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Abstract Over recent decades there has been a rapid rise in
metabolic disorders throughout the world. Whilst lifestyle and
societal habits have contributed to the obesity epidemic, there
is now increasing evidence that the early developmental envi-
ronment of an infant can play a pivotal role in the ‘program-
ming’ of an adverse physiological phenotype in later life.
Clinical evidence highlights that maternal over-nutrition and/
or obesity during pregnancy presents not only adverse effects
on maternal health, but also persistent and deleterious effects in
the developing child. Animal models are providing essential
information into the underlying cellular and molecular mech-
anisms that contribute to this adverse phenotype. The use of
this information will aid our understanding of the program-
ming signals related to maternal and paternal over-nutrition
and the improved healthcare for both mother and infant.

Keywords Maternal overnutrition - Developmental
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Introduction

Overweight and obesity are considered to be the fifth leading
risks for global deaths with at least 2.8 million adults dying
each year as a result. In 2008, 1.5 billion adults aged 20 years
and older were overweight; of these over 200 million men and
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nearly 300 million women were obese. In addition, 44 % of
the diabetes, 23 % of the ischemic heart disease. and between
7 % and 41 % of certain cancer burdens are attributable to
overweight and obesity. Its growing prevalence is therefore
one of the major health care issues of this century [1]. In 2010,
43 million children under 5 were estimated to be overweight
and childhood obesity tracks strongly to adolescent and adult-
hood obesity [2]. Childhood overweight and obesity, once
considered a problem of high-income countries, are now
rising in low and middle income countries, particularly in
urban areas with close to 35 million overweight children
living in developing countries and 8 million in developed
countries. Of particular concern is the growing prevalence of
obesity in women of child-bearing age, as not only does this
have health implications for them, but also there is increasing
evidence that obesity during pregnancy and lactation can have
long term effects on the health of the child [3, 4].
Genome-wide association studies have given insight into
the importance of an individual’s genetic makeup and their
predisposition to metabolic disease [5]. However, the dramatic
rise in obesity indicates that this must be driven by environ-
mental factors that affect dietary and physical activity patterns.
In addition, it is now well recognized that the phenotype of an
individual can be determined by its early developmental en-
vironment and in particular by the nutritional status of the
mother. Such studies have led to the proposals of ‘develop-
mental programming’ that describe how the conditions pre-
sented during a critical window of development can lead to the
permanent programmed alterations in a physiological process.

Early Life Programming
Epidemiological data worldwide has revealed a relationship

between birth weight and the risk of developing cardiovas-
cular and metabolic disease. Some of the earliest studies
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focused on the relationship between maternal under-nutrition
and an infant being small for gestational age. Forsdahl pro-
posed that poverty in early childhood could program the infant
for low energy intake. If such an individual then consumed
modern day, high energy-dense foods, this could be one
reason why in recent times there is an increased incidence of
cardiovascular disease [6]. Men exposed in utero to the Dutch
Hunger Winter famine were more obese at age 19 if they were
exposed to the famine during the first half of their mother’s
pregnancy. In contrast, those who were exposed to the famine
during the last trimester of pregnancy and in early postnatal
life had reduced obesity [7]. Studies in Hertfordshire in the
UK showed that men who were the smallest at birth were at
increased risk of heart disease [8] and were more likely to be
glucose intolerant or type 2 diabetic [9, 10]. These studies
formed the basis of the ‘Thrifty phenotype hypothesis’ [11]
that proposed that poor fetal nutrition leads to metabolic
adaptations to maximize the chances of survival in conditions
of on-going nutritional deprivation. Such adaptations would
be beneficial if exposed to poor conditions after birth, but
would not be suited if the postnatal environment provided
plentiful nutrition, resulting in an increased risk of developing
features of the metabolic syndrome. Other hypotheses have
since been proposed to understand the observation that fetal
nutrition leads to the permanent programming of metabolism
and a maladapted adult phenotype if the fetus is bomn into
conditions where the early and adult environments are ‘mis-
matched’. Of more relevance, however, to modern society in
which maternal nutritional excess is more common, is the
‘developmental over-nutrition hypothesis’.

Clinical Impact of Maternal Diet and Maternal Obesity
and Postnatal Overnutrition

The prevalence of obesity is highest among children of
obese parents [12]. Children of obese mothers are more at
risk of overweight or obesity than those of obese fathers
[13—15]. Maternal pre-pregnancy overweight has also been
found to be as an independent risk factor for infant over-
weight and abdominal obesity [16]. Moreover, there are
associations between pregnant maternal body mass index
(BMI) and offspring BMI, adiposity, and insulin resistance
[17-19], and also between maternal weight gain during
pregnancy and offspring adiposity [20¢]. Obesity in preg-
nancy is strongly associated with the development of gesta-
tional diabetes and there are many reports of associations
between maternal diabetes and offspring diabetes [21, 22],
and offspring obesity [23]. Recent clinical guidelines have
reported that almost 1 in 5 UK pregnant women are now
obese, which is a serious concern not only because of
adverse pregnancy outcome, particularly gestational diabe-
tes and fetal macrosomia, but also because of the reported
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associations with childhood risk of obesity, and insulin
resistance. But possibly of greater concern are reports that
moderate weight gain between successive pregnancies could
result in an increase in birth weight [24]. Better-nourished
mothers give birth to better nourished mothers-to-be, result-
ing in transgenerational obesity [25]. The interpretation is
that susceptibility to obesity, type 2 diabetes, and cardiovas-
cular disease is partly programmed by the environment during
early pre and post natal life.

The early postnatal environment is a key time point for
developmental programming to occur. Since physiological
systems continue to develop and mature after birth, over-
nutrition in this period will have considerable impact. Rapid
postnatal growth following maternal malnutrition leads to
obesity in later life and carries the highest risk of insulin
resistance. Some reports suggest that rapid growth in the
first few weeks of postnatal life is particularly disadvanta-
geous [26], while other reports indicate that rapid growth of
low birth weight infants in later childhood also increases
their risk of obesity [27]. It is now known that rapid growth
in itself is associated with an increased risk of elevated
blood pressure, cardiovascular disease and type 2 diabetes,
as well as a disproportionately high rate of fat deposition
[28]. During this period dietary composition can affect
growth patterns of the infant. Nutrient-enriched formula
feeding is often used as an alternative or supplemental to
breast feeding and can accelerate infant growth [26, 29].
Formula feeding increases the risk of obesity in childhood
[26] as well as high cholesterol in adulthood [30] compared
with breast feeding. Bottle-fed infants have higher total
energy and protein intakes than breast-fed infants. So one
possible explanation is that the plane of nutrition during the
suckling period is a strong determinant for subsequent ap-
petite regulation. Breastfed infants appear to have a greater
ability to regulate food intake both when breastfeeding [31]
and when eating solid food. Furthermore, breastfed infants
show a reduced growth rate compared with formula-fed
infants, are leaner, and are less susceptible to developing
obesity, cardiovascular risk factors and hypertension [32].

The identification of the factors in the maternal environ-
ment that mediate the effects of maternal obesity and diet is
of key importance to the development of clinical interven-
tion strategies. Maternal hyperglycemia during pregnancy
was thought to be one of the most important predictive
factors of infant obesity and metabolic disease [33]. Now
it is recognized that other maternal parameters associated
with obesity and/or over-nutrition during pregnancy are
involved including hyperinsulinaemia, hypertriglyceridae-
mia, and hyperleptinaemia. Maternal hyperglycaemia stim-
ulates fetal insulin synthesis and increases fetal adiposity,
which may permanently influence fetal adipocyte mass [34].
Maternal triglycerides, which are elevated in obese and
insulin resistant women, will not cross the placenta but are
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hydrolysed by placental lipases [35] and may affect fetal
fuel supply. Moreover, several reports have highlighted corre-
lations between maternal insulin resistance, maternal plasma
triglycerides, and offspring adiposity [14, 36]. Other studies in
pregnant women and non-human primates have implicated the
inflammatory state associated with maternal obesity as causing
persistent influences on offspring metabolic function [37, 38].
Neonatal hyperinsulinaemia has been associated with in-
creased adiposity in the infant [39].

Animal Models of Developmental Programming

Whilst epidemiological studies are essential for establishing
correlations between maternal nutritional status and offspring
health, they are often complicated by genetic or environmental
variables that confound correlation analysis. Animal models
have therefore provided an invaluable insight into the under-
lying mechanisms of developmental programming because
they allow intervention studies and also because genetic back-
ground can be strictly controlled. Such studies show strong
parallels with the human observational studies, supporting a
causal relationship between maternal obesity and offspring
adiposity, glucose tolerance, insulin sensitivity, and cardiovas-
cular disease. The majority of research has focused on sheep
and rodents but rodents present a better model as they develop
features of metabolic syndrome within months and are there-
fore more feasible for study. Non-human primates offer
advantages because of the similarities of their developmental
patterns to humans; however long gestation periods and high
costs make them less available. When interpreting these stud-
ies, it is important to recognize that dietary manipulation in
itself could introduce complications, as increasing one com-
ponent could require the reduction of another. Offspring of
high fat-fed dams have increased adiposity, insulin resistance,
and hypertension [40], but here increasing the fat content
reduces the carbohydrate content [41, 42], or protein content
[43]. Modern day western diets are high in sugar as well as in
fat and these obesogenic diets are available commercially. The
offspring from these dams are hyperphagic, insulin resistant,
glucose intolerant and hypertensive [41, 42]. The maternal
‘junk food’ diet also produces offspring with increased adi-
posity and hyperphagia for junk food after weaning [44]. All
these diets have provided good evidence that maternal nutri-
tional excess can contribute to this relationship [41-46].
Animal models have been used to specifically investigate
the programming role of fuels and hormones that can pass
directly from mother to fetus. Models of maternal diabetes have
focussed on its effects on the pancreas leading to neonatal
hyperinsulinemia and on the developing hypothalamus, leading
to increased food intake and offspring obesity [47]. In the
mouse, insulin and leptin were raised both on day 18 of
gestation and at the end of lactation when fed an obesogenic

diet [41]. This was associated with early elevated leptin and
resistance to the action of leptin to reduce food intake in the
offspring [48]. In the sheep increased placental fatty transport-
ers has been associated with higher fetal triglyceride levels [49],
enhanced cytokine expression in the placenta [50], and upregu-
lated lipogenic genes in the adipose [51]. Similarly in mice, a
high fat in-utero environment can increase the fetal triglyceride
profile [52]. As in large for gestational age human fetuses,
changes in placental morphology in overfed non-human pri-
mates have been observed [53], associated with increased
nutrient delivery to the fetus for example of free fatty acids [54].
Rodent models have been used to investigate the effects of
postnatal over-nutrition. The majority of studies have manip-
ulated litter size post birth to alter the nutritional exposure.
Reducing litter size results in hyperphagia, hyperinsulinemia,
and cardiovascular risk in the offspring [55]; others report that
rearing diet-induced obese rats in large litters protects against
obesity [56]. Cross fostering has also been used to increase an
infant’s nutritional plane in the suckling period and program
susceptibility to obesity in adult life [57]. In these models pups
suckled in large litters or whose dams are under-nourished are
resistant to the development of obesity even when the pups are
given a high fat diet from weaning [58]. In models of gesta-
tional diabetes, hyperglycemia during suckling results in obe-
sity and insulin resistance in the infant in later life [59].
Despite the wealth of data from a variety of models, a
common offspring phenotype of increased adiposity, hyper-
phagia, insulin resistance, and hypertension is emerging
(Fig. 1). The programming of obesity is a multifactorial pro-
cess but similar mechanistic pathways are being revealed.

Maternal Diet vs Maternal Obesity

In human studies it is difficult to dissect out the effects of
maternal obesity from those of an obesogenic diet, but this can
be addressed in animal models. A high fat diet throughout pre-
gestation, gestational period, or postnatally will have different
effects depending on the time the diet is introduced. The
importance of maternal obesity independent of a difference in
diet is supported by the observation that chow-fed wild-type
offspring of the leptin receptor deficient (db/db) dam are obese
and hyperinsulinaemic [60]. In contrast, there is evidence for
the effects of maternal diet independent of increases in mater-
nal weight. In studies where rat dams were fed a cafeteria-style
or high fat diet initiated after conception so that during preg-
nancy and lactation the dams were not obese [43, 61], their
offspring developed increased adiposity, hyperglycaemia, and
hyperinsulinaemia. Most models however have studied the
offspring from dams fed an obesogenic or high fat diet
throughout pregnancy and lactation, leading to increased adi-
posity of offspring at weaning and glucose intolerance [41, 42].
It is now emerging that the postnatal diet can modify the
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Fig. 1 Common mechanistic
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programming of maternal obesity in utero. When offspring
were exposed to maternal obesity during gestation and lacta-
tion and then maintained on a high fat diet after weaning, they
rapidly gained weight and adipose mass [62]. Similarly female
pups fed a formula diet immediately after birth, were obese,
and obesity was then transmitted to the next generation even if
these mice were maintained on a chow diet [63]. Maternal
obesity and diet have been reported to have different effects on
fetal growth. By varying the exposure of the dam either before
gestation, resulting in maternal obesity or during gestation, it
was reported that the obese in utero environment resulted in
reduced fetal weight, whilst the obese gestational diet caused
abnormal placental growth [64].

Developmental Programming Mechanisms

The animal models of nutritional programming demonstrate
common mechanisms of adult disease susceptibility with man,
including alterations in appetitive behavior, accelerated loss of
glucose tolerance and insulin sensitivity, changes in thermo-
genic capacity, and altered percentage fat mass and distribution.

Central Mechanisms
The hypothalamus plays an essential role in the control of
energy balance; its nuclei continue to differentiate postnatally

[65] and hypothalamic neuropeptides can be permanently
altered by the maternal and fetal dietary environment.

@ Springer

Offspring of dams fed a fat rich diet are hyperphagic soon
after weaning and show exaggerated feeding responses to
orexigenic peptides and blunted signalling to satiety peptides.
This could be one explanation for the observed changes in
appetitive behavior [66] and food preferences [45] in the
offspring [49]. Both leptin and insulin regulate long-term
feeding behavior. Leptin acts on the arcuate nucleus in the
hypothalamus to reduce hunger and increase energy expendi-
ture and following administration to postnatal mice, leptin has
been shown to deactivate orexigenic neuropeptide Y (NPY)
and activate anorectic pro-opiomalanocortin neurones [67].
Rat pups from small litters show increased NPY expression
and a reduced responsiveness to leptin [68, 69]. Leptin also
plays a role in the neonatal development of the hypothalamus.
Neuronal connection pathways in the arcuate nucleus are
permanently disrupted in the leptin deficient obese mouse.
Leptin treatment in adulthood is unable to reverse this
neuro-anatomical defect [70] however treatment during the
perinatal period completely restores the density and length of
these neuronal projections [71]. During the early postnatal
period there is a surge in circulating plasma leptin, indepen-
dent of fat mass, which may serve as a key developmental
signal to the hypothalamus to influence subsequent food in-
take and body weight [72]. Therefore any changes in leptin
levels or leptin action [73] during this critical period may
cause permanent alterations in the neuronal circuitry [74].
The maternal environment can influence the precise timing
and hence the effect of this surge. Offspring of rat dams fed an
obesogenic diet have an amplified and prolonged neonatal
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leptin surge, with attenuated leptin signalling before the onset
of hyperphagia [48]. Similarly in sheep, whose lambs are born
at an equivalent level of maturity to humans, a premature
leptin peak is observed accompanied by increased appetite
[75]. Therefore there may be a beneficial role for leptin in the
reversal of the metabolic programming of maternal obesity, as
it does in offspring of undernourished and normal dams where
the leptin surge is reduced, both during gestation and lactation
[76] or during suckling alone [77].

A neurotrophic role for insulin in hypothalamic develop-
ment is now emerging. Suboptimal or neonatal hyperinsuli-
nemia may result in the malformation of hypothalamic
structures and their role in the control of food intake. The
hyperphagia seen in models of maternal obesity may also be
the consequence of dysregulated reward pathways. Food
preferences and the motivation to eat highly palatable foods
have been associated with the altered expression of the
mesolimbic dopamine and opioid reward pathways [78].

Peripheral Mechanisms

Programmed alterations in peripheral tissues such as muscle,
adipose, and liver affect energy balance and glucose homeosta-
sis. A progressive impairment of glucose homeostasis is high-
lighted in many animal models of maternal obesity. Many of the
changes are due to changes in insulin sensitivity of the periph-
eral tissues resulting from a defect in insulin action downstream
of the receptor [79]. In models of maternal obesity insulin
resistance likely precedes beta cell failure [63]. The skeletal
muscle is a major insulin sensitive tissue and abnormal devel-
opment and function has been reported in a number of models
[41]. Offspring of over-nourished dams exhibit reduced muscle
cell proliferation and intramuscular lipid accumulation [44]. The
maternal diet influences adipogenesis and the programming of
adipocyte morphology and metabolism, with changes in the
pattern of expression of key regulatory and functional genes,
which are important determinants of fat distribution and accu-
mulation. Persistent alterations in the expression of proteins
involved in adipocyte development and lipolysis could result
in permanent influences on adipocyte proliferation and hyper-
trophy [80]. An increased fat mass may be a compensatory
mechanism to ensure that excess lipids are stored in adipocytes
rather than ectopically; however an increase in adiposity results
in increased insulin resistance and inflammatory responses. The
liver plays a pivotal role in metabolism, elevated triglyceride
levels and fatty liver have been associated with maternal over-
nutrition [41] as well as the upregulation of genes involved in
hepatic lipid biosynthesis [62, 81].

Cardiovascular System

Studies of pregnant women and their infants found that those
who exceeded the recommended weight gain during

pregnancy give birth to children, who at age 9 presented with
increased systolic blood pressure, C-reactive protein, lower
high-density lipoprotein cholesterol, and increased BMI [82].
Rodent models of maternal obesity have shown that the off-
spring have increased systolic blood pressure, elevated tri-
glyceride and cholesterol levels [41]. Similarly, offspring of
normally fed dams cross-fostered and suckled by high fat-fed
dams developed hypertension similar to those exposed to high
fat during pregnancy [40]. These rats display endothelial
dysfunction as well as abnormal aortic elasticity [83]. The
consistently elevated blood pressure in offspring of obese dams
was attributed to sympathetic over-activation, with altered heart
rate variability and abnormal baroreceptor responsiveness [84].
As with insulin resistance, fat feeding in the absence of mater-
nal obesity led to altered sympathetic control of cardiovascular
function and hypertension [85].

Endocrine Pancreas

In models of maternal under-nutrition reductions of beta cell
mass and insulin content are associated with a reduction in
insulin secretion. In contrast, offspring of dams fed a high
fat diet through gestation alone showed altered neonatal
islets with increased alpha cell number and size and with
an opposite effect on the beta cell [86]. Offspring of obese
dams fed an obesogenic diet throughout gestation and lac-
tation were hyperinsulinemic at 3 months of age [41], which
was associated with increased pancreatic insulin content,
increased islet number and increased beta cell mass in early
life [87], which declined with age due to persistent stimula-
tion [63]. Similar observations were recorded in sheep
where at lambing reduced offspring beta cell numbers was
associated with an increase in beta cell apoptosis [88]. In a
model of paternal high fat feeding impaired beta cell func-
tion in female offspring early in life was associated with
reduced islet area and insulin secretion following a glucose
challenge [89°].

Molecular Mechanisms

A number of underlying mechanisms have been investigated
in models of developmental programming. Markers of oxida-
tive stress have been associated with obesity and diabetes and
recent studies have suggested that reactive oxygen species
production may be a key event preceding the onset of obesity
in response to maternal nutrition in the placenta [90], fetal
skeletal muscle [91] and fetal liver [53]. Interestingly, antiox-
idant supplementation to dams fed a western diet was able to
reduce oxidative stress, inflammation, and adiposity in the
embryos [92¢]. The mitochondrion is particularly sensitive to
early developmental programming and mutations in mito-
chondrial DNA persist through generations influencing long-
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term cellular functions including adaptive thermogenesis. Mi-
tochondrial dysfunction has been reported as early as embryo-
genesis in obese mothers, with these embryos having increased
mitochondrial membrane potential, higher levels of oxidative
phosphorylation and increased reactive oxygen species produc-
tion [93]. Disruptions in the electron transport chain have also
been demonstrated in skeletal muscle and liver of offspring
from over-nourished mothers [79, 94].

Epigenetic dysregulation has been reported to mediate the
effects of early nutrition on adult disease susceptibility, of
which DNA methylation is the most common mechanism
studied. Methyl donors are sourced from the diet and methyl-
ation patterns are established during development. Therefore
methyl donor imbalances could alter epigenetic patterns and
increase an individual to metabolic disease in later life [95¢].
In the pancreas of rat pups reared in small litters, an epigenetic
alteration of the insulin 2 gene reduced its expression and was
associated with reduced glucose stimulated insulin secretion
[96]. Hypermethylation of the hypothalamic POMC promoter
was observed in this model [97]. In aortic endothelial cells,
hyperglycemia results in the activation of nuclear factor kKB
increasing its expression. Changes such as these are clearly
important when considering that diabetes is a major indepen-
dent risk factor for atherosclerotic cardiovascular disease [98].
Data is emerging on the transgenerational effects of maternal
obesity and diet, with maternal diet influencing body length
and insulin sensitivity in second and third generation mice
[99]. The transmission solely through the paternal lineage
suggests epigenetic programming of the sperm epigenome
[89¢]. Therefore these studies highlight how maternal nutrition
can influence health of future generations and may explain the
rapid increase in obesity prevalence through generations.

Future Direction and Clinical Interventions

Evidence to date highlights the importance of the obese pre-
and postnatal environment and the consequences of develop-
mental programming on an infant’s susceptibility to metabolic
disorders in later life. Clearly, the use of animal models has
been extremely useful for dissecting the contributory factors
and critical time windows. Over the next few years, it is likely
that mechanisms will be identified by which early life program-
ming determines the set point of energy balance and how the
numerous brain circuits and peripheral endpoints are integrated
and regulated so that energy expenditure and energy intake are
matched. Improved nutritional awareness of the mother and
father are essential. Dietary restriction and weight loss prior to
pregnancy are proven strategies to improve infant health out-
come, but therapeutic interventions will likely be of use in
obese pregnant women. Understanding the programming sig-
nals related to maternal over-nutrition will allow the improved
healthcare of both mother and infant.
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