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Abstract: Breast cancer (BC) is the most common cancer among women and has high mortality
rates. Early detection is supposed to be critical for the patient’s prognosis. In recent years, several
studies have investigated global DNA methylation profiles and gene-specific DNA methylation in
blood-based DNA to develop putative screening markers for cancer. However, most of the studies
have not yet been validated. In our study, we analyzed the promoter methylation of RASSF1A and
ATM in peripheral blood DNA of 229 sporadic patients and 151 healthy controls by the MassARRAY
EpiTYPER assay. There were no significant differences in DNA methylation levels of RASSF1A
and ATM between the sporadic BC cases and the healthy controls. Furthermore, we performed the
Infinium HumanMethylation450 BeadChip (450K) array analysis using 48 sporadic BC cases and
48 healthy controls (cases and controls are the same from those of the MassARRAY EpiTYPER assay)
and made a comparison with the published data. No significant differences were presented in DNA
methylation levels of RASSF1A and ATM between the sporadic BC cases and the healthy controls.
So far, the evidence for powerful blood-based methylation markers is still limited and the identified
markers need to be further validated.
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1. Introduction

Breast cancer (BC) is one of the most common cancers in women worldwide [1,2]. The early detection
of breast cancer plays an important role in successful treatment and outcome. To date, mammography is
still the main screening method for breast cancer early detection. However, the limitations of this method
are noticed as tumors can only be partially identified in women (mostly young women) with dense
breasts [3,4]. Therefore, the identification of new reliable biomarkers for the screening and diagnosis of
breast cancer is urgently needed.
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Epigenetic events are critical factors in the development of human cancers [5–8]. Aberrant
methylation in the promoter regions of tumor suppressor genes is related to carcinogenesis through
transcriptional silencing of gene expression [9], leading to the initiation and progression of cancer [10,11].
Global hypomethylation and gene-specific hypermethylation were shown to be associated with
malignancy [12–14]. Several studies showed that these epigenetic changes were early events of a
variety of cancers including breast [15–17], lung [18], and colon cancer [19], and all of them could be
recognized as common hallmarks in different kinds of tumors [20]. Similar alterations also existed in
blood-derived DNA, suggesting that blood-based DNA methylation could reveal new biomarkers for
BC screening or diagnosis [21,22]. A major advantage of blood-based DNA methylation is the easy
accessibility of blood samples to investigate DNA methylation in cancer patients.

Recently, studies have been focused on two tumor suppressor genes, RAS-association domain family
member 1A (RASSF1A) and ataxia-telangiectasia mutated gene (ATM). RASSF1A takes part in apoptosis
induction, proliferation regulation, and microtubules stabilization [23]. Aberrant hypermethylation of
RASSF1A has been demonstrated in various solid tumors, including lung, prostate, ovary, and breast
cancer tissue samples [24–27]. Furthermore, a previous study has demonstrated no RASSF1A promoter
hypermethylation in peripheral blood from normal blood donors, which suggested the potential of
RASSF1A as a biomarker for cancers [28]. ATM plays a critical role in repairing DNA double-strand breaks
and is involved in numerous processes including recognition of damaged DNA, recruitment of repair
proteins, signaling to cell cycle checkpoints, transcriptional regulation, and activation of apoptosis [29].
Hypermethylation of the ATM promoter has been shown in gastric lymphoma, glioma, colonic cancer,
adenoma, and breast cancer tissue samples [30–33]. Moreover, we summarized recent studies which
investigated promoter methylation changes of RASSF1A and ATM in peripheral blood (plasma, serum,
or whole blood) from BC patients and healthy controls (see Supplementary Table S1). To our surprise,
the results of these studies were inconsistent. The promoter methylation of RASSF1A did not show a
significant difference between BC patients and healthy controls in two quantitative studies [34,35]. It is
worth noting that the sample sizes analyzed in these two studies were rather low. For ATM, two studies
reported its hypermethylation in BC patients, but the CpG sites they investigated were located in the gene
body or intragenic region instead of the promoter [36,37]. Altogether, blood-based DNA methylation of the
RASSF1A and ATM promoter remains unclear in BC patients. However, these findings reveal the potential
of RASSF1A and ATM promoter hypermethylation as novel biomarkers for cancer early detection.

Therefore, in this study, we aimed to conduct a case-control study with a large sample size to
investigate RASSF1A and ATM promoter methylation in BC patients and healthy controls. A quantitative
method, the MassARRAY EpiTYPER assay, was applied by using peripheral blood DNA in order to find
useful blood-based biomarkers for BC early detection.

In addition, we compared previously published results of blood-based DNA methylation of specific
genes found to be associated with breast cancer with our results by Infinium HumanMethylation450
BeadChip (450K) array analysis of sporadic breast cancer cases and healthy controls.

2. Results

2.1. Promoter Methylation Levels of RASSF1A and ATM in BC Patients and Healthy Controls and Its
Correlation to Clinical Characteristics

In order to investigate the promoter methylation levels of RASSF1A and ATM, we performed the
MassARRAY EpiTYPER assay by using peripheral blood DNA from BC patients and healthy controls.
Our results showed that the promoter methylation levels of RASSF1A and ATM were quite low in
both BC patients and healthy controls. In the amplicon of RASSF1A, 17 CpG sites were measured
and the average methylation levels of all these CpG sites were 0.037 and 0.042 in the BC patients and
the healthy controls, respectively. Compared to the healthy controls, no significant difference was
represented in the methylation levels of the BC patients among all these 17 CpG sites (see Table 1).
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Table 1. Comparison of RASSF1A DNA methylation between the BC patients and the healthy controls
in peripheral blood.

CpG Site Case, n Control, n BC Cases Median
(IQR)

Controls Median
(IQR) p-Value * p-Value **

RASSF1A_CpG_1 222 144 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.03 0.31
RASSF1A_CpG_8 216 134 0.00 (0.00–0.02) 0.00 (0.00–0.02) 1.00 0.76
RASSF1A_CpG_9 223 141 0.01 (0.00–0.02) 0.01 (0.00–0.03) 1.00 0.78
RASSF1A_CpG_11,12 187 121 0.13 (0.11–0.16) 0.14 (0.11–0.17) 1.00 0.38
RASSF1A_CpG_13 222 141 0.04 (0.00–0.08) 0.04 (0.00–0.08) 1.00 0.90
RASSF1A_CpG_14,15 187 121 0.13 (0.11–0.16) 0.14 (0.11–0.17) 1.00 0.35
RASSF1A_CpG_16 226 146 0.02 (0.00–0.03) 0.02 (0.02–0.03) 1.00 0.15
RASSF1A_CpG_19 216 134 0.00 (0.00–0.02) 0.00 (0.00–0.02) 1.00 0.09
RASSF1A_CpG_20 216 134 0.00 (0.00–0.02) 0.00 (0.00–0.02) 1.00 0.34
RASSF1A_CpG_21,22 226 145 0.05 (0.04–0.06) 0.05 (0.03–0.07) 0.62 0.64
RASSF1A_CpG_23 226 146 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.28 0.70
RASSF1A_CpG_24 226 145 0.03 (0.02–0.05) 0.03 (0.02–0.07) 1.00 0.79
RASSF1A_CpG_25 223 141 0.01 (0.00–0.02) 0.01 (0.00–0.03) 1.00 0.31
RASSF1A_CpG_26 226 146 0.04 (0.03–0.05) 0.04 (0.03–0.05) 1.00 0.76

MEAN 226 146 0.037 (0.029–0.048) 0.042 (0.032–0.054) 0.25 0.78

Abbreviations: IQR: interquartile range. * p-value for the difference between controls and patients was analyzed
by Mann-Whitney U test and was adjusted by Bonferroni-Holm method, α = 0.00333. ** p-value for the difference
between controls and patients was analyzed by logistic regression and was adjusted by age, α = 0.05.

As for ATM, 30 CpG sites were analyzed in its amplicon. The average methylation levels of
all investigated CpG sites of ATM were 0.047 and 0.048 in the BC patients and the healthy controls,
respectively. No visible difference was detected in the methylation levels of these CpG sites between
the BC cases and the healthy controls (see Table 2). The CpG sites of RASSF1A and ATM analyzed in
this study are shown in Supplementary Figure S1.

Table 2. Comparison of ATM DNA methylation between the BC patients and the healthy controls in
peripheral blood.

CpG Site Case, n Control, n BC Cases Median
(IQR)

Controls Median
(IQR) p-Value * p-Value **

ATM_CpG_1 222 146 0.02 (0.01–0.03) 0.02 (0.01–0.02) 1.00 0.95
ATM_CpG_2,3,4,5 142 95 0.07 (0.06–0.10) 0.07 (0.06–0.09) 1.00 0.91
ATM_CpG_6 223 146 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00 0.37
ATM_CpG_7,8 223 146 0.05 (0.03–0.06) 0.04 (0.03–0.06) 1.00 0.60
ATM_CpG_10,11 221 145 0.11 (0.10–0.13) 0.12 (0.10–0.13) 1.00 0.95
ATM_CpG_12 223 146 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00 0.94
ATM_CpG_13,14 223 146 0.03 (0.02–0.04) 0.03 (0.02–0.04) 1.00 0.43
ATM_CpG_17 219 145 0.00 (0.00–0.04) 0.01 (0.00–0.04) 1.00 0.73
ATM_CpG_18,19 223 146 0.13 (0.12–0.16) 0.14 (0.12–0.18) 0.22 0.18
ATM_CpG_20,21 223 146 0.02 (0.02–0.03) 0.02 (0.02–0.03) 1.00 0.36
ATM_CpG_26 219 146 0.06 (0.04–0.09) 0.07 (0.05–0.09) 1.00 0.21
ATM_CpG_27 223 146 0.11 (0.10–0.12) 0.11 (0.10–0.12) 1.00 0.66
ATM_CpG_28 222 146 0.02 (0.02–0.03) 0.02 (0.02–0.03) 1.00 0.75
ATM_CpG_29 223 146 0.03 (0.02–0.03) 0.03 (0.02–0.03) 1.00 0.68
ATM_CpG_32 223 145 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00 0.53
ATM_CpG_33 223 146 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00 0.15
ATM_CpG_34 223 146 0.13 (0.10–0.16) 0.14 (0.10–0.18) 1.00 0.70
ATM_CpG_35 219 145 0.00 (0.00–0.04) 0.01 (0.00–0.04) 1.00 0.78
ATM_CpG_36 223 145 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00 0.14
ATM_CpG_37 223 146 0.13 (0.10–0.16) 0.14 (0.10–0.18) 1.00 0.16
ATM_CpG_38 192 135 0.00 (0.00–0.01) 0.00 (0.00–0.01) 1.00 0.95
ATM_CpG_39 223 146 0.02 (0.01–0.04) 0.02 (0.01–0.03) 1.00 0.91

MEAN 223 146 0.047 (0.042–0.055) 0.048 (0.042–0.056) 1.00 0.37

Abbreviations: IQR: interquartile range. * p-value for the difference between controls and patients was analyzed
by Mann-Whitney U test and was adjusted by Bonferroni-Holm method, α = 0.00227. ** p-value for the difference
between controls and patients was analyzed by logistic regression and was adjusted by age, α = 0.05.

To further explore the association between the promoter methylation of RASSF1A/ATM and the
clinical characteristics of the BC patients, statistical analyses were performed. All the BC patients
were classified into different subgroups according to their clinical properties (see Table 3). To our
surprise, no significant correlation was represented between the methylation levels of all the CpG sites
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in RASSF1A or ATM amplicons and the clinical characteristics of the BC patients (see Supplementary
Tables S2 and S3).

Table 3. Characteristics of the sporadic BC patients.

Characteristics BC Patients Number (%)

Tumor, lymph node and metastasis (TNM) Stage

stage 0 1 (0.4%)
stage I 69 (30.1%)
stage II 72 (31.4%)
stage III 15 (6.6%)
stage IV 4 (1.7%)

neoadjuvant chemotherapy * 50 (21.8%)
unknown 18 (7.9%)

Type of BC

Ductal 179 (78.2%)
Lobular 13 (5.7%)

Ductal-Lobular 3 (1.3%)
ductal carcinoma in situ (DCIS) 4 (1.7%)

Others 10 (4.4%)
unknown 24 (10.5%)

Estrogen receptor (ER) Status a

negative 21 (9.2%)
positive 160 (69.9%)

unknown 48 (21.0%)

Progesterone receptor (PR) Status a

negative 36 (15.7%)
positive 145 (63.3%)

unknown 48 (21.0%)

Human epidermal growth factor receptor 2 (HER2) Status b

negative 165 (72.1%)
positive 16 (7.0%)

unknown 48 (21.0%)
a Immunoreactive score (IRS): ER/PR negative: IRS 0–2; ER/PR positive: IRS 3–12. b HER2 negative: IHC-score 0–1;
HER2 positive: IHC-score 3; If IHC-score = 2, FISH/CISH was further analyzed, HER2 is recognized as positive if it
is amplified. * Patients were treated with neoadjuvant chemotherapy, no stage is given here.

Taken together, these results demonstrated that the promoter methylation levels of RASSF1A
and ATM included in our study were not statistically different between the BC patients and the
healthy controls.

2.2. Comparison of the Results from This Study with the Results of Infinium HumanMethylation450 BeadChip
Array and with Literature

To better interpret the results of the Sequenom MassARRAY EpiTYPER assay, we also performed
an epigenome-wide Infinium HumanMethylation450 BeadChip array (450K array). In line with the
MassARRAY data, the methylation levels of all the investigated CpG sites of RASSF1A and ATM
were rather low. No significant difference was revealed in the methylation levels of RASSF1A and
ATM between the BC patients and the healthy controls. Interestingly, we identified four CpG sites of
RASSF1A and 13 CpG sites of ATM which were identical in both the Sequenom MassArray EpiTYPER
assay and the 450K array. These data confirmed the findings of our MassARRAY analysis (see Table 4).
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Table 4. Comparison of methylation levels of peripheral blood DNA between different analytical methods.

Gene
450K Results Sequenom MassARRAY EpiTYPER Assay

CpG Cases No./CTL
No. BC Cases Mean± SD CTL

Mean± SD p-Value a CpG Cases No./CTL
No.

BC Cases Median
(IQR)

CTL Median
(IQR) p-Value b

RASSF1A

cg 12966367 48/48 0.029 ± 0.005 0.027 ± 0.004 0.19 CpG_1 229/151 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.03
cg25486143 48/48 0.014 ± 0.002 0.014 ± 0.002 0.80 CpG_14 229/151 0.13 (0.11–0.16) 0.14 (0.11–0.17) 1.00
cg06172942 48/48 0.038 ± 0.007 0.038 ± 0.011 0.91 CpG_15 229/151 0.13 (0.11–0.16) 0.14 (0.11–0.17) 1.00
cg 03297783 48/48 0.015 ± 0.002 0.016 ± 0.002 0.35 CpG_19 229/151 0.00 (0.00–0.02) 0.00 (0.00–0.02) 1.00
cg08047457 * 48/48 0.030 ± 0.004 0.030 ± 0.004 0.87 CpG_2 229/151 — — —
cg25747192 * 48/48 0.043 ± 0.007 0.043 ± 0.008 0.99 CpG_3 229/151 — — —
cg21554552 * 48/48 0.031 ± 0.005 0.030 ± 0.005 0.42 CpG_4 229/151 — — —
cg27569446 * 48/48 0.012 ± 0.002 0.011 ± 0.002 0.65 CpG_5 229/151 — — —
cg04540383 * 48/48 0.032 ± 0.004 0.033 ± 0.005 0.92 CpG_18 229/151 — — —

Mean 48/48 0.204 ± 0.005 0.205 ± 0.005 0.56 Mean 229/151 0.037 (0.029–0.048) 0.042 (0.032–0.054) 0.25

ATM

cg19288979 48/48 0.075 ± 0.006 0.076 ± 0.007 0.95 CpG_1 229/151 0.02 (0.01–0.03) 0.02 (0.01–0.02) 1.00
cg10610482 48/48 0.040 ± 0.005 0.037 ± 0.005 0.31 CpG_2 229/151 0.07 (0.06–0.10) 0.07 (0.06–0.09) 1.00
cg12848864 48/48 0.051 ± 0.007 0.048 ± 0.007 0.38 CpG_4 229/151 0.07 (0.06–0.10) 0.07 (0.06–0.09) 1.00
cg03165700 48/48 0.047 ± 0.007 0.044 ± 0.005 0.16 CpG_5 229/151 0.07 (0.06–0.10) 0.07 (0.06–0.09) 1.00
cg15504467 48/48 0.027 ± 0.003 0.026 ± 0.004 0.36 CpG_6 229/151 0.00 (0.00–0.00) 0.00 (0.00–0.00) 1.00
cg05033322 48/48 0.028 ± 0.004 0.027 ± 0.003 0.82 CpG_7 229/151 0.05 (0.03–0.06) 0.04 (0.03–0.06) 1.00
cg16693212 48/48 0.033 ± 0.004 0.031 ± 0.004 0.29 CpG_8 229/151 0.05 (0.03–0.06) 0.04 (0.03–0.06) 1.00
cg15370815 48/48 0.074 ± 0.007 0.072 ± 0.007 0.60 CpG_10 229/151 0.11 (0.10–0.13) 0.12 (0.10–0.13) 1.00
cg16788234 48/48 0.052 ± 0.008 0.051 ± 0.007 0.82 CpG_11 229/151 0.11 (0.10–0.13) 0.12 (0.10–0.13) 1.00
cg24030675 48/48 0.013 ± 0.001 0.013 ± 0.001 0.58 CpG_17 229/151 0.00 (0.00–0.04) 0.01 (0.00–0.04) 1.00
cg06053805 48/48 0.012 ± 0.001 0.011 ± 0.003 0.14 CpG_18 229/151 0.13 (0.12–0.16) 0.14 (0.12–0.18) 0.22
cg06750635 48/48 0.012 ± 0.001 0.011 ± 0.001 0.69 CpG_19 229/151 0.13 (0.12–0.16) 0.14 (0.12–0.18) 0.22
cg25400013 48/48 0.016 ± 0.002 0.016 ± 0.001 0.94 CpG_21 229/151 0.02 (0.02–0.03) 0.02 (0.02–0.03) 1.00

cg20342375 * 48/48 0.021 ± 0.003 0.020 ± 0.002 0.085 CpG_9 229/151 — — —
cg22837512 * 48/48 0.023 ± 0.003 0.023 ± 0.002 0.99 CpG_15 229/151 — — —
cg18391757 * 48/48 0.025 ± 0.004 0.025 ± 0.004 0.72 CpG_22 229/151 — — —

Mean 48/48 0.236 ± 0.002 0.235 ± 0.002 0.79 Mean 229/151 0.047 (0.042–0.055) 0.048 (0.042–0.056) 1.00
a p-value was ajusted by age, batch, cell type and multiple test. b p-value for the difference between breast cancer patients and healthy controls was analyzed by Mann-Whitney U test and
was adjusted by Bonferroni-Holm method, α = 0.00333 and α = 0.00227 for RASSF1A and ATM respectively. * CpG sites were included in RASSF1A and ATM amplicons but were not
investigated by Sequenom MassARRAY EpiTYPER assay in this study. Abbreviations: CTL, control; BC, breast cancer.
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To understand the current research status on gene-specific DNA methylation in blood-based
DNA as a screening biomarker for breast cancer early detection, we reviewed recent studies which
investigated blood-based DNA methylation of BRCA1, APC, RARB, ESR1, CDH1, SYK, TIMP3, GSTP1,
DAPK, and IGF2 between BC patients and healthy controls [38]. Interestingly, the results of blood
DNA methylation levels of BRCA1, APC, RARB, ESR1, TIMP3, and GSTP1 were inconsistent among
the previous studies, but a higher frequency of methylated DAPK in peripheral DNA was reported in
BC cases compared to healthy controls in several studies (see Supplementary Table S4) [36,37,39,40].
Moreover, the methylation levels of CDH1, IGF2, and SYK were not significantly different in peripheral
blood DNA between BC cases and healthy controls according to the published data [34,35,41–44].

Next, we investigated the methylation levels of these genes by a 450K array from our own group.
Compared to the healthy controls, the methylation levels did not show a significant difference in
most of the CpG sites of these genes in the BC cases, except for a few CpG sites including BRCA1
(cg13782816), APC (cg01240931 and cg14511739), ESR1 (cg25565730), CDH1 (cg26508465), and GSTP1
(cg06841499) (see Supplementary Table S4).

3. Discussion

In this work, we conducted a large cohort case-control study to investigate the promoter
methylation changes of two tumor suppressor genes (RASSF1A and ATM) in peripheral blood DNA as
potential epigenetic markers for breast cancer risk and early detection. To our surprise, no significant
differences in the methylation level of RASSF1A and ATM in peripheral blood DNA were revealed
between BC cases and healthy controls.

RASSF1A methylation in BC patients has been analyzed by several groups using either blood
serum or blood plasma samples [39,40,45–50]. Jo-Heon Kim et al. observed significantly higher
methylation frequencies of RASSF1A in ductal carcinoma in situ (DCIS) or invasive ductal carcinoma
(IDC) than in control subjects, but the CpG sites they investigated in the RASSF1A promoter region
were different from ours [49]. In contrast, Zmetakova et al., evaluated DNA methylation profiles of the
RASSF1A promoter by pyrosequencing in invasive breast cancer. They demonstrated no significant
difference in peripheral blood DNA between BC cases and healthy controls, which was in line with
our findings [35]. Moreover, another study by Brooks et al., also showed no significant difference in
RASSF1A promoter methylation between BC cases and controls, although they used serum instead of
whole blood samples. Interestingly, the CpG sites analyzed in their study partially overlapped with
some CpG sites in our RASSF1A amplicon [51].

For ATM, we demonstrated that the promoter methylation level in peripheral blood DNA
of BC patients was not significantly different from that of healthy controls. Consistent with this,
Flanagan et al. detected no significant difference in methylation of the ATM promoter CpG islands in
white blood cell DNA between BC cases and healthy controls [36].

In fact, it is difficult to compare the results between our study and the published data, where
different techniques for methylation analysis have been used and different CpG sites have been
investigated. Moreover, depending on the technique used for quantification, methylation levels can
differ, even for the same CpG site [52]. The promoter region is located at around 100–1000 base pairs
before the transcription start sites. A length of around 100–500 base pairs can be amplified by PCR,
which means that the investigation cannot cover the entire promoter region. Currently, there is no
standard for blood DNA methylation analysis. The exact quantity of methylated CpG sites as the
biomarker for breast cancer risk remains unclear.

In our study, we chose whole blood DNA to investigate the methylation levels. Recently, the pivotal
significance of circulating tumor cells (CTCs) has been realized for breast cancer patients, even in patients
without metastases. It is possible that the whole blood was mixed by CTCs, further affecting the analysis
of RASSF1A or ATM promoter methylation. In fact, peripheral blood samples from epidemiological
studies always comprise mixed cell populations, but it is not feasible or practical to fractionate cell
populations in an epidemiological study setting [53]. At present, many studies use cell-free DNA
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(cfDNA) to investigate DNA methylation, but its low concentration and small fragments may disrupt
the detection of blood-based DNA methylation [54–56]. Even if the pooling method can improve the
concentration of cfDNA, the possible bias may still occur. In addition, the origin of cfDNA is still
uncertain and it requires more evidence to elucidate the mechanism of cfDNA release [57].

Radpour et al. demonstrated that heterogeneity of methylation changes exists in carcinogenesis,
but no single gene has been shown to be methylated in all types of breast cancer [58]. Therefore, a panel
of genes should be considered as biomarkers for breast cancer screening. Our 450K data analyzed
additional ten genes to screen for potential methylation CpG sites as biomarkers for breast cancer early
detection. The methylation levels did not show a significant difference in most of the CpG sites of
these genes in BC cases.

With the analysis of RASSF1A and ATM using the MassARRAY EpiTYPER assay, we could
confirm the results of our 450K methylation data for these two genes. However, the methylation
levels detected in our samples were quite low. We identified that the average methylation levels of
RASSF1A and ATM were at around 0.04 and 0.05, respectively. In accordance with this, a study by
Cho et al., reported that the methylation level of RASSF1A was below 4% [34]. The MassARRAY
system could detect the methylation level as low as 5% [59]. For some of the analyzed CpG sites,
no detectable quantitative value could be gained because the results were below this detection limit.
Future studies applying digital PCR techniques in next-generation sequencing (PCR/NGS)-based
analysis may improve the detection limit.

Another limitation of the 450K results was the limited sample size, which included only 48 cases
and 48 controls. Thus, larger multicenter prospective study cohorts are needed to validate these results.

In conclusion, the promoter CpG methylation status of RASSF1A and ATM in peripheral blood
included in our study was unable to distinguish between BC cases and healthy controls. Further
prospective studies should be carried out to evaluate whether RASSF1A or ATM promoter methylation
could be suitable biomarkers for breast cancer early detection [39].

4. Materials and Methods

4.1. Study Population

This study was approved by the Ethics Committee of University Hospital in Heidelberg
(S-039/2008, 27 April 2009; S-175/2010, 26 May 2010). All samples of the BC cases and the healthy
controls were obtained from centers in southwest Germany. All the enrolled patients and the healthy
controls were Caucasian and were given written informed consent. Peripheral whole-blood samples
from the BC patients were successively collected before therapeutic treatments at the University
Hospital of Heidelberg. Clinical characteristics of the BC patients were defined according to the
American Joint Committee on Cancer staging manual [60]. Detailed characteristics of the sporadic BC
cases were described in Table 3. In the group of healthy controls, peripheral whole-blood samples
were consecutively collected from blood donors at the University Hospital of Heidelberg. Donors
approved the use of their blood samples for research purposes. All the donors were healthy when
donating blood and none of them had a family history of BC. Blood samples were collected between
2011 and 2014 and a total of 229 sporadic BC patients and 151 healthy controls were randomly selected
for this study (see Table 5).

Table 5. Sample Information.

Gene Sample Type Group Number Age (y, Mean± SD)

RASSF1A Peripheral blood DNA Sporadic BC 229 48.37 ± 7.08
Controls 151 43.76 ± 14.49

ATM Peripheral blood DNA Sporadic BC 229 48.37 ± 7.08
Controls 151 43.76 ± 14.49
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4.2. DNA Isolation and Bisulfite Conversion

DNA was isolated from 200 µL aliquots of whole blood using the QIAamp DNA Blood Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. NanoDrop ND-1000
UV/Vis-Spectralphotometer 3.3 (peqLab, Erlangen, Germany) was used to measure DNA quality
and quantity. DNA bisulfite treatment was carried out using the EZ-96 DNA methylation Gold kit
(Zymo Research Corporation, Orange, CA, USA) as described by the manufacturer.

4.3. Primer Design and PCR Amplification

The PCR primers for RASSF1A and ATM amplicon sequences (see Tables 6 and 7) were designed
with the online tool “epidesigner” (http://www.epidesigner.com/start3.html). PCR was performed in
a final reaction volume of 6 µL which included bisulfite-treated DNA (10 ng/µL), CoralLoad Buffer
(10×; Qiagen, Valencia, CA, USA), forward and reverse primers (1 µM of each; Sigma, Darmstadt,
Germany), dNTPs (10 mM), and HotStar Taq DNA polymerase (5 U/µL; Qiagen, Valencia, CA, USA).
The touch-down PCR profile was 5 min of activation at 95 ◦C, 30 s of denaturation at 94 ◦C, and 30 s of
annealing at a temperature reduced from 59 ◦C to 53 ◦C (every 2 ◦C), followed by a final extension at
72 ◦C for 1 min. After a maintenance of 5 min at 72 ◦C, the reaction ended up at 4 ◦C. PCR products
were electrophoresed on 1% agarose gels and evaluated under ultraviolet light.

Table 6. Bisulfite-specific primers for the target amplicons.

Target Primer Sequence (5′-3′)

RASSF1A
sense aggaagagagGTAATGGAAATTTGGGTGTAGGGAT

antisense cagtaatacgactcactatagggagaaggctCTAACAACCCAAAATAACAAAACCA

ATM
sense aggaagagagAGGGAAAATTTTTGGTTTTAAAGGT

antisense cagtaatacgactcactatagggagaaggctCCATATCCACCAATAACCAAC

Table 7. Sequences of the target amplicons.

Amplicon Sequence (5′-3′)

RASSF1A

GCAATGGAAACCTGGGTGCAGGGACTGTGGGGCCCGAAGGCGGGGCTGGGCGCG
CTCTCGCAGAGCCCCCCCCGCCTTGCCCTTCCTTCCCTCCTTCGTCCCCTCCTCACA
CCCCACCCCGGACGGCCACAACGACGGCGACCGCAAAGCACCACGCGGAGATAC
CCGTGTTTCTGGAGGCCAGCTTTACTGTGCTAGAGGAAGAGGGTCCCCACATCCGG
CCCTGGCCCTCCTGGTCCGGTTTGCTGAAGCAACACACTTGGCCTACCCACTGGGT
GGGGCAGGAAGTCTCGAGCCTTCACTTGGGGTGAGGAGGAGGGAGATCGGTCAG
CAGCTTTACCGCCCGCTCTGCTCTCCACTGCGGAGACTGGGGCTCCGGCAGAGGC
TGGACCGTGATCTTGAGGTTCAGGGGTGCATTCTGGGTGGATTCCCTTGGCATGGG
TGGTCGGCCCTCAGCAACTGCAGCCCTCATTTGGCTCTGTCACCCTGGGCTGCCAG

ATM

AGGGAAAACCTTTGGCCTCAAAGGTCCTTCTGTCCAGCATAGCCGGGTCCAATAAC
CCTCCATCCCGCGTCCGCGCTTACCCAATACAAGCCGGGCTACGTCCGAGGGTAAC
AACATGATCAAAACCACAGCAGGAACCACAATAAGGAACAAGACTCAGGTTAAAG
CAAACACAGCGACAGCTCCTGCGCCGCATCTCCTGGTTCCAGTGGCGGCACTGAAC
TCGCGGCAATTTGTCCCGCCTCTTTCGCTTCACGGCAGCCAATCGCTTCCGCCAGAG
AAAGAAAGGCGCCGAAATGAAACCCGCCTCCGTTCGCCTTCGGAACTGTCGTCACT
TCCGTCCTCAGACTTGGAGGGGCGGGGATGAGGAGGGCGGGGAGGACGACGAGGG
CGAAGAGGGTGGGTGAGAGCCCCGGAGCCCGAGCCGAAGGGCGAGCCGCAAACG

CTAAGTCGCTGGCCATTGGTGGACATGG

4.4. Methylation Analysis

For methylation analysis, the Sequenom MassARRAY EpiTYPER assay was applied as described
previously [61]. The PCR amplicons were conducted subsequently according to the protocol of the
Sequenom EpiTYPER Assay and cleaned by Resin. A nanodispenser was used to transfer the products
to a 384 SpectroCHIP (SEQUENOM, San Diego, CA, USA). The chips were read by a Sequenom Mass
Spectrometer system (SEQUENOM, San Diego, CA, USA). Data was gathered by SpectroACQUIRE

http://www.epidesigner.com/start3.html
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v3.3.1.3 software (SEQUENOM, San Diego, CA, USA) and visualized with MassArray EpiTYPER v1.0
software (SEQUENOM, San Diego, CA, USA). Results were depicted as “beta” values (β) between 0
and 1.

4.5. 450K Methylation Study

Epigenome-wide DNA methylation profiling on 96 age matched blood DNAs from 48 sporadic BC
cases and 48 healthy controls was performed by applying Infinium HumanMethylation450 BeadChip
(450K) as described before [61]. In brief, DNA was extracted from whole blood samples. Then, the DNA
samples were bisulfate converted, purified, and applied to the BeadChips (Illumina, San Diego, CA,
USA). Image processing and data extraction were performed following Illumina’s instructions. Further
details of the 450K array analysis were given in Tang et al. [61].

4.6. Statistical Analysis

SPSS statistics 24.0 (IBM, NY, USA) was used for statistical analyses of the data. Normality of
distribution was evaluated by the Kolmogorov-Smirnoff test. Non-normally distributed data was
analyzed by the nonparametric Mann-Whitney U or Kruskal-Wallis H test. All tests were performed
two-tailed at the significance level p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/3/900/s1.
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RASSF1A RAS-association domain family member 1A gene
ATM ataxia-telangiectasia mutated gene
450K Infinium HumanMethylation450 BeadChip
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