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Complete hyperentangled-Bell-
state analysis for photonic qubits 
assisted by a three-level Λ-type 
system
Tie-Jun Wang & Chuan Wang

Hyperentangled Bell-state analysis (HBSA) is an essential method in high-capacity quantum 
communication and quantum information processing. Here by replacing the two-qubit controlled-
phase gate with the two-qubit SWAP gate, we propose a scheme to distinguish the 16 hyperentangled 
Bell states completely in both the polarization and the spatial-mode degrees of freedom (DOFs) of 
two-photon systems. The proposed scheme reduces the use of two-qubit interaction which is fragile 
and cumbersome, and only one auxiliary particle is required. Meanwhile, it reduces the requirement 
for initializing the auxiliary particle which works as a temporary quantum memory, and does not have 
to be actively controlled or measured. Moreover, the state of the auxiliary particle remains unchanged 
after the HBSA operation, and within the coherence time, the auxiliary particle can be repeatedly used 
in the next HBSA operation. Therefore, the engineering complexity of our HBSA operation is greatly 
simplified. Finally, we discuss the feasibility of our scheme with current technologies.

Entanglement plays an important role in quantum information processing (QIP)1. For example, entangled pho-
tons can act as the information carriers in quantum communication, such as quantum key distribution2,3 and 
quantum dense coding4,5. Also the entangled photons can serve as the quantum channel in quantum teleporta-
tion6, quantum secret sharing7–9 and quantum repeaters10 to connect the two neighboring nodes in a network as 
photons are regarded as the best flying qubits for QIP. The complete and deterministic analysis of the entangled 
Bell states is required in most fundamental quantum communication processes which exploit the nonlocal cor-
relation of bipartite entanglement. Unfortunately, with only linear optical elements, a complete Bell-state analysis 
(BSA) is impossible and one can obtain the optimal success probability of 75% in identifying the four Bell states 
entangled in one degree of freedom (DOF) both in theory11 and in experiments12–14. In the past decades, much 
attention has been attracted on the BSA of photonic qubits15–24.

Hyperentanglement25–28 denotes the entanglement encoded on multi-DOF of a quantum system which is 
becoming an effective way to increase the channel capacity and to improve the performance of long-distance 
quantum communication. Recently, there are many presented works on hyperentanglement QIP, such as beating 
the channel capacity limit28–32, complete deterministic entanglement purification33,34, or assisting complete 
Bell-state analysis26,27,35. The complete distinguishing of the hyperentangled Bell states is required in most funda-
mental quantum communication processes which exploits the nonlocal correlation of hyperentanglement entan-
glement, such as establishing hyperentangled channel for superdense coding29 and the multi-DOF quantum 
teleportation for single photons32. In 2007, Wei et al.36 proved that with the help of linear optics, one can only 
distinguish 7 states out of the group of 16 orthogonal hyperentangled Bell states in two DOFs, and the upper 
bound of the maximal number of mutually distinguishable n-qubit Bell-like states is −+2 1n 1 , which is true for 
n =  1 and n =  2. In 2011, Lynn et al.37 provided a more general proof of this bound for Bell-state distinguishability. 
And if nonlinear optics is introduced, these 16 orthogonal Bell states can be distinguished completely38–40. In 
2010, Sheng et al.38 proposed a scheme to distinguish the 16 hyperentangled Bell states completely with the help 
of cross-Kerr nonlinearity and discussed the application of this scheme in quantum communication. When a 
combined system composed of a single photon and a coherent probe beam passing through a cross-Kerr medium, 
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a phase shift θ is picked up on the coherent probe beam. With the action of the cross-Kerr nonlinearity, one can 
distinguish the even-parity states from the odd-parity states in spatial-mode DOF of a two-photon system with-
out destroying the two-photon system in the other DOF. Although the cross-Kerr nonlinearity in the optical 
single photon regime has been widely presumed, it remains quite controversial for the lack of experimental sup-
porting with current techniques41,42.

The artificial atom and optical cavity coupled system is an essential platform for the realization of QIP. And the 
description of the system using cavity quantum electrodynamics (QED) plays an important role for information 
exchange between static and flying qubits in quantum communication networks and it has been demonstrated 
that, even in the bad-cavity regime, a measurable nonlinear phase shift between single photons can be achieved 
in a cavity QED system43. This nonlinearity can be realized by a variety of physical systems, such as a leaky reso-
nator interacting with an atom or a quantum dot44–46. In 2010, Bonato et al.46 proposed the first proposal that uses 
interface between the photon and the spin of an electron confined in a quantum dot embedded in a microcavity 
operating for Bell-state analysis in the weak coupling regime. Also, a further incentive to study HBSA based on 
cavity coupling system lies in the recent advances of such systems39,40. In 2012, Ren et al.39 presented complete 
HBSA with the nonlinear optics based on a quantum dot(QD)-one-sided cavity system. In a one-sided cavity, due 
to the spin selection rule, the right circularly polarized light R  and the left circularly polarized light L  pick up 
two different phase shifts after being reflected from the QD-cavity system, and then, after two photons reflected 
by a cavity, the parity state of this photon pair in polarization DOF can be determined by measuring the state of 
the excess electron of the auxiliary QD without destroying the two-photon quantum system. However, in this 
work, there are four auxiliary QD-cavity coupled units which lead to in average 4 times two-qubit interactions 
between the photons and QDs, and the auxiliary QDs are all required to be prepared in a certain superposition 
spin state of the excess electron of the QDs and should be measured to read the parity information of the 
photon-pairs. In the same year, by using the double-sided QD-cavity system, Wang et al.40 presented a scheme for 
complete analysis of the hyperentangled Bell in both polarization and spatial-mode DOFs which requires only 
two auxiliary QD-cavity coupled units with 4 two-qubit interactions between the photons and QDs. In 2015, Liu 
et al.47 presented a scheme for the generation and analysis of hyperentanglement assisted by two nitrogen-vacancy 
(NV) centers in diamonds coupled with microtoroidal resonators. In these schemes, the nonlinearity between the 
photons and the auxiliary particles is used to construct the two-qubit controlled-phase operations which plays a 
critical role in HBSA protocols.

In this paper, we show that the complete differentiation of 16 hyperentangled Bell states in both polarization 
and spatial-mode DOFs for two-photon system can be efficiently achieved based on a two-qubit SWAP gate 
by using a three-level Λ -typle atom-cavity coupled unit interacting with single photons in reflection geometry. 
By replacing the usual two-qubit controlled-phase operations using the two-qubit SWAP gates, the interaction 
between the photons and the auxiliary particle is reduced to three times, and there is only one auxiliary particle 
required in our scheme. The initialization requirement of the auxiliary particle is reduced since it works as a 
temporary quantum memory and it is not required to be measured. Moreover, because the state of the auxiliary 
particle remains unchanged after the HBSA operation, within the decoherence time, the auxiliary particle can be 
repeatedly used in next HBSA operations. Compared with the previous HBSA schemes, the required experimen-
tal resource and the engineering complexity of the HBSA operation in our scheme is greatly simplified. And it is 
proved that the present scheme can both work in the weak- and strong-coupling regimes with current technolo-
gies. Finally, we discuss the feasibility of our scheme.

Results
The model of single-sided cavity and three-level Λ-type system. Here we consider the case that an 
atom is trapped in a single-sided optical cavity, and the atom is assumed to be a three-level Λ -type system 
as shown in Fig. 1. The degenerate ground states of the atom, i.e., gv  and gh , are considered to be the qubit 
states and the excited level e  to be the ancillary state. The optically allowed transitions ↔g ev  ( ↔ )g eh  

e

V H

vg hg
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outa

Figure 1. Interaction between a Λ system and a single photon propagating in one dimension. The Λ  system 
is completely deexcited through radiative decay. The optically allowed transitions ↔g ev  ( ↔ )g eh  can 
only be excited by the single V-polarized (H−polarized) photon as the selection rules. Initially, the photonic 
and atomic qubits may be in arbitrary states. After reflection, the photonic and atomic qubits can be completely 
swapped under appropriate conditions.
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can only be excited by the single V-polarized (H-polarized) photon under the selection rules. The Hamiltonian  
Ĥ  describes the interaction between the atom and the electric cavity field which is given by 

ω η= ∑ + ( − )= , ,
ˆ † †H i c c c g e c e g[ ]k h v c k k k k k k k k , here we set  = 1. ηk represents the light-matter interaction 
strength, †ck  and ck are the corresponding creation and annihilation operators for the k-polarization cavity field, 
respectively. The Hamiltonian ′Ĥ  describes the interaction between the cavity field and the input-output fiber 
mode which is given by ∫ ∫ω ω ω κ π ω ω ω′ = ∑ ′ ( ) ′ ( ) + / ′ ( ) − ′ ( )= ,

ˆ † † †H d f f i d f c f c2 [ ]k h v k k k k k k . Here ω′ ( )fk  and 
ω′ ( )†fk  are the annihilation and creation operators for the k-polarized photon in the fiber mode, and κ denotes the 

cavity-photon damping rate through the output mirror.
We assume that the atom is initially in state gk  and the incoming pulse is in the k-polarization state at the 

beginning. By considering the spontaneous emission of the exited state e  with the decay rate γ, the general time 
dependent wave function of the system can be described as48,49

( )∫∑ψ ωβ β β( ) = ( ) , , + ( ) , , + ( ) , , .
( )
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In the state , ,g n vack k , gk denotes the atomic state, vac describes the vacuum state in the fiber mode, and 0 
or 1 means that the number of the photons in the k-polarization state. It is known that β ω,k

out, β ,g k and βe can be 
obtained by solving the Heisenberg equations of motion. In the rotating frame, the input-output relation are given 
by50,51
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 represents the input filed at the input-port of the one-sided cavity. β ω,k
out is 

the amplitude of the output pulse. By linearized the Eqs (2–4), we can get
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where , ∈ ,k k h v{ } { } and ≠k k. By taking η η= = 0v h , we get the the amplitude of the two output pulse β ω, ,k
out

0 
for an uncoupled cavity (or cold cavity) where the atom does not couple to the input filed,
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When κ ω γ( , ) , we have β β= −ω ω, , ,k
out

k
in

0 . If the input photon is in resonance with the atom ω( = )0 , and the 
conditions that η η η= =v h  and η κγ

2  are satisfied, we have β β=ω ω, ,k
out

k
in  in Eq. (5).

Consider an ideal single-sided optical microcavity system (the side leakage and cavity loss can be neglected), 
when the atom is in the state gv , the V-polarized photon that interacts with the atom is reflected by the hot cavity, 
and turns the state of the atom into gh . On the other hand, the H-polarized input photon could be reflected by 
the cavity with a π phase because of the resonance between the photon and the cold cavity. When the qubit is in 
the state gh , the V-polarized photon will be reflected by the cavity with a π phase while the input photon in the 
H-polarization will transfer the states of atom into gv . The evolution rule of the photon in different polarized 
states and different atomic states are described as

, → , , , → − , ,

, → − , , , → , . ( )

H g V g H g H g
V g V g V g H g 9

h v v v

h h v h
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If the initial states of the photon and the atom are given by α β+H V  and γ ξ+g gv h , respectively, as 
illustrated in Eq. (9), the quantum states of atomic and photonic qubits are exchanged on reflection as 
α β γ ξ γ ξ α β( | 〉 + | 〉)( | 〉 + | 〉) → ( | 〉 − | 〉)( | 〉 − | 〉)H V g g V H g gh v v h . In the following, we use this system to 

implement complete hyperentangled-Bell-state analysis for the photonic systems.

The hyper-SWAP gate using three-level Λ-cavity system. The optical properties of a three-level 
Λ -type atom in a single-sided microcavity can be used to construct a hyper-SWAP gate which can exchange the 
polarization qubit and the spatial-mode qubit between two photons. With this hyper-SWAP gate, one can dis-
tinguish the 16 hyperentangled-Bell-states in spatial-mode DOF and in polarization DOF for photonic systems.

The framework of the hyper-SWAP gate circuit on the photonic qubits is shown in Fig. 2. Consider that the 
initial state of the atom is in the arbitrary state η ε τ= +g gatom h v , with ε τ+ = 12 2 . The photon pair AB 
is in an arbitrary state α β γ ξ α β γ ξ( | 〉 + | 〉) ( | 〉 + | 〉) ( | 〉 + | 〉) ( | 〉 + | 〉)H V a a H V b bA A B B1 1 1 1 1 2 2 2 2 1 2 2 , where 
α β+ = 11

2
1

2 , α β+ = 12
2

2
2 , γ ξ+ = 11

2
1

2 , and γ ξ+ = 12
2

2
2 . The photons AB are in resonance 

with the atom, and they are forwarded to the atom with sufficiently large time intervals in sequence.
The detailed description of the hyper-SWAP gate operation between the polarization qubit of the photon A 

and the spatial-mode qubit of the photon B (shown in Fig. 2) could be described as follows:
Step 1: One should exchange the quantum polarization state and the spatial-mode state of the photon B using 

the linear optical elements (the S1 gate) shown in Fig. 2(a), that is

α β γ ξ γ ξ α β( + ) ( + ) ( + ) ( + ) . ( )→H V b b H V b b 10B B
S

B B2 2 2 1 2 2 2 2 2 1 2 2
1

Here, the polarizing beam splitter (PBS) in Fig. 2(a) can transmit a horizontally polarized photon ( )H  and 
reflect a vertically polarized photon ( )V . The half-wave plates (HWPs) in Fig. 2(a) with the angle of 45° to the 
horizontal direction can flip the polarization state of the photons 

H V .
Step 2: Simultaneously, the photon A is sent into the cavity to interact with the atom which is shown in the 

dotted line of Fig. 2(b),

Figure 2. Schematic diagram for the hyper-SWAP gate using three-level Λ-cavity system. (a): Schematic 
diagram of the the S1 gate which can exchange the quantum polarization state and the spatial-mode state of the 
photon B with only the linear optical elements. The polarizing beam splitter (PBS) can transmit a horizontally 
polarized photon ( )H  and reflect a vertically polarized photon ( )V . The half-wave plates (HWPs) with the 
angle of 45° to the horizontal direction can flip the polarization state of the photons 

H V . (b,c): Inside the 
dotted line, it is the schematic diagram of S2 gate which can exchange the quantum polarization states between 
photon A and photon B using the atom-cavity coupled unit. SW represents an optical switch.
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Here SW in Fig. 2(b) represents an optical switch. After photon A interacting with the atom, the SWs lead the 
photon A into the path ′a  and the photon B is sent to the cavity to interact with the atom. Then the composite 
system of the atom and the photons AB will evolve as:

γ ξ α β ε τ

γ ξ α β

γ ξ ε τ α β

α β γ ξ

( + ) ( + ) ( − )

⊗ ( + ) ( − )
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Step 3: Following the circuits shown in the dotted line of Fig. 3(c), by using the SWs, the photon A is recycled 
and interacted with the atom again. Finally, the composite state of the system evolves as:

γ ξ ε τ α β

α β γ ξ

η γ ξ γ ξ

α β α β

− ( + ) ( − ) ( + )

⊗ ( + ) ( − )
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From Eq.(13), one can see that, by ignoring the overall phase of the photon-pair system, after the hyper-SWAP 
operation, the state of the atom remains unchanged. Meanwhile, the polarization information of photon A has 
be transferred into the the polarization DOF of the photon B, and the spatial-mode states of photon B can be 
transferred into the polarization DOF of photon A. In contrast, the polarization information of photon B has been 
transferred into the spatial-mode DOF of photon B, and the spatial-mode states of photon A remain unchanged.

Complete HBSA using hyper-SWAP gate. A hyperentangled two-photon Bell state in both polarization 
and spatial-mode DOFs could be described as

ϕ ξ η= ⊗ . ( ), 14AB
s p

AB
s

AB
p

Here, the subscripts A and B represent the two photons in the hyperentangled state. The subscript s denotes 
the spatial-mode DOF, and ξ AB

s  is one of the four Bell states in the spatial-mode DOF, which reads

φ ψ= ( ± ) , = ( ± ) ,
( )

± ±a b a b a b b a1
2

1
2 15AB

s

AB AB

s

AB1 1 2 2 1 2 1 2

where ( )a b1 1  and ( )a b2 2  are the different spatial modes for the photon A(B). The subscript p denotes the polariza-
tion DOF, and η AB

p  is one of the four Bell states in the polarization DOF, which are

φ ψ= ( ± ) , = ( ± ) ,
( )

± ±HH VV HV VH1
2

1
2 16AB

p

AB AB

p

AB

where H and V represent the horizontal and the vertical polarizations of photons, respectively.

Figure 3. The fidelity (in amplitude) functions of γ/g and κ/g at gh = gv = g and ω = 0. 
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Consider that the initial state of the atom is in an arbitrary state η atom
, and the hyperentangled photon pair 

AB is in one of the 16 hyperentangled Bell states which is described as Eq. (14). By using the hyper-SWAP gate as 
shown in Fig. 2, the 16 hyperentangled-photon Bell states evolve as:

ξ η ξ η⊗ → − ⊗ , ( )17AB
s

AB
p

A
sp

B
ps

where φ ψ= ( ± ) , = ( ± )± ±i H i V i V i Hi

sp

i i

sp

i
1
2 1 2

1
2 1 2 , and i1and i2 are the different spatial modes for 

the photon ( ∈ , )i i A B{ } . Then, as shown in Fig. 2(b,c), the photons pass through the PBS which can transmit the 
horizontal state and reflect the vertical one, and the H plate which is a half-wave plate with the angle of 22.5° 
to the horizontal direction can be used to implement the Hadamard operation in the polarization DOF 
[ → ( + ),H H V1

2
 → ( − )V H V1

2
] on the photons. By ignoring the whole phase of the system, the 

two photons state evolves as

φ φ φ φ

φ ψ φ ψ

φ φ φ φ

φ ψ φ ψ

ψ φ ψ φ

ψ ψ ψ ψ

ψ φ ψ φ

ψ ψ ψ ψ

→ , → ,

→ , → ,

→ , → ,

→ , → .

→ , → ,

→ , → ,

→ , → ,

→ , → . ( )

+ + + −

+ + + −

− + − −

− + − −

+ + + −

+ + + −

− + − −

− + − −

a H b H a H b V

a H b H a H b V

a V b H a V b V

a V b H a V b V

a H b H a H b V

a H b H a H b V

a V b H a V b V

a V b H a V b V 18

s
AB
p

A B
s

AB
p

A B
s

AB
p

A B
s

AB
p

A B

s
AB
p

A B
s

AB
p

A B

s
AB
p

A B
s

AB
p

A B
s

AB
p

A B
s

AB
p

A B
s

AB
p

A B
s

AB
p

A B

s
AB
p

A B
s

AB
p

A B

s
AB
p

A B
s

AB
p

A B

2 2 2 2

2 1 2 1

2 2 2 2

2 1 2 1

1 2 1 2

1 1 1 1

1 2 1 2

1 1 1 1

Then photons A and B can be measured independently in both the polarization and the spatial-mode DOFs 
with single-photon detectors, and the state of the atom remain unchanged. The relationship between the measure-
ment outcomes of the final states of the two photons AB and the initial hyperentangled states of the two photons 
is shown in Table 1.

From Table 1, one can obtain the complete and deterministic analysis on quantum hyperentangled Bell states. 
The final state of the photon A(B) in spatial-mode DOF determines initial parity information in the 
spatial-mode(polarization) DOF of the hyperentangled two photons, whereas the outcomes of the photon A(B)’s 
polarization states determines the phase information in the spatial-mode(polarization) DOF of the hyperentan-
gled two photons. In detail, when the photon A(B) is detected in ( )a b2 2  in the spatial-mode DOF, the photons 
AB are initially in the even-parity in the spatial-mode (polarization) DOF, that is φ±

( )

AB

s p
. Meanwhile, if the final 

state of the photon A(B) is ( )a b1 1  in the spatial-mode DOF, the photons AB are initially in the odd-parity in the 
spatial-mode (polarization) DOF, that is ψ±

( )

AB

s p
. If the polarization state of the photon A(B) is detected in 

( )
H A B

, 
the initial phase information of the hyperentangled photons AB is “+ ” in the spatial-mode (polarization) DOF; 
otherwise, the initial phase information of the hyperentangled photons AB is “− ” in the spatial-mode (polariza-
tion) DOF when the photon A(B) is detected in 

( )
V A B

. By far we have described the scheme of our HBSA using 
three-level is Λ -cavity system.

Discussion
Compared with the previous scheme from refs 39,40,47, our scheme largely simplifies the HBSA operation pro-
cess. For example, in Ren et al.‘s work39, there are four auxiliary QDs (for detecting the parity information and 
phase-information in polarization and spatial-mode DOFs of the hyperentangled photon-pair) and four auxiliary 
photons (for reading out the information encoded on the auxiliary QDs) are required for one time HBSA oper-
ation. In Liu et al.’s47 and Wang et al.’s40 schemes, there are two auxiliary artificial atomic qubits are required for 
one time HBSA operation, meanwhile, the auxiliary qubits must be prepared in a certain superposed spin state 
of the excess electron which will be measured after the HBSA operation to reveal the parity information of the 
photon-pairs. In our scheme, only one auxiliary particle is required for the 16 hyperentangled Bell states analysis, 
and the initial state of the auxiliary particle could be arbitrary of the ground states, pure or mixed. Moreover, 
within the coherent time, the auxiliary particle is not required to be measured and it can be repeatedly used in 

The photon A(B)‘s final states ξ η( )AB
s

AB
p

( )a b2 2 φ φ+ ( ) − ( )orAB
s p

AB
s p

( )a b1 1 ψ ψ+ ( ) − ( )orAB
s p

AB
s p

( )H A B φ ψ+ ( ) + ( )
orAB

s p
AB
s p

( )V A B φ ψ− ( ) − ( )orAB
s p

AB
s p

Table 1.  Relation between the final states of the photon A(B) and the corresponding initial spatial-mode 
(polarization) states of the hyperentangled photon-pair AB.
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next HBSA operations. So the experimental resource and the engineering complexity of the HBSA operation 
in our scheme is greatly simplified. According to ref. 41, exploiting the one-sided cavity system which creates 
hyper-entanglement photon-pairs and the entanglement swapping operation, two remote nodes could be linked. 
Thus the present scheme exhibits potential applications in various physical systems for the long-distance quantum 
communication.

Moreover, the decoherence effect of the atom-photon system is also required to be considered. Once the aux-
iliary atom interacts with a photon, the coherence between the atom and the photon should be remained. At 
the same time, we emphasize that the initial state of the atom could be arbitrary of the ground states, pure 
or mixed, and it would not effect on the results of the hyperentangled Bell-state analysis. This statement is 
not contradictory to the importance of the coherence of the whole system composed of the atom and photons. 
That is because, no matter what the initial state of the atom is, pure (for example, gh  or )gv  or mixed (for 
 example,  + )p g g p g gh h v v1 2 , the auxiliary atom is just used as a temporary quantum memory, and after the 
hyper-SWAP operation(Step1–Step3), the atomic state is unchanged. During the whole process of our scheme, 
the coherence of the atomic state should be maintained, but the initial state of the atom can be prepared arbitrar-
ily, pure or mixed of the ground states. This is an important difference between our scheme and other hyperentan-
gled Bell-state analysis scheme in which the auxiliary particle must be prepared in the pure state and finally 
should be measured.

In summary, we proposed an efficient HBSA scheme for photonic system by replacing the usual two-qubit 
controlled-phase operations using the two-qubit SWAP gates. The interaction times between the photons and the 
auxiliary particle is reduced to three, and only one auxiliary particle is required in our scheme. The requirement 
of the auxiliary particle is reduced since it works as temporary quantum memories and need not to be actively 
controlled or measured. Moreover, as the state of the auxiliary particle remains unchanged after the HBSA oper-
ation, the auxiliary particle can be repeatedly used in the next HBSA operations within the coherence time. 
Therefore, the engineering complexity of the HBSA operation is greatly simplified compared with the previous 
HBSA scheme. Exploiting the existing experimental data, our calculation shows that this protocol are insensitive 
to both cavity decay and atomic spontaneous emission, so it can work in the case of a larger cavity decay rate, 
i.e., the cavity with a relatively lower-Q factor. All these advantages make this scheme more feasible in practical 
applications of long-distance quantum communication and scalable quantum computing.

Methods
Average fidelities and efficiencies of the gates. In this part, we give a brief discussion about the exper-
imental implementation of our scheme. The level configuration under our consideration in Fig. 1 can be found in 
87Rb; for example, the level with F =  1 (e.g., /S52

1 2 of Rb) acts as the ground state and the excited state could be 
/P52

3 2. And Rb87  could be trapped at the center of an optical cavity52. By combining with the long trapping time 
of the atom in the cavity (typically, the atom trapping times are tens of seconds53), the atom can be considered as 
a good carrier of stationary qubits. We can calculate the fidelity and the efficiency in the case that the initial 
atomic state is gv atom

, and the initial hyperentangled photon-pair (marked with A and B) is in the state 
φ φ+ +s

AB
p . For simplicity, the input photons are assumed in resonance with the cavity. The fidelity of HBSA 

operation on the photon is F which could be described as

β β
β β β β β β β β β β β β

=
+ −

( + + + + + + + − )
.

( )
F

1 3
4 1 3 4 2 8 19

l m

l l m m l m l m m m l m

2 3 2

4 2 2 2 2 4 4 2 4 6 2 3

If the initial atomic state is gv atom
 and the initial state of the hyperentangled photon-pair AB is φ φ+ +s

AB
p , 

after S1 gate which performs the SWAP gate between the polarization and spatial-mode DOFs of the photon B, the 
state of the photon-pair AB becomes Φ = ( + + + )HHa b HVa b VHa b VVa b A B A B0

1
2 1 1 2 1 1 2 2 2 p p s s, and 

t h e n  a f t e r  t h e  i d e a l  hy p e r- S WA P  g a t e ,  t h e  s t a t e  o f  t h e  hy b i r d  s y s t e m  b e c o m e s 
Φ = − ( + ) ⊗ ( + ) ⊗Ha Va Hb Vb gA A B B v atom

1
2 1 2 1 2p s p s . However, according to Eq.(5) in the unideal 

resonance case and after the hyper-SWAP gating opertion, the state of the system composed of photon-pair AB 
and the Λ -type atom becomes

χ
β β

β β

β β
β β β

β β β β

Φ′ = − + +

+ ( − ) ⊗

− ( + )
+ ( − )( + ⊗

+ + ( − ) ⊗ , ( )

HHa b VHa b HVa b

VVa b g

HHa b VHa b
HHa b HVa b g

HVa b VHa b g

1 { [

]

[
1 ]

[ ] } 20

l l

l m A B A B v atom
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l m m A B A B h atom

m m l m A B A B v atom
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2 1
2

1 2

2 3
2 2

2 1 2 2
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2 1
2
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p p s s

and so the f idelity of the hyper-SWAP gating opertion is = Φ Φ′ =
β β

χ

+ −F 2 1 3

4
l m
2 3 2

2 ,  here 

χ β β β β β β β β β β β β= + + + + + + + − .1 3 4 2 8l l m m l m l m m m l m
4 2 2 2 2 4 4 2 4 6 2 3

The efficiency is given by β β= + − /E 1 3 2l m
2 3 . The calculated results of the fidelity and the efficiency is 

shown in Figs 3 and 4. In Fig. 3, when η η= = gh v , the atomic spontaneous emission γ and the cavity decay rate 
κ show a slight influence on the fidelity F. Even, it is of large decay rate, i.e., called bad cavity, the fidelity of the 
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entangler gate is still above 0.98 where γ κ( / , / ) ( . , )~g g 0 2 2 . Using the values of the cavity-QED parameters 
γ κ( / , / ) ( . , . )~g g 0 22 0 09 52,54, the gate fidelity is .~F 0 9999. However, in the weak coupling regime, the efficiency 

reduces rapidly. From Fig. 4, the efficiency is below 0.8 where γ κ( / , / ) ( . , )~g g 0 2 3 . Figure 5 shows that the var-
iance of the coupling strength /g gh v has a stronger influence on the fidelity. The attained fidelity is found to 
approach the ideal value when 

g gh v. However, the fidelity is larger than 0.99 with . < < .g g g0 7 1 43v h v. The 
present scheme can also be realized in other physical systems such as semiconductor quantum dots55, and super-
conducting system56 for the similar relevant levels. In general solid-state cavity-coupled system, the effective 
interaction between cavity-coupled qubits is described by the XY model or the Heisenberg exchange interaction. 
When a CPHASE gate or a CNOT gate is constructed using such interactions, generally, at least twice two-qubit 
interactions have to be invoked with complicated pulse sequences, but for a SWAP gate or iSWAP gate, only once 
two-qubit interaction is required57. Therefore, the development of SWAP-gate-based quantum algorithms would 
pave the way for an easier integration of solid-state qubits into a quantum communication network.

The challenge that two separate input light with different spatial-mode simultaneously interact with an aux-
iliary particle in cavity can be overcomed by using the optical switch at the single-photon level. One can switch 
multiple spatial modes into one light path with different time-bins, and so the single-sided cavity only interacts 
with a single spatial mode of light at different time intervals. Recently, the experimental studies of such system 
have attracted much attention, and we notice that the ultrafast all-optical switching by single photons58 has also 
been experimentally realized in QDCcavity system. Moreover, in ref. 59, the all-optical transistor which uses one 
photon to control the resonator transmission is also realized.

References
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000).
2. Ekert, A. K. Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–664 (1991).
3. Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–560 (1992).
4. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. 

Lett. 69, 2881–2884 (1992).
5. Liu, X. S., Long, G. L., Tong, D. M. & Li, F. General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 

(2002).
6. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. 

Lett. 70, 1895–1898 (1993).

Figure 4. The efficiency (in amplitude) functions of γ/g and κ/g at gh = gv = g and ω = 0. 

Figure 5. The fidelity (in amplitude) functions of the coupling strengths gh/gv at γ/gv = 0.1 and κ/gv = 2. 



www.nature.com/scientificreports/

9Scientific RepoRts | 6:19497 | DOI: 10.1038/srep19497

7. Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).
8. Xiao, L., Long, G. L., Deng, F. G. & Pan, J. W. Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004).
9. Yan, F. L. & Gao, T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 

(2005).
10. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. 

Phys. Rev. Lett. 81, 5932–5935 (1998).
11. Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A 65, 030301(R) (2002).
12. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense Ccoding in experimental quantum communication. Phys. Rev. Lett. 76, 

4656–4659 (1996).
13. Van Houwelingen, J. A. W. et al. Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006).
14. Ursin, R. et al. Communications Quantum teleportation across the Danube. Nature 430, 849 (2004).
15. Ou, Z. Y. & Mandel, L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 

61, 50–53 (1988).
16. Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical 

parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).
17. Rarity J. G. & Tapster, P. R. Experimental violation of Bells inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 

(1990).
18. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 

313–316 (2001).
19. Langford, N. K. et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004).
20. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).
21. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. 

Phys. Rev. Lett. 82, 2594–2597 (1999).
22. Strekalov, D. V., Pittman, T. B., Sergienko, A. V. & Shih, Y. H. Postselection-free energy-time entanglement. Phys.Rev. A 54, R1–R4 

(1996).
23. Yang, T. et al. All-Versus-Nothing Violation of Local Realism by Two-Photon, Four-Dimensional Entanglement. Phys. Rev. Lett. 95, 

240406 (2005).
24. Cinelli, C., Barbieri, M., Perris, R., Mataloni, P. & De Martini, F. All-versus-nothing nonlocality test of quantum mechanics by two-

photon hyperentanglement. Phys. Rev. Lett. 95, 240405 (2005).
25. Yabushita, A. & Kobayashi, T. Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A 69, 013806 (2004).
26. Barbieri, M., Vallone, G., Mataloni, P. & De Martini, F. Complete and deterministic discrimination of polarization Bell states assisted 

by momentum entanglement. Phys. Rev. A 75, 042317 (2007).
27. Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete Deterministic Linear Optics Bell State Analysis. Phys. Rev. Lett. 96, 

190501 (2006).
28. Barreiro, J. T., Wei, T. C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics 4, 

282–286 (2008).
29. Wang, C. et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 

(2005).
30. Bruss, D. & Macchiavello, C. Optimal Eavesdropping in Cryptography with Three-Dimensional Quantum States. Phys. Rev. Lett. 88, 

127901 (2002).
31. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of Quantum Key Distribution Using d -Level Systems. Phys. Rev. Lett. 

88, 127902 (2002).
32. Wang X. -L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
33. Sheng, Y. B. & Deng, F. G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with 

hyperentanglement. Phys. Rev. A 81, 032307 (2010).
34. Sheng, Y. B. & Deng, F. G. One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 

82, 044305 (2010).
35. Walborn, S. P., Pádua, S. & Monken, C. H. Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003).
36. Wei, T. C., Barreiro, J. T. & Kwiat, P. G. Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305(R) (2007).
37. Pisenti, N., Gaebler, C. P. E. & Lynn, T. W. Distinguishability of hyperentangled Bell states by linear evolution and local projective 

measurement. Phys. Rev. A 84, 022340 (2011).
38. Sheng, Y. B., Deng, F. G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 

032318 (2010).
39. Ren, B. C., Wei, H. R., Hua, M., Li, T. & Deng, F. G. Complete hyperentangled-Bell-state analysis for photon systems assisted by 

quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012).
40. Wang, T. J., Lu, Y. & Long, G. L. Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-

dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012).
41. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).
42. Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 

043823 (2010).
43. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. 

Phys. Rev. Lett. 75, 4710–4713 (1995).
44. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 

127902 (2004).
45. Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008).
46. Bonato, C. et al. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).
47. Liu, Q. & Zhang, M. Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers 

in resonators. Phys. Rev. A 91, 062321 (2015).
48. Law, C. K., Zhu, S. Y. & Zubairy, M. S. Modification of a vacuum Rabi splitting via a frequency-modulated cavity mode. Phys. Rev. A 

52, 4095–4098 (1995).
49. Wei, L. F., Liu,Y. X., Sun, C. P. & Franco, N. Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? 

Phys. Rev. Lett. 97, 237201 (2006).
50. Koshino, K., Ishizaka, S. & Nakamura Y. Deterministic photon-photon SWAP  gate using a Λ  system. Phys. Rev. A 82, 010301(R) 

(2010).
51. Song, J., Xia, Y. & Song, H. S. Quantum gate operations using atomic qubits through cavity input-output process. Europhysics lett. 

87, 50005 (2009).
52. Sauer, J. A. et al. Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804(R) (2004).
53. Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a Ssingle atom at the center of an optical cavity. Phys. Rev. 

Lett. 110, 223003 (2013).
54. Zhang, X. L., Gao, K. L. & Feng, M. Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics. 

Phys. Rev. A 75, 034308 (2007).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:19497 | DOI: 10.1038/srep19497

55. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).
56. You, J. Q. & Nori, F. Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005).
57. Tanamoto, T., Maruyama, K., Liu, Y., Hu, X. & Nori, F. Efficient purification protocols using iSWAP gates in solid-state qubits. Phys. 

Rev. A 78, 062313 (2008).
58. Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photonics 6,605–609 (2012).
59. Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341,768–770 (2013).

Acknowledgements
This work is supported by China National Natural Science Foundation Grant Nos. 61205117, 61471050, and 
11404031, Beijing Higher Education Young Elite Teacher Project No. YETP0456, and the State Key Laboratory 
of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

Author Contributions
T.W. and C.W. wrote the main manuscript text, T.W. prepared figures 1–4. All the authors reviewed the 
manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, T.-J. and Wang, C. Complete hyperentangled-Bell-state analysis for photonic 
qubits assisted by a three-level Λ-type system. Sci. Rep. 6, 19497; doi: 10.1038/srep19497 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level Λ-type system
	Results
	The model of single-sided cavity and three-level Λ-type system. 
	The hyper-SWAP gate using three-level Λ-cavity system. 
	Complete HBSA using hyper-SWAP gate. 

	Discussion
	Methods
	Average fidelities and efficiencies of the gates. 

	Acknowledgements
	Author Contributions
	Figure 1.  Interaction between a Λ system and a single photon propagating in one dimension.
	Figure 2.  Schematic diagram for the hyper-SWAP gate using three-level Λ-cavity system.
	Figure 3.  The fidelity (in amplitude) functions of γ/g and κ/g at gh = gv = g and ω = 0.
	Figure 4.  The efficiency (in amplitude) functions of γ/g and κ/g at gh = gv = g and ω = 0.
	Figure 5.  The fidelity (in amplitude) functions of the coupling strengths gh/gv at γ/gv = 0.
	Table 1.   Relation between the final states of the photon A(B) and the corresponding initial spatial-mode (polarization) states of the hyperentangled photon-pair AB.



 
    
       
          application/pdf
          
             
                Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level Λ-type system
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19497
            
         
          
             
                Tie-Jun Wang
                Chuan Wang
            
         
          doi:10.1038/srep19497
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19497
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19497
            
         
      
       
          
          
          
             
                doi:10.1038/srep19497
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19497
            
         
          
          
      
       
       
          True
      
   




