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Abstract: The microstructure and mechanical properties of a 4130-grade steel processed by L-PBF
using a feedstock of low-cost water atomized powder have been investigated considering the effects
of powder recycling. Chemical analysis of the recycled powder showed a constant amount of alloying
elements with a slight reduction in oxygen content. The as-built microstructure was mainly composed
of a martensitic structure separated by a high fraction of low-angle grain boundaries, suggesting the
application of a direct tempering treatment starting from the as-built condition as a cost-effective post-
process thermal treatment rather than the conventional quench and tempering treatment. Moreover,
the degree of anisotropy generated by L-PBF in as-built specimens could be reduced after performing
either the direct tempering or the quench and tempering treatments. The possible degradation of
powder properties on the steel performance was also investigated. After various powder recycling
events, no significant deterioration in tensile properties was measured, indicating that the water
atomized powder could be a sustainable feedstock candidate for L-PBF.

Keywords: laser powder bed fusion; water atomized powder; low-alloy steel; powder recycling; carbides

1. Introduction

The laser powder bed fusion (L-PBF) process offers several advantages to the additive
manufactured (AM) metallic components, such as the ability to fabricate complex-shape
objects with outstanding properties. However, most of the published investigations and
known L-PBF applications are confined to aluminum, titanium, and nickel alloys, along
with stainless steels and maraging grades [1–3]. Low-alloy steels are also potentially
attractive due to their low cost and tunable mechanical properties especially after the
hardening treatment of quench and tempering (Q & T). Even though low-alloy steels are
widely used for structural applications in several industrial sectors, a fairly low number of
investigations have been carried out so far on their properties after L-PBF processing [4–14].
The available information showed that the L-PBF processed steels in as-built condition
provide outstanding mechanical properties. Dilip et al. [5] as well as Zumofen et al. [10]
reported directional dependent tensile properties in as-built condition, suggesting the need
of a Q & T thermal treatment to suppress this anisotropy. For those steels exhibiting a
martensitic structure right after the L-PBF owing to the rapid cooling conditions, the direct
tempering of the as-built microstructure could be proposed as an alternative and cheaper
treatment [15].

It is to remark that most of the above-mentioned steels have been processed by L-PBF
starting from gas atomized (GA) powders. It is recognized that the water atomization (WA)
process could potentially promote cost savings for large batch productions, compared to
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the standard GA process [16,17]. In a previous investigation [15], it was shown that the
L-PBF WA 4130 steel could deliver good hardness and tensile properties, with a slight
decrease compared to counter parts fabricated by GA 4130 powder.

The recyclability of powders is also an attractive topic for sustainability issues and
environmental considerations. Numerous studies have been performed on the recycling
of 316L, 17-4PH, and maraging steel powders for L-PBF [18–20]. Although the authors
detected both spherical and irregular-shaped spatter particles with oxidized surfaces
in the recycled powder batches, the L-PBF processing with re-used powders generally
showed overall tensile properties comparable to those of the fresh powder [18,20]; however,
Ahmed et al. [19] measured a 7% reduction in ductility after extensive recycling of a 17-PH
steel powder. Considering the low-alloy steels, Jelis et al. [21] reported high oxygen levels
in recycled 4340 steel powder and measured a significantly lower tensile strength after two
re-use cycles. It should be noted that investigations on recycling have been carried out
on GA powder so far, while no information is available from the open literature on the
behavior of recycled WA powder during L-PBF.

In this context, the current study aims to investigate the microstructure and tensile
properties of a 4130 low-alloy steel fabricated by L-PBF, starting from a low-cost WA powder,
and evaluating the effects of several recycling events on the achievable steel properties.
Another aspect of this investigation is the proposal of a single-step treatment consisting of a
direct tempering of the as-built specimens, as a cost-effective alternative to the conventional
quench and tempering treatment. Finally, the orientation-related tensile properties have
been also considered in the investigation for the above perspectives.

2. Materials and Methods

A feedstock powder of type 4130 low-alloy steel (0.30% C, 1.10% Cr, 0.28% Mo, 0.45% Si,
0.04% Mn, <0.01% S, and 0.29% O) was used for this investigation. The powder was
produced by water atomization and subjected to a mechanical post-atomization treatment to
improve the morphology of the powder particles. The detailed powder characteristics have
been published in a previous research paper [15]. The evolution of chemical composition
of the recycled powder was monitored by collecting sealed boxed (cubes with side 15 mm,
as shown in Figure 1) of the powder laid on the L-PBF bed. The C, S, O, and N contents
were systematically measured by using the Leco model CS-844 as well as model ON-836
for the latter two elements.
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Figure 1. L-PBF build job of W-4130 steel showing the horizontal tensile specimens and the
powder capsules.

A Concept Laser M2 Cusing L-PBF machine was used to fabricate the steel specimens.
A nitrogen atmosphere was used in the build chamber, and the optimal processing param-
eters were defined as 200 W for the laser power, 40 µm for the powder layer thickness,
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70 µm and 550 mm/s for the hatching distance and the laser scanning velocity, respectively,
according to a previous investigation [15].

The performance of reused WA powder was investigated by designing three recycling
events. An industrial approach was followed according to which the remaining powder
after each build job (called a “run”) was sieved to cut particles larger than 63 µm and mixed
with equal ratio of virgin powder. Therefore, run #1 refers to the L-PBF processing of virgin
powder only, while run #4 corresponds to the 3rd recycled set of powder.

The microstructure and chemical composition of both powders and fabricated spec-
imens was characterized by a Zeiss Sigma 500 VP field-emission scanning electron mi-
croscope (FE-SEM, Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with energy
dispersive spectrometer (EDS). Electron backscattered diffraction (EBSD, Oxford instru-
ments, High Wycombe, United Kingdom) analyses were performed by an accelerating
voltage of 20 KV and a 70 nm step size. The measurements were also used to identify and
quantify the existing carbides based on their crystal structures. The acquired data have
been analyzed by using Channel 5 suite of Oxford HKL Technology. ThermoCalc software
was used to compute the fraction of secondary phases existing under equilibrium as a
function of temperature, relying on the TCFE9 database.

The mechanical properties of the L-PBF processed steels were evaluated by tensile
testing at room temperature according to. ASTM E8M standard. Cylindrical dog-bone
specimens (10 mm in diameter and 45 mm in gauge length) referred to each run were
fabricated with longitudinal axis parallel to the two main orientations, namely orthogonal
(XY-orientation) and parallel (Z-orientation) to the building direction. Different thermal
treatments procedures were considered for this investigation. Water quenching was per-
formed after isothermal soaking for 1 h at 840 ◦C. Tempering was carried out at 550 ◦C for
1 h. Selected specimens were investigated after Q & T or just after tempering, starting from
as-built condition (AB & T).

3. Results and Discussion
3.1. Powder Degradation

The compositional variations of C, N, S, and O of the steel powders collected during
the different runs are given in Table 1. It is observed that the C content of the recycled
WA powder remained substantially constant, while a minor reduction in the amount of
O content was detected when increasing the number of recycling runs, also considering
that the O content in the virgin powder was 0.29%. As for N and S contents, no specific
trend was noticed. It is to remark that, according to the EDS analysis, the amount of other
alloying elements was substantially constant among the successive runs.

Table 1. Chemical composition (wt.%) of the W-4130 powder for each recycling set.

C N S O

Run #1 0.325 0.0055 0.015 0.252
Run #2 0.324 0.0050 0.015 0.254
Run #3 0.324 0.0056 0.015 0.247
Run #4 0.324 0.0054 0.015 0.242

Figure 2a,b display FE-SEM micrographs of the virgin powder and of the powder
after run #1, respectively. Few particles with morphology different from the original
irregular-shaped WA particles (arrowed in Figure 2b), often with larger size than the
average, could be observed. These are believed to be spatters that were generated during
the L-PBF process [22]. The recycled powder was sieved before being re-used for the
successive L-PBF job to remove the largest spatters. However, particles having diameter
smaller than 63 µm could eventually bypass the sieving grid, altering the overall powder
characteristics. It is to remark that similar powder morphologies were observed for the
subsequent recycling events.
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Figure 2. FE-SEM micrographs showing (a) virgin powder and (b) run #1 powder. Microstructure of
(c) virgin powder particle and (d) spatter particle collected from run #4.

The microstructures of a WA particle and of a spatter particle are displayed in
Figure 2c,d, respectively. The high cooling rates produced from the water jets during
the atomization process results in a rapid solidification of the virgin powder, which shows
a microstructure consisting of a dominant martensitic structure along with some defects
as well as nano-size nonmetallic inclusions (marked with arrows in Figure 2c). In spatters
a similar microstructure was detected. Moreover, from Figure 2d, few internal porosities
were found inside the spatter particle and a micrometer-size oxide inclusion rich in Cr and
Si was also observed, as shown in the elemental maps given in the same figure.

3.2. Microstructure Evolution

Figure 3a,b display the microstructure of L-PBF specimens of the investigated steels
after tempering, both directly from the as-built state and from the quenched condition,
respectively. In both cases, the microstructural features are mainly composed of the marten-
sitic structure. Coarser constituents could be observed in the Q & T state, presumably due to
the treatment at 840 ◦C, while no significant preferential orientation of grains was detected
in any condition. In Figure 3c,d, the carbides were indexed based on the identification
of their crystal structure. The two tempering regimes result in an almost similar fraction
of carbides, which was estimated to be around 13%. However, it is assumed that such
evaluation could be overestimated due to carbide size that is smaller than the EBSD pixel
size (70 × 70 nm2). It is also worth mentioning that the value of 13% corresponds to nearly
twice the expected value evaluated by thermodynamic simulations under the hypothesis
of equilibrium. Moreover, the equilibrium calculations also expected a mixture of Fe3C,
M23C6, and M7C3 carbides at the same tempering temperature. According to the EBSD
analysis, the dominant carbide is of type Cr23C6 with minor contribution of Fe3C and
Fe7C3 that are prone to precipitate around the martensitic boundaries, in both tempers. It
is believed that the amount of carbides could vary when considering different positions
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along the building direction in the AB & T condition owing to different thermal histories
experienced during L-PBF [12]. Finally, similar microhardness values of 375 ± 9 HV0.5 and
387 ± 4 HV0.5 were measured for the AB & T and Q & T steels, respectively.
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Figure 3. Inverse pole figures (IPF) of the tempered W-4130 steel from (a) as-built and (b) water-
quenched conditions. Band contrast image overlapped by a map of indexed carbides for (c) AB & T
and (d) Q & T steels of run #4.

The kernel average misorientation (KAM) maps depicted in Figure 4a,b suggest the
local strain distribution within the microstructure after the two treatments investigated.
The blue and green colors represent the relatively lower and higher misorientation regions,
respectively. An inhomogeneous local strain distribution could be observed within the
microstructural constituents that are mainly concentrated between the martensite laths. The
quantitative analysis of Figure 4c shows that significantly higher misorientation degrees are
produced in the as-built microstructure compared to the as-quenched state, presumably due
to the more rapid cooling conditions which arise during the L-PBF rather than the water
quenching. As expected, the tempering treatment clearly promotes a reduction in the KAM
values with respect to the initial states (both from as-built and from as-quenched states).
Further analyses on the grain boundary misorientation are summarized in Figure 4d.
The measurements demonstrate that both AB & T and conventionally treated Q & T
microstructures are separated by high fraction of low angle grain boundaries (LAGBs < 15◦)
about 65.3% and 57.6%, respectively. A similar fraction of LAGBs (65%) was measured by
Han et al. [12] in as-built 24CrNiMo low-alloy steel, suggesting the finer microstructure
generated by the rapid solidification.
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Figure 4. KAM maps of W-4130 steel in (a) AB & T and (b) Q & T states. Relative frequency
of (c) local misorientation and (d) grain boundary misorientation of the steel in different thermal
treatment conditions.

3.3. Tensile Properties

The effect of powder recycling on the tensile properties of L-PBF processed WA
4130 steel was investigated considering concurrently the effects of specimen orientation and
post treatment conditions on tensile properties. A summary of the tensile data measured on
specimens collected from different runs is reported in Figure 5. In any treatment conditions,
no significant variations in both yield and ultimate tensile strength could be observed after
several recycling events of the WA powder. The tensile strength ranking in XY-direction
among the investigated conditions was evaluated from highest to lowest as follows: AB,
Q & T, AB & T. When considering the vertical loading direction, the Q & T specimens
provided the highest strength followed by the AB and then the AB & T conditions. The
lower strength of the AB specimens along the vertical direction is supposed to be due to the
intrinsic tempering effect induced upon overlapping of a larger number of layers in the Z-
oriented specimens, which results in a more tempered structure compared to the analogous
AB XY-specimens [7]. Another possible source of difference comes from the columnar
grains that feature a different orientation with respect to the loading-direction [10]. It is to
recall that the loss in strength is compensated by an enhanced ductility, which is clearly
observed in the behavior of directly tempered specimens.
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and tested in (a,b) AB, (c,d) AB & T, and (e,f) Q & T conditions.

The average degree of anisotropy in both ultimate tensile strength and fracture elon-
gation has been quantitatively evaluated by considering the ratio between horizontal and
vertical properties. A low degree of anisotropy in tensile strength (around 1.12 ± 0.02)
was measured for the as-built specimens, since the horizontal specimens always provided
higher yield and ultimate tensile strength values, while better ductility (0.66 ± 0.18) was
detected for the vertical loading direction. This anisotropy in strength could be reduced
to 1.05 ± 0.01 after performing a direct tempering treatment at 550 ◦C, or even down to
0.98 ± 0.02 after applying the conventional Q & T treatment. However, the direct tempering
resulted in an increased ductility anisotropy to reach a value of 0.50 ± 0.17.
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4. Conclusions

The current study showed the feasibility of recycling a water atomized powder of
4130-alloy steel as a sustainable feedstock for the L-PBF process. The main findings are
summarized as follows:

• Spatters generated during the laser processing could be readily found in the feedstock
powder right after the first recycling run; however, the pickup of oxygen and the
changes in chemistry upon powder recycling was very limited. By increasing the
number of recycling events, no substantial variations in the tensile strength could
be measured.

• Two different post-process thermal treatments were investigated considering their
effects on microstructure and mechanical properties. The as-built microstructure was
mainly composed of martensitic laths and blocks separated by a high fraction of
low angle grain boundaries (65.3%), while the conventional quench and tempering
treatment was able to generate a similar microstructure, yet with a relatively lower
fraction (57.6%) of the same grain boundaries.

• Cr23C6-type carbides were mainly decorating the martensitic lath boundaries with a
comparable fraction in both tempered states.

• Anisotropy in mechanical properties was measured for the specimens in as-built
condition, which could be reduced by applying a tempering treatment at 550 ◦C for
1 h. Despite the marginally lower tensile strength shown by the directly tempered
specimens, a significant enhancement in ductility was measured compared to the other
conditions, offering a promising combination of mechanical properties.

The outcomes of this research highlight that the L-PBF processing of a WA low-alloy
steel powder could offer appreciable mechanical properties for structural applications. The
ability of the powder to be recycled without showing reduced properties in manufactured
parts and the option of using a simpler thermal treatment sequence, based on tempering
directly from the as-built state, offer further advantages for the adoption of water atomized
low-alloy steel powders within the structural alloys for L-PBF.
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