's replicability and objectivity as well
as enable direct comparison between positive, negative
and more general symptom facets (i.e., cognitive, mood,
motor and thought process abnormalities symptoms).
The PANSS consists of 30 items. Each item is rated on a

© The Author(s) 2018
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Danilo Bzdok (danilo.bzdok@rwth-aachen.de)
1Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen
University, Aachen, Germany
2Jülich Aachen Research Alliance (JARA) — Translational Brain Medicine,
Aachen, Germany
Full list of author information is available at the end of the article.

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-8033-4953
http://orcid.org/0000-0002-8033-4953
http://orcid.org/0000-0002-8033-4953
http://orcid.org/0000-0002-8033-4953
http://orcid.org/0000-0002-8033-4953
http://creativecommons.org/licenses/by/4.0/
mailto:danilo.bzdok@rwth-aachen.de


seven-point severity scale. The authors have categorized
the symptoms into three dimensions. The first two item
dimensions capture the positive and negative syndromes
consisting of seven different items each. The 16 other
items constitute the third item dimension to grasp the
general psychopathology. The ensuing instrument pre-
sents specified interview guidelines and assessment cri-
teria enhancing the objectivity and replicability of the
symptom descriptions. Taken together, the specified
PANSS interview allowed enhancing inter-rater reliability,
while the inclusion of a third dimension facilitates com-
parison to other mental disturbances. These added fea-
tures may explain why the PANSS is today among the
most widely used psychometric tools for the evaluation of
schizophrenia symptoms.
Despite its widespread adoption, the structure of the

PANSS questionnaire is a topic of ongoing debate. The
current version of the PANSS questionnaire comprises
three subscales. Yet, using principal component analysis
(PCA) approaches, several authors suggested different
subscales that regroup covarying questionnaire items may
yield a better description of heterogeneous schizophrenia
symptoms14–16. Such quantitative findings have revealed a
complex and often inconsistent picture of how the PANSS
questionnaire subscales might describe psychiatric
patients. For instance, Daneluzzo and colleagues15

advanced a three-subscale subdivision of schizophrenia
symptoms, whereas Kay and Sevy17 reported a solution
with seven subscales. Nevertheless, most studies propos-
ing alternative subdivisions of the PANSS have reported
five-subscale solutions18. In other words, the collection of
previous studies revisiting the PANSS provides convin-
cing evidence for the potential of various alternative
conceptualizations of schizophrenia symptom
dimensions.
To develop and improve symptom scales, factor-

analysis procedures were an important statistical tool19.
In psychology, such multivariate techniques for identify-
ing sources of variation are often applied in the con-
struction of multi-scale questionnaires to determine
many-to-many mapping of which items belong to which
degree to which scales. Regarding the study of the PANSS
questionnaire, PCA was applied for more than half a
century to explore the underlying organization of the
PANSS questionnaire. Yet, the strong assumptions
underlying PCA (i.e., orthogonality) may for instance
preclude identification of other rich candidate descrip-
tions of capturing symptoms constellations of a given
patient with schizophrenia. Therefore, we hypothesized
that the inconsistencies in the previous questionnaire
analyses can be reconciled by expanding the repertoire of
previously used statistical tools.
Our comprehensive analytic strategy emphasized

prediction performance and thus clinical relevance. We

used approaches that concentrate on prediction to find
generalizable predictive patterns which could enable
improvements of clinical workflows. The present
investigations thus extended previous research in three
ways: First, we more comprehensively explored the
underlying organization of the PANSS questionnaire.
Second, we focused on the predictability of ques-
tionnaire item at the level of single individuals. Third,
we charted the possibility of higher-order relationships
among questionnaire items. Combined with benefits of
using a large data set, this analysis framework offers a
more complete understanding of the underlying form
and clinical predictability of the commonly used PANSS
questionnaire.

Methods
Data resources
We revisited the underlying structure of the PANSS

questionnaire based on behavioral data from eight dif-
ferent schizophrenia samples acquired in Europe and the
USA (see Supplementary Table 1 for details). The beha-
vioral assessments were collected from a total of 218
patients, including 154 males and 64 female subjects. The
distribution of the PANSS questionnaire responses in our
sample was homogeneous (Fig. 1).

Identifying the hidden item stratification: principal
component analysis
PCA is the most commonly applied data-analysis

method that was previously used to discover hidden fac-
tors of variation in the PANSS questionnaire. The
majority of previous studies revisiting the PANSS repor-
ted five-component solutions. We hence compared the
similarities between the five PCA directions extracted
from our patient sample and the five latent components
found in other psychiatric populations20–22.

Identifying hidden group structure: k-means clustering
We applied a k-means clustering algorithm to auto-

matically partition patient symptom profiles into homo-
geneous groups. In contrast to PCA, k-means is a method
identifying one-to-many mappings23: each patient is a
member of exactly one group. We used "NbClust"24, an
established R package that simultaneously applied 30
cluster validity metrics. This approach provided com-
plementary indications of the number of groups most
supported by the patient data. Among all indices (using
the method “median”) and according to the majority rule,
the best number of clusters was 3. That is, the most robust
three groups were expressed in the final clustering solu-
tion. Therefore, three patient groups of distinct symptom
profiles were automatically extracted as it provided a
useful fit to our clinical sample.
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Identifying predictive structure: sparse logistic regression
The goal of PCA and k-means was to discover inter-

esting symptoms patterns as measured by PANSS items
such as underlying structure and relationship among
schizophrenia patients. Complementing these insights in a
next step, we applied a modeling technique that empha-
sizes both prediction performance and automatic identi-
fication of the most relevant items.
To achieve this goal, we capitalized on the pattern-

learning algorithm sparse logistic regression25. The spar-
sity constraint was imposed in form of an l1 regulariza-
tion. Such a constraint in the optimization objective
automatically detects relevant features “on-the-fly” during
model estimation. The l1 penalty term, calibrated by the
hyper-parameter λ, is designed to control the parsimony
criterion and its shrinkage regularization on the learned
model weights. This penalized (negative) log likelihood of

the logistic regression objective is given by:

� 1
N

XN

i¼1

log 1þ e�yif xi;β0;βð Þ� �
þ λ βk k1

where xi represents a given patient’s PANSS scores, yi is
his/her schizophrenia severity group defined as the
median-split of his/her PANSS total score (0 as mild, 1 as
severe), β0 is the intercept, and β is the weight attached to
each questionnaire item, the right part of the equation
corresponds to the l1 penalty term controlled by the
hyper-parameter λ. The item selection behavior depends
on the choice of this tuning parameter26. The hyper-
parameter selection was based on the data in a principled
fashion using nested cross-validation. In a common grid
of candidate parameter choices, the value of λ was varied
logarithmically from 3.5 to 1.0 in log-space with 16 steps.

Fig. 1 Distribution of questionnaire responses by PANSS categories. In the examined schizophrenia patients, the item scores were summarized
by the positive, negative, and general symptom groups structuring the questionnaire. That is, we plotted the standardized items scores mean of each
symptom group (positive, negative, and general). Diagonal: the curves represent the individual distribution of the positive, negative and general
symptoms items scores. Top-right: the three scatter plots display the linear dependencies between the positive and the negative, the positive and
the general, and the general and the negative symptoms items scores and the linear regression of the data sample (with the correlation coefficient r
noted below). Lower-left: plots the density estimates between each variable. Item responses were z-scored to put them on a same par for
comparability
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The member in the model family that yielded highest
prediction accuracy (i.e., generalization performance) for
each candidate of λ was selected. In other words, the goal
here was not to select the best hyperparameter. Rather, we
charted a space of candidate λ to explicitly investigate the
transition from low to high sparsity. In this way, the
quantitative investigation detected subsets of items that
were most predictive for schizophrenia severity. Finally,
we further detailed this analysis with an examination of
the learning curve to assess the predictive model perfor-
mance as a function of increasing sample size.

Testing for complex relationships among the PANSS items
The k-means method (cf. above) extracted latent

structure dormant in the data regardless of symptom
severity measures. Sparse logistic regression (cf. above) in
turn selected the most predictive variables but this pre-
dictive algorithm was not convenient to uncover hidden
non-linear relationships between the questionnaire items.
We combined exploration of more sophisticated item-
item relationships with evaluating prediction performance
using non-linear predictive algorithms. In this way, we
tested the hypothesis of existing higher-order relation-
ships between the PANSS responses and their usefulness
for prediction. We compared the performance of linear
models to the performance of models able to exploit non-
linear structure in the questionnaires. We complemented
this analysis with accuracy–sample-size examination by
computing learning curve for each pattern-learning
model. Three linear models (ridge regression, logistic
regression, and support vector machine) were bench-
marked against three models allowing looking for higher-
order interactions (k nearest neighbor, random forest and
adaptive boosting; see Supplementary Methods for more
details). Again, schizophrenia severity was defined as the
median-split of the PANSS total score (0 as mild, 1 as
severe) representing a categorical summary of the con-
stituent continuous scores.

Code availability
All analysis scripts of the present study are readily

accessible to the reader online (https://github.com/
JLefortBesnard/Panss2018). See Supplementary Methods
for more details.

Results
Factor-structure identified with PCA
In a preparatory analysis, we replicated results from the

most often used statistical approach for latent-factor
modeling of the PANSS questionnaire administered to
schizophrenia patients (SFig. 1). Our findings from the
five-component solution were found to be virtually
identical to the previously reported findings in other
schizophrenia populations20–22.

Properties of patient groups hidden in PANSS
questionnaire
Previous research on dimensional many-to-many PCA

directions was complemented by assigning each patient to
only one dominant constellation of PANSS items in a
one-to-many fashion. Each patient was assigned to one
and only one k-means cluster. Patients within a cluster
were maximally similar, while patients from different
clusters are maximally diverging in their symptom
constellation.
This approach exposed three distinct symptom clusters

that grouped the patients: the first group harbored low
expression for each questionnaire item, the second group
included several quite prominent items scores and the
third one displayed a heavy affection on the negative scale
(Fig. 2): (i) the first group included patients who scored
rather low on most items (maximum 2 points on average).
(ii) the second group included patients who scored high
(more than 2.5 points on average) on three positive items
(delusions, hallucinatory behavior, and suspiciousness/
persecution), one negative item (difficulty in abstract
thinking) and four general items (anxiety, guilt feelings,
depression, and unusual thought content). (iii) The third
group included patients scoring high (more than 3 points
on average) on three positive items (delusions, halluci-
natory behavior, and suspiciousness/persecution), five
negative items (blunted affect, emotional withdrawal,
passive/apathetic social withdrawal, difficulty in abstract
thinking, and lack of spontaneity and flow of conversa-
tion), and three general symptom items (anxiety, depres-
sion and motor retardation).
Yet, as an exploratory pattern-discovery approach, k-

means yield clusters without formal guarantee to offer
predictive discriminability between patients that were not
part of the present schizophrenia sample27,28. A natural
next step of the present study therefore consisted in
estimating the predictability of schizophrenia severity
from PANSS questionnaire items.

Isolating the most predictive items in the PANSS
questionnaire
A predictive pattern-learning algorithm (sparse logistic

regression) was used to automatically identify item sub-
sets in the PANSS questionnaire that are most informa-
tive about telling mild versus severe schizophrenia apart
in future patients. The parsimony constraint of this sta-
tistical model allowed isolating the most important items
to make useful predictions in single psychiatric patients.
With systematically varying parsimony constraint, a series
of algorithms estimations was carried out to predict
schizophrenia severity (defined as the median-split of
the PANSS total score) based on the symptom scales
(Fig. 3a, c).
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Our analysis strategy extracted eleven of the overall 30
items as the most predictive PANSS subset and achieved
quite effective prediction of schizophrenia severity (75%
accuracy). This essential subset included two items asso-
ciated with negative symptoms (blunted affect, passive/
apathetic social withdrawal), three items associated with
positive symptoms (delusions, conceptual disorganization,
suspiciousness/persecution), two items associated with
emotional symptoms (emotional withdrawal, anxiety), one
item associated with social discomfort (guilt feelings), and
three items associated with cognitive symptoms (unusual
thought content, lack of judgment and insight, and dis-
turbance of volition).
As we relieved the parsimony constraint step-by-step,

six other solutions were found that isolated further
questionnaire items subsets predictive of schizophrenia
severity (Fig. 3b), with 16, 19, 23, 26, 27, and 30 auto-
matically selected items. These subsets reached a predic-
tion accuracy (out-of-sample prediction performance) of
81%, 85%, 88%, 88%, 90% and 90% in new patients,
respectively.

As a final step, we analyzed the learning curve to assess
the predictive model performance as a function of
increasing available sample size (SFig. 2). The perfor-
mance of the model continuously improved after the
training size exceeded 100 patients. This observation
suggested that data from more than 100 individuals are
beneficial to learn from a powerful predictive model for
schizophrenia from behavioral data. The finding also
indicated that our multi-site dataset allowed for richer
descriptions of the patterns hidden in the PANSS
questionnaire.

Testing for complex relationships among the PANSS items
The parsimony-inducing predictive algorithm was a

linear model that could only capture how each PANSS
item individually contributed to schizophrenia disease,
while statistical approaches able to appreciate non-linear
structure allow detecting items that together modulate
disease severity. To test the hypothesis of existing higher-
order interaction between the PANSS items, we compared
the prediction performance on schizophrenia severity

Fig. 2 Three patient groups with distinct symptom profiles. Three patient groups were extracted from the data using automatic clustering. Each
row represents one data-derived symptom group with a distinct profile of patients. The weights (x axis) of each bar (PANSS item on the y axis) are
automatically determined given the relative importance of the items for a particular group. The red bars are the item scores of the PANSS positive
scale in the respective cluster, the blue ones are the item scores of the PANSS negative scale and the green bars are the item scores of the PANSS
general psychopathology scale. Three different subtypes appeared: a profile including patients with low score for each item (group 3), a profile
including patients with very high scores on a number of items related to each type of symptomatology (i.e., negative, positive, and general
symptoms, group 1) and a profile including patients scoring very high on items associated with negative symptoms (group 2). In sum, these results
suggest a discriminative hidden structure in the PANSS items not only based on a dimensional but also on a categorical aspect of the PANSS
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(defined as the median-split of the PANSS total score) of
different linear models (ridge regression, logistic regres-
sion, and support vector machine) to the prediction per-
formance of different non-linear ones (k nearest neighbor,
random forest, and adaptive boosting) (Fig. 4). Further-
more, we investigated the scaling behavior of each
pattern-learning model (SFig. 3).
The three linear models—ridge regression, logistic

regression, and support vector machine—obtained on
average a better performance with respectively 93%, 92%,
and 92% accuracy. Instead, the models looking for higher-
order interactions—k nearest neighbor, random forest
and adaptive boosting—obtained on average 87%, 91%,
and 87%. Furthermore, the variance was higher for the
non-linear model performances (average standard

deviation: 4.6%) than within the linear model perfor-
mances (average standard deviation: 3.3%).
Considering the learning curve of the linear models

showed that a plateau is reached at 60 patients for two of
them (logistic regression and support vector machine)
and 130 for the ridge regression giving support to the
claim that linear models are proper to extract knowledge
in our sample size. On the same line, the k-nearest
neighbor training score started to diverge from the test
score when given more than 120 patients while the ran-
dom forest reached a plateau at 130 patients. However, it
appears clearly that adaptive boosting keeps on learning
and predicting better with more data involved in the
fitting.
As a general observation, the linear models predicted

more accurately on average with less variance on our

Fig. 3 Predictive decomposition of schizophrenia symptom profile. a Item groups: a parsimony-inducing learning algorithm was used to search
through the array of questionnaire items and extract the most parsimonious subsets of items for predicting schizophrenia severity. Profiles of the
classifier coefficients of the PANSS items are plotted on the y axis while the decreasing parsimony constraint of this statistical model (here
represented as the increasing number of items automatically selected) is plotted on the x axis. The departing lines indicate changes in the subset of
selected items (i.e., the active set). The color of each line shows the group affiliation of each questionnaire item. b Prediction accuracy retraces how
prediction performance increases step-by-step as the seven identified item subsets are added to the model. Each colored point represents a
predictive model including a specific number of selected items. c Relative item importance: item importance in the active coefficients as the
parsimony constraint becomes more lenient (left to right). This panel thus represents the relative importance of each item (y axis) as more variables
are included in the model (x axis, from left to right). In sum, the results emphasize that using a model including only eleven PANSS items,
schizophrenia severity was predicted with an accuracy only 15% below the accuracy obtained with the model including the 30 PANSS items
indicating a very high predictive power for these eleven items
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patient sample, suggesting that the PANSS items are
predominantly predictive for disease severity based on
their one-by-one scores. However, this claim might be
limited to the size of our sample and increasing the
sample size may likely improve the predictive accuracy of
non-linear models such as adaptive boosting.

Discussion
The PANSS questionnaire is pervasively used in psy-

chiatry but has been repeatedly proposed to require
revision. We provide a comprehensive characterization
for quantifying the different typologies of psychopathol-
ogy in schizophrenia patients from a multi-site data col-
lection. Furthermore, our study emphasizes the relevance
of the questionnaire as behavioral information valuable to
effectively predict schizophrenia severity in single indivi-
duals. On the one hand, we found that dimensional par-
titions are candidate fingerprints underlying discrete
schizophrenia profiles as it was emphasized in our auto-
matic structure-discovery approaches. On the other hand,
an automatic variable-selection algorithm revealed a most
important subset of eleven most predictive PANSS items.
This quintessential PANSS subset encompassed various
parts of the spectrum of schizophrenia symptoms con-
firming that the different facets of schizophrenia could be

shown as useful in robust single-subject predictions for
these psychiatric patients. Collectively, our results suggest
that some previously inconsistent findings may be
reconciled by using an extended repertoire of modern
data-analysis tools.

Extracting predictive subsets of PANSS items
As a primary focus of the present investigation, we

automatically identified the most predictive PANSS items
of schizophrenia severity. A subselection of the 30 total
PANSS items predicted schizophrenia severity with an
accuracy of 75% which is only 15% below the accuracy
obtained using the full PANSS questionnaire (90%) in our
multi-site sample of 218 patients. The eleven items
included two items associated with negative symptoms,
three items associated with positive symptoms, two items
associated with emotional symptoms, one item associated
with social discomfort, and three items associated with
cognitive symptoms. In sum, this core subset of ques-
tionnaire items was highly predictive of schizophrenia
severity and presents a quintessential summary of eleven
items tapping into parts of the whole spectrum of schi-
zophrenia symptomatology.
Over the past century, the most common practice to

understand the risk of developing a mental disorder was

Fig. 4 Probing complex relationships among the PANSS items. We explored the hypothesis that more complex patterns may explain
relationships between the different PANSS items. We thus compared the predicting performance of models looking for additive effects (left side) to
the prediction performance of models looking for higher-order effects (right side). The red violin plots display the in-sample accuracies (train set)
while the green plots display the generalization performance (test set). The width of the violins illustrates the density of the obtained performances.
For instance, the shape of the first green violin plot on the right side (skinny on each end and wide in the middle) indicates that the obtained
accuracies are highly concentrated around the median. The height of the violins indicates the variability (i.e., range of the obtained accuracies). Short
violins represent a slight while long violins represent a substantial variability. Linear models including the ridge regression (Ridge L2), the logistic
regression (LogReg L2), and the support vector machine (SVM L2) are plotted on the left side of the dashed bar. Non-linear models including the k
nearest neighbor (kNN), the random forest (RandForest) and the adaptive boosting (AdaBoost) are plotted on the right side. As a general observation,
the green violin plots of the linear models indicate on average a better performance with less variance thus appear to be more adapted to this
setting. These results suggest that the PANSS items are perhaps mostly individually predictive as much as this evidence is supported by our multi-site
patient dataset
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to look for the psychopathology's underpinnings by
investigating the contribution of each potentially
accountable variable to a specific mental disease. How-
ever, several advantages arise from predicting behavior
(i.e., to accurately forecast behaviors that have not yet
been observed) including the ability to test the relevance
of existing theories and to discover new mechanisms29.
Furthermore, a number of successful studies often
focused on prediction, rather than placing a premium on
scientific discovery. For instance, Koutsouleris and col-
leagues30 used support vector machines to predict the
clinical outcomes of individuals in at-risk mental states of
psychosis by showing relevance of predictive patterns of
whole-brain neuroanatomical abnormalities that could
forecast psychosis onset. Recently, Ramsay and collea-
gues31 performed a penalized regression variant and
found that global cognition, education, and gender were
predictive of improvement on global cognition following a
cognitive training in schizophrenia patients, while the
explanatory modeling, in the example of Pearson corre-
lation and classical linear-regression-type analyses, did
not find any relationship. Therefore, a strategy aiming at
prediction appears to be an attractive complementary
approach to enable improvements of clinical workflows.
Given the benefit of such analysis framework, we

automatically extracted the most predictive items from
the PANSS questionnaire. The eleven items highly pre-
dictive of schizophrenia severity corroborate results from
previous clinical studies. In fact, the five dimensions
underlying the psychopathology of schizophrenia often
reported in different samples20–22,32–34 are comparable
with the five symptom domains encompassed by the
eleven highly predictive items. This overlap implies that
similar underlying determinants of schizophrenia were
uncovered by the two complementing approaches (i.e., the
explanatory and the predictive strategies). In sum, these
extracted symptom constellations, corroborating previous
findings, might thus be relevant for further investigations
related to disease trajectory.
The PANSS questionnaire is a gold standard for quan-

tifying schizophrenia symptoms but has been repeatedly
noted to require further improvement: Indeed, the PANSS
questionnaire has been criticized for being lengthy35. In
fact, 30–40 min are required for the PANSS assessment13.
Our results show that assessing only a third of this
questionnaire may be sufficient for making accurate
statements about psychopathological features of schizo-
phrenia patients. This highly predictive subset of PANSS
items could help to obtain a fast diagnostic of clinical/
psychopathological severity which has several advantages.
These benefits include (i) saving clinician time without
sacrificing effectiveness, (ii) reducing the time taken for
assessing symptoms severity and thereby saving patients
time, and (iii) economic advantages such as savings in

national health expenditure, increased physician income
or reduction of physician work hours.

Extracting subgroup categories from the PANSS
Using a clustering method, three types of distinct,

clinically meaningful symptom categories emerged. A first
profile with low expression for each questionnaire item, a
second profile with some items scoring really high, and a
third profile with a heavy affection on the negative scale.
Providing evidence that a major difference between
patients is the extent of the negative symptoms, our
results also provide support for the possible clinical
effectiveness of the subtypes.
Diagnostic manuals such as the DSM and the ICD

highlight the focus on ensuring an effective communica-
tion of diagnoses between clinicians rather than capturing
diagnoses that align well with biological reality. Given that
schizophrenia is today widely acknowledged to be a
spectrum disorder, modeling schizophrenia intermediate
phenotypes (i.e., biological markers) is of great interest.
Supplementing discrete disease definition in form of
categorical and dimensional additions is an emerging
mindset among many clinicians and researchers. Given
that clinical subgroups of schizophrenia are often thought
as disjoint from each other, we opted for adding “cate-
gorical” constraint to the analysis for discovering latent
relationships between the PANSS items.
Even though PCA is the most often used statistical

framework, a few existing studies also applied a clustering
method to extract information from the PANSS. Rolls and
colleagues36 for instance, also applied a clustering method
to a sample of patients diagnosed with schizophrenia.
Three types of profile were also identified including a
positive and high negative symptoms profile, a positive
and intermediate negative symptoms profile and a positive
and low negative symptoms profile. Each profile scored
high on positive symptoms which was not the case in our
study. However, both their results and ours provide evi-
dence that the extent of negative symptoms underlies a
major difference between patients. Other authors37 also
identified three subgroups in another schizophrenia
sample identical to the three profiles that became appar-
ent in our sample with in addition a fourth subgroup
including patients scoring high only on positive items.
Here, unlike our findings, positive symptoms were rele-
vant to distinguish schizophrenia patients. Nonetheless, as
in our study, dimensional partitions as well as negative
symptoms were found to underlie discrete schizophrenia
profiles.
In sum, our results corroborate previous findings sug-

gesting latent structure in the PANSS items mostly based
on negative symptom items. Our results have repeatedly
emphasized relevance of blunted affect, apathetic social
withdrawal, and emotional withdrawal items which were
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found to be highly predictive of schizophrenia severity in
our previous analysis. Moreover, these automatically
extracted patient symptom constellations potentially
endorse the possibility of existing schizophrenia subtypes.

Exploring complex patterns in the PANSS
We investigated the idea that more elaborate statistical

relationships among questionnaire items may explain the
response variability among patients with schizophrenia.
We looked for both additive (i.e., linear) and interaction
effects. Additive effects imply that the effect produced by
two or more symptoms produce a total effect the same as
the sum of their individual effects. Interaction effects
mean that the combined effect is not additive. In fact, it is
widely assumed that higher-order interactions between
vulnerabilities triggered by the environment such as
growing up in an urbanized area38 and vulnerabilities
conferred by genes such as NRG139 are important in the
etiology of schizophrenia and may result in this major
psychiatric disorder38. Nonetheless, the very successful
genome-wide association studies (GWAS) have been
mostly grounded in additive models and thus blind to
such interaction effects. In other words, common GWAS
applications investigate the separate effect of each indi-
vidual gene on overall disease vulnerability.
To test the hypothesis of similar interaction effects at

the behavioral level as captured by PANSS responses, we
compared the prediction accuracy of models looking for
additive effects to models able to identify higher-order
effects for possible enhanced prediction performance.
Furthermore, we detailed this analysis with an examina-
tion of each model’s learning curve to assess the predictive
model performance as a function of increasing sample
size. We found that in our patient sample, PANSS ques-
tionnaire items give information about the outcome (i.e.,
schizophrenia severity) in an additive manner. Indeed, the
prediction performance obtained when looking for such
additive effects was more consistently higher than when
looking for higher-order effects. In sum, the linearity
assumption seems to be appropriate given the higher
obtained performance as indicated by currently available
schizophrenia sample sizes. Nonetheless, our results also
suggest that increasing sample size in future studies might
be beneficial to extract higher-order effects between items
of the PANSS.
Our results emphasizing additive effects between

PANSS items, as much as supported by our multi-site
patient cohort, have several clinical implications. First, to
the best of our knowledge, our study is the first appro-
priate empirical evidence that validates the strategy of
previous research of similar sample size. Indeed, previous
PANSS studies have focused on simple effects underlying
the questionnaire and our results legitimate this view.
Second, our findings support the predictive validity of the

extracted subset of highly predictive PANSS items.
Finally, these quantitative results suggest that schizo-
phrenia severity is directly proportional to the PANSS
questionnaire items. Indeed, such outcomes indicate that
simple statistical relationships (e.g., simple correlation)
underlie the PANSS items and are sufficient to extract
knowledge in such sample size. These simple processes
underlying the PANSS evaluation with its relation to
schizophrenia severity can be decomposed into parts and
reassembled into the same thing easing the interpretation.
In sum, emphasizing linear effects underlying the PANSS
questionnaire, this exploration endorses our analytic
strategy while validating the statistical design of previous
PANSS studies.

Conclusion
Our research exposes a subset of the PANSS items to be

highly effective in detecting severe schizophrenia patients.
This most predictive fraction of the PANSS items
potentially allows for pragmatic, fast and cost-effective
early intervention in schizophrenia in a future of precision
psychiatry. As another consequence of our findings,
identifying the best treatment for a given individual may
not be grounded in positive, negative, or cognitive
symptoms. Instead, subtle item combinations that trans-
cend these categories may represent a more appropriate
focus to better allocate treatment choices to a particular
patient.
Schizophrenia, as a highly variable syndrome and major

psychiatric disorder, is an important target for persona-
lized medicine. This possible future requires that pre-
vention and treatment strategies should take patient-
specific aspects of clinical symptoms into account. Putting
a premium on patient group and clinical tool predict-
ability should facilitate procedural streamlining and
enhance clinical care and alleviate economic costs. Indi-
vidualizing treatment can better allocate health-care
expenditures for treatments only effective in specific
subpopulation of schizophrenia patients. Our results offer
new quantitative insights into stratification of schizo-
phrenia populations and might help for the development
of improved clinical guidelines and workflows.
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