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Abstract
1.	 The relationships between an environmental variable and an ecological response 

are usually estimated by models fitted through the conditional mean of the re-
sponse given environmental stress. For example, nonparametric loess and para-
metric piecewise linear regression model (PLRM) are often used to represent 
simple to complex nonlinear relationships. In contrast, piecewise linear quantile 
regression models (PQRM) fitted across various quantiles of the response can re-
veal nonlinearities in its range of variation across the explanatory variable.

2.	 We assess the number and positions of candidate breakpoints using loess and 
compare the relative efficiencies of PLRM and PQRM to quantitatively determine 
the breakpoints' location and precision. We propose a nonparametric method to 
generate bootstrap confidence intervals for breakpoints using PQRM and predic-
tion bands for loess and PQRM. We illustrated the applications using data from 
two aquatic studies suspected to exhibit multiple environmental breakpoints: re-
lating a fish multimetric index of community health (MMI) to agricultural activity 
in wetlands' adjacent drainage basins; and relating cyanobacterial biomass to total 
phosphorus concentration in Canadian lakes.

3.	 Two statistically significant breakpoints were detected in each dataset, demar-
cating boundaries of three linear segments, each with markedly different slopes. 
PQRM generated less biased, more accurate, and narrower confidence intervals 
for the breakpoints and narrower prediction bands than PLRM, especially for small 
samples and large error variability. In both applications, the relationship between 
the response and environmental variables was weak/nonsignificant below the 
lower threshold, strong through the midrange of the environmental gradient, and 
weak/nonsignificant beyond the upper threshold.

4.	 We describe several advantages of PQRM over PLRM in characterizing environ-
mental relationships where the scatter of points represents natural environmental 
variation rather than measurement error. The proposed methodology will be use-
ful for detecting multiple breakpoints in ecological applications where the limits of 
variation are as important as the conditional mean of a function.
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1  | INTRODUC TION

“Biotic integrity” is defined as the “ability of a habitat to support 
and maintain a balanced, integrated, adaptive assemblage of or-
ganisms having a composition, diversity, and function compara-
ble to that of a natural habitat (Frey,  1977).'' Maintaining biotic 
integrity of aquatic habitat is one of the primary objectives set 
forth by the US Clean Water Act of 1972 and by the European 
Union Water Framework Directive (EU WFD,  2000). Aggressive 
human activities and rapid urbanization leave only a few areas, if 
any, that can be considered as “natural habitat.” Instead, compar-
isons are commonly made to reference locations that are subject 
to a minimum level of anthropogenic stress (Stoddard et al., 2006). 
Questions of identifying the degree of disturbance at which bio-
logical changes, from reference to nonreference condition, occur 
across a stress gradient have long been an important consideration 
(Karr & Chu, 1998; Qian & Miltner, 2015). An ecological threshold 
(“numerical criterion”) is a point of abrupt change of the response 
variable of an ecological attribute (such as an index of ecological 
condition) relative to a measure of habitat, such as human-induced 
disturbance affecting natural habitat (Fahrig,  2001). Such values 
can serve as guidelines for the protection of environmental condi-
tion of sites, and as theoretical conservation or restoration targets 
(Johnson, 2013; Larned & Schallenberg, 2019).

When the goals are to apply a precautionary principle to envi-
ronmental management, the measures of biological response should 
be based on the limits of the relationships of the response given 
environmental condition (Cade et al., 1999). For example, Karanth 
et al. (2004) generated prediction bands for tiger densities as a func-
tion of their prey densities using standard centrality assumptions for 
the response variable. In this paper, we describe a method of gen-
erating bootstrap prediction bands for a biological response given 
environmental condition that is applicable to any ecological model 
without requiring constraining distributional assumptions for the 
error term.

Methods of identifying environmental disturbance thresholds 
have been a topic of considerable research. Regression trees (Bunea 
et  al.,  1999) and various parametric, nonparametric and Bayesian 
approaches have been applied to identifying the location of change 
points in the environmental stress-biological condition relationship 
(Brenden et  al.,  2008; Dodds et  al.,  2010; Qian et  al.,  2003). The 
regression tree approach of Bunea et al. (1999), the nonparametric 
approach of Qian et al. (2003), and the nonparametric deviance re-
duction method of Brenden et  al.  (2008) are all similar and based 
on the concept of classification and regression tree (CART) models. 
Bayesian change-point models evaluated by Qian et al.  (2003) and 
Brenden et al. (2008) are the same model. The models reviewed by 
Brenden et al. (2008) are designed to detect one change point, which 

is discontinuous at the inflection point, and based on the concept of 
the nonparametric CART model.

Piecewise linear regression model (PLRM) is often used to es-
timate the location of environmental thresholds—typically a single 
breakpoint (Ficetola & Denoël, 2009; Shea & Vecchione, 2002; Toms 
& Lesperance, 2003; Toms & Villard, 2015). Such models may appear 
to be limited in two perspectives. Firstly, these models often use 
aggregated community metrics and consider that the regression re-
lationship is based upon the association of two aggregated metrics 
each drawn from a single population of values. Yet, the sample data 
are often collected from many different systems representing multi-
ple taxa, each with differing component properties. And the PLRM, 
which goes through the conditional mean of the metric representing 
biological response given the other metric representing environmen-
tal condition, may not capture the discontinuity in association pres-
ent in other quantiles of the conditional distribution. This may make 
it difficult to identify the precise location of the change points (King 
& Baker, 2011). Secondly, a limiting factor (the least available factor 
among all factors in the aggregated metrics (Thomson et al., 1996)) 
may induce an unequal variance pattern in the biological response 
via interactions among the constituent factors incorporated in the 
aggregated metric representing environmental condition, and this 
can alter the relationships near the center of the conditional dis-
tribution of the biological response given environmental condition 
(Cade et  al.,  1999). Such limiting factors may also cause wedge-
shaped relationships in the conditional distribution of the biological 
response with respect to environmental condition; as a result, the 
relationships at the edges of the conditional distribution might ap-
pear to be more important than the relationship in the center of the 
distribution (Cade & Noon, 2003; Cade et al., 1999).

Quantile regression has the potential to accommodate these lim-
itations in that it can estimate relationships between variables de-
fined through different quantiles of the conditional distribution of the 
response variable. As a result, quantile regression models provide a 
more complete view of the possible relationships between variables 
than central tendency models (Cade & Noon, 2003). Cade and Noon 
(2003) gave a general overview of ecological applications of quantile 
regression, and discussed linear and nonlinear models with both ho-
mogeneous and heterogeneous error variances. Using a large simu-
lation study, Cade et al.  (2005) showed that the quantile regression 
model can reveal hidden bias and uncertainty in habitat models. They 
also showed that the parameters measured at upper (𝜏 >0.5) and 
lower (𝜏 <0.5) quantiles are less biased than the parameters defined 
at the mean of the conditional distribution of the response variable 
given the predictors in the presence of confounding variables. Austin 
(2007) reviewed the ecological applications of linear and nonlinear 
quantile regressions into species response models used in conserva-
tion. Bissinger et al. (2008) predicted marine phytoplankton maximum 
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growth rates from temperature using a nonlinear quantile regression 
model. Planque and Buffaz (2008) used a linear quantile regression 
model to study fish recruitment-environment relationships in marine 
ecology. Bryce et al. (2010) employed linear quantile regression to pre-
dict the maximum decline of vertebrate and macroinvertebrate assem-
blage responses against streambed sedimentation. Cade et al. (2005) 
used linear and nonlinear quantile regression models to reveal hidden 
bias and uncertainty in habitat models in ecology. Brenden et al. (2008) 
concluded that quantile regression was the most effective means of 
detecting a single disturbance threshold of the various approaches 
they investigated.

Nonparametric regression is another frequently used and effec-
tive means of studying simple to complex relationships between a bi-
ological response and an environmental stress variable. Trexler and 
Travis (1993) discussed the application of locally estimated scatter-
plot smoothing (loess) in ecology. Building on the recommendations 
of Toms and Lesperance (2003), we used loess to subjectively iden-
tify the number and positions of candidate ecological breakpoints 
along an environmental stressor gradient. We then complemented 
the use of the loess and the piecewise linear regression model 
(PLRM) approaches with a novel application of a piecewise linear 
quantile regression model (PQRM) to estimate the location of the 
environmental thresholds. We propose a method of quantile-based 
bootstrap confidence interval (CI) for the environmental thresholds 
using the PQRM and compare estimates with the parametric CI of 
the breakpoints inferred using the PLRM.

We compared the performances of our methods using simulated 
data and illustrated the procedures by applying them to two data-
sets. Our objectives are threefold. The first objective is to display the 
shape of the relationship between a biological response and an envi-
ronmental predictor variable. As per the second objective, we identify 
the locations and precision of the thresholds. Our third objective is to 
determine the prediction band for the biological response given en-
vironmental condition. We then discuss which method (PLRM versus 
PQRM) provides more precise estimates of environmental thresholds 
and the prediction bands; and whether PQRM provides more informa-
tion about the relationships between variables than the PLRM.

2  | MATERIAL S AND METHODS

2.1 | Loess and bootstrap prediction band

Let y and x be the biological response and environmental stress vari-
ables, respectively. The nonparametric locally estimated scatterplot 
smoothing (loess) model (Cleveland, 1979; Cleveland & Devlin, 1988) 
is defined as

where m(x;h) is the smoothed function of interest with smoothing 
parameter h and ϵ is an independent error term with mean 0 and 
standard deviation �. Loess can capture both linear and nonlinear 

relationships between variables. Here, the goal of fitting loess is to 
approximate the number and positions of the breakpoints in a rela-
tionship by inspection. We used the R (R Core Team, 2020) state-
ment loess to fit the model (Equation 1).

We generated a bootstrap (Efron & Tibshirani,  1994) prediction 
band for loess to provide a measure of the variability of the biological re-
sponse given the environmental condition (Algorithm 1). The algorithm 
for generating the prediction band is obtained by adapting the methods 
of Hӓrdle and Bowman (1988) and Davison and Hinkley (1997).

The proposed algorithm assumes that the model is correctly 
specified and that the residuals are identically and independently 
distributed. However, the algorithm requires no distributional as-
sumptions for the residuals. Importantly, it can be applied to any 
method by replacing m(x;h) by the desired model. In this algorithm, 
steps i–ii capture the sampling variability of the estimated model, 
and steps iii–iv capture the extra variability due to prediction.

Algorithm 1 Bootstrap resampling method to construct a nonparamet-
ric prediction band for the biological response given the predictor. 
The confidence level and number of bootstrap samples are repre-
sented by � ∈{0.80, 0.95} and B, respectively.

1. Fit a model m̂(x;h), and make prediction ŷi= m̂(xi;h) for i=1, 2,⋯, n

.

2. Calculate i  th residual �̂i=yi− ŷi, and normalize the residuals as 
�̃i= �̂i−

1

n

∑n

j=1
�̂j for i=1, 2,⋯, n.

3. For b in 1 to B:

(i) Generate bootstrap residuals {�∗
1
, �∗

2
,⋯, �∗

n
} by sampling 

with replacement from {�̃1, �̃2,⋯, �̃n}, and calculate bootstrap 
observations y∗

i
= m̂(xi;h)+�∗

i
.

(ii) Fit a model m̂∗
(x;h) using the bootstrapped observations (xi, y∗i )

, and calculate bootstrapped residuals e∗
i
=y∗

i
−m̂

∗
(xi;h) for 

i=1, 2,⋯, n.

(iii) Normalize the bootstrapped residuals ẽ∗
i
=e∗

i
−

1

n

∑n

j=1
e∗
j
 for 

i=1, 2,⋯, n.

(iv) Sample residuals {e∗∗
1
, e∗∗

2
,⋯, e∗∗

n
} with replacement from the 

normalized bootstrapped residuals {ẽ∗
1
, ẽ∗

2
,⋯, ẽ∗

n
}, and calculate 

predicted residuals e∗p
i
= m̂(xi;h)−m̂

∗
(xi;h)+e∗∗

i
 for i=1, 2,⋯, n.

4. End For.

5. Calculate empirical quantiles e∗p
i
((1−�)∕2)and e∗p

i
((1+�)∕2)

of the predicted residuals across bootstrap resamples, and 
construct lower and upper limits of the prediction band [
ŷi+e

∗p

i
((1−�)∕2), ŷi+e

∗p

i
((1+�)∕2)

]
.

2.2 | Piecewise linear regression model (PLRM)

A PLRM goes through the conditional mean of the response variable 
and connects two linear segments at each breakpoint. We define

to estimate two breakpoints incorporating three linear segments 
(Seber & Wild, 2003) as

(1)y=m(x;h)+�,

yi=m(xi;� ,�)+�i
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where yi and xi are the values for the i  th response and predictor variables, 
respectively, and �1 and �2 are the breakpoints. Here, � = (�0, �1, �2, �3)

T 
represents the vector of regression coefficients and �= (�1, �2)

T repre-
sents the vector of breakpoints. This model assumes that the errors �i 
are iid normal random variable with mean zero and standard deviation �
. The parameters (� ,�, �) are estimated using a nonlinear least squares 
method. We fitted PLRM (Equation 2) using the R package segmented 
(Muggeo, 2015). To run the nonlinear least squares method, we supplied 
the initial parameter values estimated from the fitted loess model.

The prediction band for the conditional distribution of the bio-
logical response given environmental condition is obtained by sub-
tracting the margin of errors from the predicted values. The margin 
of errors is calculated by multiplying appropriate t values by the 
standard errors of prediction.

2.3 | Piecewise linear quantile regression model 
(PQRM)

Quantile regression models (Cade & Noon,  2003; Koenker,  2005) 
are defined through the quantiles of the conditional distribution of 
the biological response variable. Such models allow one to evalu-
ate relationships among variables through the conditional median of 
the biological response, as well as the full range of other conditional 
quantile functions. By supplementing the classical regression model, 
which is defined at the conditional mean, quantile regression mod-
els provide a more complete statistical analysis of the relationships 
among ecological variables (Mosteller & Tukey, 1977). The PQRM, 
which is defined at conditional quantiles, provides much richer in-
formation in terms of estimating a relationship and breakpoints than 
the PLRM, which is defined at the conditional mean.

Let m� (x;�� ,�� ) be the � th quantile of the conditional distribution 
of the ecological response given environmental condition as.

Then the PQRM with two breakpoints is defined as:

where �1�and �2�are the first and second breakpoints, respec-
tively, defined at the �th quantile of the conditional distribution. 

Here, �� = (�0� , �1� , �2� , �3� )
T represents the vector of regression co-

efficients and �� = (�1� , �2� )
T represents the vector of breakpoints 

defined at the �th quantile. The advantage of quantile regression is 
that there is no restriction for any distribution of the error term ��
. We used the statement nlrq of the R package quantreg (Koenker 
et al., 2018) to fit PQRM where the initial values of the parameters 
are supplied from the fitted loess.

Following Feng et al. (2011), we used wild bootstrap residuals to 
fit multiple PQRMs defined at the median to calculate the confidence 
interval (CI) for the breakpoints. The bootstrap CIs for the break-
points of the PQRM at the median are obtained using Algorithm 2. In 
this algorithm, f  is the kernel density function of the distribution of 
the error term �i, hi=x2

i
∕
∑

jx
2
j
 and 𝜓𝜏 (𝜖i)= 𝜏− I(𝜖i<0).

Algorithm 2 Bootstrap confidence intervals for the breakpoints using 
piecewise linear quantile regression model (PQRM). The con-
fidence level and number of bootstrap samples are denoted by 
� ∈{0.95} and B, respectively.

1. Fit a PQRM m̂(x;� ,�), and make prediction ŷi= m̂(xi;� ,�) for 
i=1, 2,⋯, n.

2. Calculate i th residual �̂i=yi− ŷi, and normalize as 
�̃i= �̂i−{̂f (0)}−1hi��

(
�̂i
)
 for i=1, 2,⋯, n.

3. For b in 1 to B:

(i) Generate the weights wi from the two-point mass distribution

w=

⎧⎪⎨⎪⎩

2 (1−�) with probability 1−�

−2� with probability �

and calculate �∗
i
=wi|�̃i| and bootstrap observations 

y∗
i
= m̂(xi;� ,�)+�∗

i
.

(ii) Fit a PQRM m̂(xi;�
∗,�∗) using the bootstrapped observations 

(xi, y
∗
i
), and calculate the breakpoints (�̂∗

1
, �̂

∗

2
).

4. End For.

5. Calculate empirical quantiles to construct the lower 
and upper limits of the confidence intervals for �1as [
�̂
∗

1
((1−�)∕2), �̂

∗

1
((1+�)∕2)

]
and for �2as 

[
�̂
∗

2
((1−�)∕2), �̂

∗

2
((1+�)∕2)

]
.

3  | APPLIC ATIONS

3.1 | Relating a wetland fish multimetric index 
(MMI) to variation in agricultural stress among 
Laurentian Great Lakes coastal wetlands

The first application relates to estimating threshold effects of a 
measure of agricultural activity in watersheds draining into the 
Laurentian Great Lakes on scores of a multimetric index of com-
munity composition of fishes in bordering coastal wetlands (Bhagat 
et  al.,  2007). Runoff associated with agriculture is a major source 
of human-induced disturbance affecting natural habitat loss for 
fishes (Brazner & Beals, 1997; Crosbie & Chow-Fraser, 1999). Danz 
et  al.  (2005) derived a composite agricultural stress index (AG) to 

(2)m(xi;� ,�)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛽0+𝛽1xi for xi≤𝛼1

𝛽0+𝛽1xi+𝛽2(xi−𝛼1) for 𝛼1<xi≤𝛼2

𝛽0+𝛽1xi+𝛽2(xi−𝛼1)+𝛽3(xi−𝛼2) for xi>𝛼2

y� =m� (x;�� ,�� )+�� .

(3)

m𝜏 (xi;�𝜏 ,�𝜏 )=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛽0𝜏 +𝛽1𝜏xi for xi≤𝛼1𝜏

𝛽0𝜏 +𝛽1𝜏xi+𝛽2𝜏 (xi−𝛼1𝜏 ) for 𝛼1𝜏 <xi≤𝛼2𝜏

𝛽0𝜏 +𝛽1𝜏xi+𝛽2𝜏 (xi−𝛼1𝜏 )+𝛽3𝜏 (xi−𝛼2𝜏 ) for xi>𝛼2𝜏
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characterize the risk of degradation of natural habitat using GIS-
based data. We rescaled the AG (a PCA score) to a 0–1 range with 
larger numbers reflecting more extensive agricultural activities. The 
measure of biological condition is a wetland fish multimetric index 
(MMI), a measure representing the inferred health of the fish assem-
blage in an ecoregion or watershed. Uzarski et al. (2005) developed 
and Bhagat et al. (2007) validated the fish multimetric index by as-
sessing fish assemblages in stands of bulrush (Schoenoplectus, spp) 
in 30 coastal wetland distributed across the US Great Lakes coast 
(Table A1). Scores vary from 0 to 100, with larger scores represent-
ing greater ecological health of the fish assemblage. Traditionally, 
MMI scores falling in the lowest and highest quintiles are classi-
fied as “degraded” and “excellent” conditions, respectively. Bhagat 
et  al.  (2007) observed a statistically significant negative linear as-
sociation between fish IBI and AG scores, but suggested the pres-
ence of threshold responses. They did not quantitatively test for the 
presence of breakpoints.

3.2 | Relating cyanobacteria biomass to total 
phosphorus concentrations among lakes

The second application relates to identifying putative threshold ef-
fects of total phosphorus (TP) on the risk of development of harm-
ful algal blooms (dominated by toxigenic Cyanobacteria) in lakes 
(Beaulieu et al., 2014; Downing et al., 2001; Watson et al., 1992). 
TP is a limiting nutrient whose loads to lakes and rivers reflect con-
tributions of sewage from urban centers, agricultural runoff, and 
other manifestations of human activity (Qian et al., 2003; Reynolds 
& Walsby,  1975). Cyanobacteria biomass per unit volume (CB) is 
a standard index of concentration, and often used as a proxy for 
the risk of toxicity of harmful algal blooms. Cyanobacteria blooms 
are manifestations of eutrophication whose prevalence is in-
creasing globally (Bullerjahn et al., 2016). CB harbors compounds 
that can be acutely toxic (Campos & Vasconcelos, 2010; Roegner 
et  al.,  2014) and that are linked to diseases such as carcinoma 
(Labine & Minuk, 2009; Lone et al., 2015). Thus, CB is directly re-
lated to risks to human and animal health (Downing et  al.,  2001; 
Svendsen et al., 2018).

Opinion on the shape of the relationship between TP and CB 
is varied. TP is arguably one of the top single predictors of CB 
(Chlorophyll a), and empirically derived linear models are widely 
used in lake management (Beaulieu et al., 2014; Dillon & Rigler, 1974, 
1975; Stow & Cha, 2013). However, sigmoidal relationships between 
TP and CB are also well documented (Chow-Fraser et  al.,  1994; 
Downing et al., 2001; Filstrup et al., 2014; Watson et al., 1992, 1997). 
Beaulieu et al. (2014) used data (Table A1) provided by the Ministries 
of the Environment of Alberta (43 lakes), British Columbia (10 lakes), 
and Ontario (97 lakes) relating to CB (μg/L) and TP (μg/L) concentra-
tions. Using linear regression, nonlinear regression, and mixed-ef-
fects models, they concluded that linear models better explained the 
data pattern than nonlinear approaches. Yet, scatterplots appear to 
indicate discontinuities in the TP-CB relationship.

3.3 | Simulation: Evaluating effects of sample 
size and precision

For the simulation, we generated data from the following model.

such that �∗
i
=
[|xi−�1|+�2

]−1
�i, where �i∼ t-distribution with df 

degrees of freedom. It is a piecewise linear regression model with 
varying error variances and heavy-tailed t-distribution. To assess 
the accuracy of each method as compared to known parameters, 
we selected the following values, based upon the estimates derived 
from the actual Fish MMI and agricultural stress data: �0=51.92, 
�1=4.41, �2=−166.14, �3=274.00, �1=0.26, and �2=0.49. We var-
ied x variable values from the smallest AG values of 0.0351 to the 
largest AG values of 0.6698. We further considered �1 to be 0.35 
and �2 to be 0.10. This set-up allows larger error variances to the 
values of x around 0.35 than the edges. Also, the simulated data val-
ues near the first breakpoint �1 are more variable than the simulated 
data values near the second breakpoint �2. We then evaluated the 
relative performance of each regression method by creating scenar-
ios of sets of 100 simulated datasets for each of the 6 combinations 
of sample size (n=30 and 150) and error degrees of freedom (df=10

, 15, and 20). For each dataset, a total of 1,000 bootstrap samples 
were generated from which to estimate the confidence intervals and 
prediction bands. We then calculated the bias, variance, and mean-
squared error (MSE) of the point estimates, and coverage and width 
for the confidence intervals of the two breakpoints. For the predic-
tion bands of loess, PLRM, and PQRM, we calculated the mean areas 
under the curve with their standard errors as a function of sample 
size and error degrees of freedom.

4  | RESULTS

4.1 | Simulation results

We first present the results in terms of bias, variance, mean-squared 
error (MSE), coverage, and width for the confidence intervals of the 
breakpoints identified by the PLRM and PQRM (Table 1). The biases, 
variances, and mean-squared errors of the point estimates of the 
breakpoints are smaller for PQRM than for PLRM especially when 
the sample sizes and degrees of freedoms are small. The differences 
between the metrics (bias, variance, and MSE) for PLRM and PQRM 
become smaller as the sample sizes and degrees of freedoms grow 
larger. However, estimates for the first and second breakpoints are 
positively and negatively biased, respectively. For the first break-
point, around which the generated data were more variable, the cov-
erage for PQRM is larger than for PLRM. For the second breakpoint, 
around which the generated data were less variable, the coverage 
for PQRM is smaller than the coverage for PLRM. For the first break-
point, the width of the confidence interval is smaller for PQRM than 
for PLRM especially for small samples. For the second breakpoint, 

yi=�0+�1xi+�2xiI(xi−�1)+�3xiI(xi−�2)+�∗
i
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the width of the confidence interval is smaller for PQRM than for 
PLRM for both small and large samples.

The mean area within the prediction bands (AWC) and the stan-
dard errors against sample size (n) and error degrees of freedom (df) are 
shown for loess, PLRM, and PQRM (Table 2). For the 80% prediction 
band, the smallest area is from PQRM followed by loess and PLRM 
irrespective of whether sample sizes were small or large. For the 95% 
prediction band, the smallest area is from loess followed by PQRM and 
PLRM for small sample sizes (n=30). For the large sample (n=150), the 
smallest area is from PLRM followed by PQRM and loess.

In a nutshell, the performance of PQRM is less biased and more 
accurate than the PLRM in situations with small samples and large 
error variability reflected by small degrees of freedom.

4.2 | Relationships between fish multimetric 
index and agricultural stress

4.2.1 | Loess and bootstrap prediction band

The relationship between Fish MMI and AG was negative (Figure 1a). The 
loess suggests the possible presence of two breakpoints at AG values 

about 0.22 and 0.45. MMI score was independent of AG stress when 
AG scores were below 0.22, decreased sharply between stress values of 
0.22 and 0.45, and reached its minimum at AG stress values over 0.45.

The bootstrap prediction bands for the Fish MMI provided an idea 
of the location of possible thresholds and uncertainty of the range of 
the Fish MMI response variable (Figure 1a). The 80% and 95% predic-
tion bands covered surface areas of 12.089 and 17.730 square units, 
respectively (Table A9). For AG of 0.210 (the position below the first 
threshold), the predicted Fish MMI was 55.678 with 80% and 95% 
prediction intervals of (47.968, 66.805) and (43.381, 70.874), re-
spectively. For agricultural stress 0.517 (the position above the sec-
ond threshold), the predicted Fish MMI is 30.514 with 80% and 95% 
prediction intervals of (22.226, 41.185) and (17.667, 45.345), respec-
tively. The upper limit of fish MMI of 41.185 using the 80% prediction 
band at AG value of 0.517 is lower than the lower limit of fish MMI of 
47.968 using the 80% prediction band at AG value of 0.21.

4.2.2 | Piecewise linear regression model

The PLRM identified two breakpoints at AG scores of 0.263 and 
0.488, respectively (Table A2), broadly corresponding to the location 

TA B L E  1   Biases, variances (Var), and mean-squared error (MSE) for the point estimates of the thresholds using piecewise linear 
regression model (PLRM) and piecewise linear quantile regression model (PQRM) under two sample sizes and three error degrees of 
freedoms. The coverage and width of the confidence intervals of the thresholds are also provided

Thresholds Metrics Methods

Sample Sizes (n)

30 150

df df

10 15 20 10 15 20

�1 Bias PLRM 0.0168 0.0148 0.0140 0.0039 0.0037 0.0043

PQRM 0.0085 0.0078 0.0075 0.0019 0.0021 0.0037

Var PLRM 0.0032 0.0027 0.0026 0.0005 0.0004 0.0004

PQRM 0.0016 0.0013 0.0013 0.0003 0.0004 0.0004

MSE PLRM 0.0035 0.0029 0.0028 0.0005 0.0004 0.0004

PQRM 0.0016 0.0013 0.0013 0.0004 0.0004 0.0004

Coverage PLRM 0.6900 0.7000 0.7100 0.7900 0.7800 0.7800

PQRM 0.7200 0.7500 0.7400 0.8200 0.7900 0.8000

Width PLRM 0.0999 0.0985 0.0997 0.0489 0.0470 0.0462

PQRM 0.0913 0.0924 0.0898 0.0587 0.0579 0.0581

�2 Bias PLRM −0.0135 −0.0139 −0.0119 −0.0017 −0.0013 −0.0013

PQRM −0.0029 −0.0031 −0.0034 −0.0015 −0.0010 −0.0013

Var PLRM 0.0011 0.0012 0.0010 0.0001 0.0001 0.0001

PQRM 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001

MSE PLRM 0.0013 0.0014 0.0011 0.0001 0.0001 0.0001

PQRM 0.0003 0.0003 0.0004 0.0001 0.0001 0.0001

Coverage PLRM 0.7900 0.8000 0.8100 0.9200 0.9100 0.9300

PQRM 0.7500 0.7200 0.7200 0.8800 0.8800 0.9000

Width PLRM 0.0673 0.0656 0.0655 0.0317 0.0304 0.0298

PQRM 0.0486 0.0485 0.0484 0.0284 0.0281 0.0278
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of inflection points identified by the loess model. There is no overlap 
between the CIs (0.196, 0.331) and (0.391, 0.585) for the two break-
points. Thus, the two breakpoints are significantly different.

The slopes �1 and �1+�2+�3 of the first and third segments of 
PLRM were not significantly different from zero (t=0.122, p=0.904 ; 
t=1.392, p=0.177, respectively). Thus, Fish MMI scores were inde-
pendent of AG stress at low levels of stress, up to 0.263, and at high-
stress levels exceeding 0.488. MMI score decreased significantly 
with increasing AG stress between the breakpoints 0.263 and 0.488 
(t=3.009, p=0.006).

The 80% and 95% prediction bands for the Fish MMI covered sur-
face areas of 17.240 and 27.000, respectively (Figure 1b). The PLRM 
prediction bands were substantially wider than those generated from 
loess, reflecting the large residual standard deviation �̂=9.055 (rela-
tive to standard deviation of 13.200 for Fish MMI) and the loss of de-
grees of freedom associated with estimating 6 parameters. For AG of 
0.210, the predicted Fish MMI is 52.850 with 80% and 95% prediction 
intervals of (40.425, 65.275) and (33.391, 72.309), respectively. For AG 
value of 0.517, the predicted Fish MMI is 19.956 with 80% and 95% 
prediction intervals of (4.697, 35.215) and (−3.941, 43.853), respec-
tively. The upper limit of fish MMI of 35.215 using the 80% prediction 
band at AG value of 0.517 (a value above the second threshold) is lower 
than the lower limit of fish MMI of 40.425 using the 80% prediction 
band at AG value of 0.21 (a value below the first threshold).

4.2.3 | Piecewise linear quantile regression model

The PQRM defined at the median (� =0.50) of the conditional dis-
tribution of Fish MMI scores as a function of AG stress estimated 
the location of two significantly different breakpoints: �̂1� =0.264 
(CI of (0.179, 0.347); Table A3) and ̂�2� =0.466 (CI of (0.393, 0.553)). 
The Fish MMI remains flat (�̂1� =1.447 with 95% CI (−41.363, 
92.828)) with respect to AG scores up to 0.264, decreases sharply 
(�̂1� + �̂2� =−191.537 with 95% CI (−410.675, −107.144)) against AG 
from 0.264 to 0.466. The results estimate that the Fish MMI score 
increases slowly with increasing AG scores greater than 0.466 

with slope �̂1� + �̂2� + �̂3� =100.594 and 95% confidence interval 
(28.830, 193.894). We believe that this counterintuitive result of 
apparent rising trend in MMI scores in the third segment of the 
model for AG scores greater than 0.466 is an artifact of the sparse 
data especially in the vicinity of the estimated breakpoint and 
small sample size.

Algorithm 1 was used to obtain the prediction bands for the Fish 
MMI defined at the median (Figure  1c). The 80% and 95% confi-
dence bands covered surface areas of 13.668 and 22.078, respec-
tively. As in the worst-case simulation scenario of small n and df, the 
prediction bands for PQRM were narrower than those for PLRM. 
For AG of 0.210, the predicted Fish MMI is 53.472 with 80% and 
95% prediction intervals of (42.580, 63.882) and (36.374, 70.495), 
respectively. For AG of 0.517, the predicted Fish MMI is 19.856 with 
80% and 95% prediction intervals of (9.820, 31.537) and (4.141, 
38.697), respectively. The upper limit of fish MMI of 31.537 using 
the 80% prediction band at AG value of 0.517 (a value above the 
second threshold) is lower than the lower limit of fish MMI of 42.580 
using the 80% prediction band at AG value of 0.21 (a value below 
the first threshold).

The estimates of �1� varied from 0.233 to 0.284 and �2� varied 
from 0.448 to 0.564 across the conditional quantiles of the distri-
bution of Fish MMI against AG (Table A4). Also, the estimates of �1� 
varied from −10.076 to 31.579, �1� +�2� varied from −223.464 to 
−106.214, and �1� +�2� +�3� varied from 62.053 to 153.677.

4.3 | Relationship between cyanobacteria 
biomass and total phosphorus

4.3.1 | Loess and bootstrap prediction band

The fitted loess and the prediction bands indicated that there was a 
positive relationship between log10(CB) and log10(TP) (Figure  2a). 
Discontinuities in the trend line suggested that there were two candi-
date breakpoints, one at around log(TP) of 1.20 (15.85 μg/L) and the 
other at around log(TP) of 1.70 (50.12 μg/L). CB increased steadily as 

TA B L E  2   Average areas under the curve (with standard error) of the prediction bands (PB) for Loess, PLRM, and PQRM under two sample 
sizes and three error degrees of freedoms scenarios

PB Methods

Sample Sizes (n)

30 150

df df

10 15 20 10 15 20

80% Loess 7.88 (0.14) 7.70 (0.13) 7.56 (0.12) 8.19 (0.06) 7.98 (0.06) 7.88 (0.06)

PLRM 9.59 (0.20) 9.29 (0.18) 9.17 (0.18) 9.11 (0.09) 8.71 (0.08) 8.55 (0.08)

PQRM 6.96 (0.13) 6.81 (0.13) 6.71 (0.12) 7.62 (0.07) 7.42 (0.06) 7.33 (0.06)

95% Loess 13.29 (0.32) 12.90 (0.29) 12.71 (0.28) 14.65 (0.18) 14.04 (0.17) 13.78 (0.15)

PLRM 15.02 (0.31) 14.55 (0.28) 14.36 (0.28) 13.99 (0.14) 13.38 (0.13) 13.12 (0.12)

PQRM 14.29 (0.37) 13.91 (0.35) 13.65 (0.34) 14.47 (0.17) 13.87 (0.16) 13.63 (0.16)
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function of log(TP) up to a value of 1.20, rose sharply between 1.20 and 
1.70, and then rose more slowly at greater log(TP) concentrations. The 
80% and 95% bootstrap prediction bands (which covered surface areas 
of 3.445 and 5.948, respectively) identified the potential range of CB 
of a given value of log(TP). For log(TP) of 1.012 (a point below the first 
threshold), the predicted log(CB) was 1.656 with 80% and 95% predic-
tion intervals (0.879, 2.309) and (0.389, 2.730), respectively. For log(TP) 
of 2.015 (a point above the second threshold), the predicted log(CB) 
was 3.769 with 80% and 95% prediction intervals (3.052, 4.481) and 

(2.523, 4.959), respectively. The lower limit of log(CB) of 3.052 using the 
80% prediction band at log(TP) of 2.015 is higher than the upper limit 
of log(CB) of 2.309 using the 80% prediction band for log(TP) of 1.012.

4.3.2 | Piecewise linear regression model

The PLRM identified two breakpoints at log(TP) of 1.212 
(16.293 μg/L) and 1.624 (42.073 μg/L) with 95% CIs (1.026, 1.399) 

F I G U R E  1   Fish MMI versus AG. Panel (a) shows fitted loess along with 80% and 95% prediction bands with surface areas 12.089 and 
17.730 square units, respectively. Panel (b) shows fitted PLRM along with 80% and 95% prediction bands with surface areas of 17.240 and 
27.000 square units, respectively. Panel (c) shows fitted PQRM along with 80% and 95% prediction bands with surface areas 13.668 and 
22.078 square units, respectively. The two solid lines along the horizontal axis in panels (b) and (c) are the 95% CIs for the thresholds
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and (1.418, 1.830), respectively (Table  A5). The breakpoints 
were significantly different as there was no overlap between the 
intervals.

The trends of CB against TP estimated by the PLRM (Figure 2b) 
were consistent in relative magnitude with the patterns subjectively 
described by the loess. Values for regression coefficients in the first 
and second segments (but not the third segment) of the regression 
lines were significantly greater than zero.

The 80% and 95% prediction bands covered surface areas of 3.956 
and 6.073 square units, respectively. The PLRM prediction bands were 
substantially wider than those generated from loess. This is due to large 
�̂=0.614 (comparing to the standard deviation of 0.990 for log(CB)) and 
the loss of degrees of freedom for the estimation of 6 parameters. For 
log(TP) of 1.012 (a point below the first threshold), the predicted log(CB) 
was 1.645 with 80% and 95% prediction intervals (0.847, 2.443) and 
(0.420, 2.870), respectively. For log(TP) of 2.015 (a point above the 

F I G U R E  2   log of CB versus log of TP. The Panel (a) displays fitted loess along with 80% and 95% prediction bands with surface areas 
3.445 and 5.948 square units, respectively. Panel (b) displays the fitted PLRM, 80% and 95% prediction bands with surface areas of 3.956 
and 6.073 square units, respectively. Panel (c) represents fitted PQRM along with 80% and 95% prediction bands with surface areas 3.485 
and 6.099 square units, respectively. The two solid lines along the horizontal axis in panels (b) and (c) are the marginal 95% CIs for the 
thresholds
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second threshold), the predicted log(CB) was 3.580 with 80% and 95% 
prediction intervals (2.767, 4.392) and (2.332, 4.827), respectively. The 
lower limit of log(CB) of 2.767 using the 80% prediction band at log(TP) 
of 2.015 is higher than the upper limit of log(CB) of 2.443 using the 80% 
prediction band at log(TP) of 1.012.

4.3.3 | Piecewise linear quantile regression model

The PQRM defined at the median (� =0.50) of the conditional distri-
bution provided estimates of the two breakpoints �̂1� =1.110 and 
�̂2� =1.662 (Table  A6) with 95% bootstrap CIs (0.829, 1.408) and 
(1.437, 1.836), respectively. The breakpoints were significantly differ-
ent from each other as the CIs didn't overlap. The relationship was not 
statistically significant at the lowest concentrations of TP (�̂1� =0.952 
with 95% CI (−0.316, 1.816)). There was a strong positive relationship 
between the two variables for the middle segment (�̂1� + �̂2� =2.904 
with 95% CI (2.121, 5.373)). At values of log(TP) over 1.662, log(CB) then 
increased slowly (�̂1� + �̂2� + �̂3� =0.825; with 95% CI (0.214, 1.337)). 
The estimated residual standard deviation was �̂� =0.618.

Algorithm 1 was used to obtain prediction bands bounding the 
CB-TP relationship (Figure 2c). The 80% and 95% prediction bands 
covered surface areas of 3.485 and 6.099, respectively, for the range 
of the CB values expected for a given TP concentration. For log(TP) 
of 1.012, the predicted log(CB) was 1.603 with 80% and 95% pre-
diction intervals (0.835, 2.299) and (0.331, 2.784), respectively. For 
log(TP) of 2.015, the predicted log(CB) was 3.591 with 80% and 95% 
prediction intervals (2.827, 4.257) and (2.261, 4.780), respectively. 
The lower limit of log(CB) of 2.827 using the 80% prediction band at 
log(TP) of 2.015 (a point above the second threshold) is higher than 
the upper limit of log(CB) of 2.299 using the 80% prediction band at 
log(TP) of 1.012 (a point below the first threshold).

The estimates of �1� varied from 1.066 to 1.230 and �2� varied 
from 1.585 to 1.662 across the conditional quantiles of the distribu-
tion of CB against TP (Table A7). The estimates of �1�, �1� +�2�, and 
�1� +�2� +�3� varied from 0.364 to 1.958, 2.679 to 4.414, and 0.647 
to 1.269, respectively.

5  | COMPARISONS

We examined which method provided the narrowest CIs of the 
breakpoints (Table A8). For the Fish MMI and AG data, PLRM gen-
erated a narrower interval for �1, and PQRM generated a narrower 
interval for �2. Similarly, for the CB versus TP data, PLRM generated 
a narrower interval for �1, and PQRM generated a narrower interval 
for �2.

We also compared the surface areas bounded by the prediction 
bands (Table A9). For the 80% prediction band of the Fish MMI ver-
sus AG data, the surface areas covered by loess, PLRM, and PQRM 
were 12.089, 17.240, and 13.668 square units, respectively. For the 
95% prediction band, the surface areas covered by loess, PLRM and 
PQRM were 17.730, 27.000, and 22.078 square units, respectively. 

The smallest surface area was derived from loess followed by PQRM 
and PLRM. For the CB versus TP data, the surface areas of 80% pre-
diction bands are 3.445, 3.956, and 3.485 square units, respectively. 
The surface areas of 95% prediction bands are 5.948, 6.073, and 
6.099 square units, respectively. The smallest surface area was de-
rived from loess. The surface areas from PLRM and PQRM are close 
to each other.

6  | DISCUSSION AND CONCLUSIONS

6.1 | Fish multimetric index versus agricultural 
stress

Loess, PLRM, and PQRM all identified 2 breakpoints in the same 
locations along the AG stress. Of the two methods from which 
CIs could be empirically calculated, the 95% CI of the PQRM was 
124.44% and 82.47% as wide as those of the PLRM for the lower and 
upper thresholds, respectively. PQRM produced a narrower CI for 
the second breakpoint demarcating the sharp transition from second 
regime to the third.

The PLRM approach identified breakpoints that were significantly 
different from each other and represented marked discontinuities in 
the MMI-AG relationship. Fish MMI scores were independent of AG 
stress range below 0.263, but were a significant negative function of 
increasing AG from 0.263 to 0.488. Fish MMI was also independent 
of AG at stress values over 0.488. Similar results were obtained from 
PQRM. Tests for the slope indicated that fish MMI score was a neg-
ative function of AG between the two stress thresholds. The upper 
limit of fish MMI using the 80% prediction band given AG score of 
0.517 (a point above the second threshold) was lower than the lower 
limit of fish MMI using the 80% prediction band given AG score of 
0.210 (a point below the first threshold).

The ecological and environmental management implications 
(Larned & Schallenberg,  2019) of this interpretation are signifi-
cant. The results suggest that AG values less than 0.263 have no 
detectable influence on the fish assemblages, relative to the range 
of natural variation. In contrast, under high levels of AG (>0.488) 
management practices that slightly reduce agricultural effects are 
unlikely to improve fish assemblage condition as expressed in MMI 
scores. Agricultural changes to watersheds draining into coastal 
wetlands are only likely to influence fish community condition in 
wetlands with stress scores between the two breakpoints.

The loess prediction envelope was the smallest: The PQRM 
enveloped an area of 113.06% and 124.52% for the 80% and 95% 
prediction bands, respectively, of that produced by the loess. The 
PQRM produced the narrower prediction bands enveloping an area 
of 79.28% and 81.77% for the 80% and 95% prediction bands, re-
spectively, than PLRM. These results of smaller prediction band 
using PQRM than PLRM match the simulation results of the worst-
case scenario of small sample size and large error variability.

PQRM revealed important information for the Fish MMI ver-
sus AG relationship confirming the presence of discontinuities 
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(thresholds) in the stress-response relationship that were qualita-
tively suggested by the original researchers (Bhagat et al., 2007). 
For example, the lines in the central segment of the model showed 
varying values of slopes across the conditional quantiles. For the 
lower quantiles (� ≤0.60) of the MMI versus AG relationship, the 
slope varied from −223.464 to −176.737 indicating large decline 
in MMI against AG, whereas for the upper quantiles (𝜏 >0.60) the 
slope varied from −110.634 to −106.214 indicating smaller decline 
(less sensitivity) of fish MMI to AG. These additional results from 
PQRM reflect its strengths over PLRM, which models the relation-
ship only through the conditional mean of the biological response 
against environmental stress. The additional slope estimates pro-
vided by the quantile regression analysis can guide restoration 
ecologists' expectations as to the likelihood that management 
practices that reduce agricultural stresses emanating from water-
sheds will alter fish community health (Johnson, 2013). If the bi-
ological variable is truly controlled by environmental stress, then 
management actions are likely to be most effective at locations 
where AG scores fall within the central segment of the stress 
range. Furthermore, Locations in which MMI scores correspond 
to lower quantiles (� ≤0.60) are likely to be more sensitive to man-
agement actions than locations whose fish assemblages have rel-
atively high MMI scores for a particular conditional stress level 
(𝜏 >0.60).

6.2 | Cyanobacterial biomass versus 
total phosphorus

Loess, PLRM, and PQRM all identified breakpoints in the same loca-
tions along the log(TP) stress. Using PLRM, the tests for the presence 
of ecological breakpoints identified two statistically significant break-
points, corresponding to log(TP) of 1.212 (16.293  μg/L) and 1.624 
(42.073 μg/L), respectively. CB increased slowly for log(TP) concentra-
tions below 1.212, sharply between 1.212 and 1.624, and slowly at 
higher log(TP) concentrations above 1.624. For the first and second 
thresholds, the 95% confidence intervals were narrower for PLRM and 
PQRM, respectively. Using PQRM, the slope in the first segment was 
not statistically significantly different from zero. The slopes of the sec-
ond and third segments indicate a significantly positive relationship 
between CB and TP. However, both the range of variation in CB and 
the slope of the relationship is much steeper over the range of TP con-
centrations between 12.882  μg/L (log(TP)=1.110) and 45.920  μg/L 
(log(TP)=1.662). Below the lower threshold, CB is consistently less 
than 199.067 μg/L (log(CB)=2.299) at log(TP) of 1.012, whereas above 
the upper threshold, CB is predicted to be greater than 671.429 μg/L 
(log(CB)=2.827) at log(TP) of 2.015, ranging by a factor of at least three 
between the two observed TP concentrations (Figure 2c).

The area of the 80% prediction band estimated by the PQRM 
was narrower (88.09%) than the band estimated by PLRM. 
However, the 95% prediction bands for PQRM and PLRM were 
similar. The areas of the prediction bands estimated by PQRM 
were minimally wider than the band estimated by the loess. This is 

probably due to large sample size (n=150), and large residual stan-
dard deviations of �̂=0.614 and �̂� =0.618 for PLRM and PQRM, 
respectively, compared to the standard deviation of 0.990 for the 
log(CB).

The information revealed by PQRM is very important for inter-
preting the CB versus TP relationship. For example, the linear lines 
in the second segment of the model show varying values of slopes 
across the conditional quantiles. For the lower quantiles (𝜏 <0.50) of 
the CB versus TP relationship, the slope varies from 3.532 to 4.414 
indicating a large increase in CB versus TP, whereas for the upper 
quantiles (� ≥0.50) the slope varies from 2.679 to 2.946 indicating a 
smaller increase (less sensitivity) in CB relative to TP. Quantification 
of these types of relationships across multiple quantiles of the condi-
tional distribution of the biological response against environmental 
stress is not possible using the PLRM, which is defined only at the 
conditional mean of the distribution.

Biomass was interpreted to be a monotonically increasing func-
tion of TP by Dillon and Rigler (1974) and Beaulieu et  al.  (2014). 
But the identification of 3 significantly different segments of the 
relationship separated by breakpoints in the nutrient gradient 
supports the sigmoidal interpretation of the relationship (Filstrup 
et  al.,  2014; Watson et  al.,  1992). The management implications 
(Larned & Schallenberg, 2019) associated with applying single-slope 
versus 3-segmented interpretations of the relationship are signifi-
cant. Use of a linear model to guide management implies that any 
alteration in TP concentration in a receiving water body can be ex-
pected to elicit a cyanobacterial response. In contrast, adherence 
to a sigmoidal model implies that there are points of inflection be-
yond which the two variables may behave independently, possibly 
obviating the need for the control of TP below a particular thresh-
old concentration. Phosphorus has traditionally been regarded as 
the key nutrient limiting phytoplankton biomass in lakes (Schindler 
et al., 2008). However, Beaulieu et al. (2014) observed that CB val-
ues could be predicted equally well and with similar patterns from 
concentrations of Total Nitrogen (TN). Yet, a strong correlation 
between TP and TN, made it difficult for the authors to identify 
which of the two nutrients was the ultimate predictor of CB. The 
trisegmented relationship that we observed could reflect colimita-
tion of these two nutrients (Müeller & Mitrovic, 2015). A strength 
of PQRM is that bivariate relationships can be modeled even when 
potential confounding factors add variation that reduces the signal 
to noise ratio in the center of the conditional distribution (Cade & 
Noon, 2003).

We have proposed methods for quantifying the positions and 
precision of breakpoints that are subjectively identified by empir-
ical observations, justified by visual analysis of the relationships 
between a response variable and its predictor using nonparamet-
ric loess, which minimized potential observer biases. Loess, PLRM, 
and PQRM all identified breakpoints in the same stress locations, 
which were statistically significantly nonoverlapping. As a result, we 
rule out the possibility that these ecological thresholds are spurious 
(Daily et al., 2012). However, our observations are consistent with 
the findings of Daily et al. (2012) that greater precision in estimation 



     |  13511TOMAL and CIBOROWSKI

is achieved with larger sample sizes and a higher frequency of obser-
vations across the environmental stress gradient.

Following Qian (2014), we investigated the goodness-of-fit of 
our models by inspecting residual plots against environmental stress 
gradient (Figure  A1). The residuals are distributed symmetrically 
around the horizontal line at 0 suggesting an absence of bias in the 
selected models. Again, the larger variability of residuals evident 
across the center of the environmental gradient than the edges sup-
ports the validity of using quantile regression.

Cade et al. (1999) showed the applications of linear quantile re-
gression with varying error variances to two ecological applications 
and pointed out that estimating a range of regression quantiles pro-
vides a comprehensive description of biological response patterns 
for exploratory and inferential analyses. Cade and Noon (2003) ex-
plored the applications of both linear and nonlinear quantile regres-
sion models and showed how stronger and more useful predictive 
relationships can be found in other parts of the response distribu-
tion than that are observed only in the center. Cade et al.  (2005) 
used linear and nonlinear quantile regression models to habitat data 
and showed that these models are less biased and uncertain than 
the classical models defined at the center. Brenden et  al.  (2008) 
used a collection of ecological models including the quantile piece-
wise linear (QPL) with applications in aquatic resource management 
to model a single breakpoint. Their models were mainly nonpara-
metric in nature and depended heavily on CART. Moreover, the 
piecewise models were discontinuous in the threshold location 
between the two linear regimes and did not estimate the preci-
sion of the breakpoint. Feng et al. (2011) proposed wild bootstrap 
for linear quantile regression model via bootstrapping the resid-
uals. In this paper, we have proposed a piecewise linear quantile 
regression model to detect two thresholds with continuous transi-
tion from one linear regime to the adjacent regime. We used wild 
bootstrap to identify the confidence intervals for the breakpoints 
and applied the proposed methods to two ecological datasets. The 
quantile regression estimates for the thresholds are less biased and 
more accurate than their counterparts of classical piecewise linear 
regression. Furthermore, the piecewise linear quantile regression 
model provides the smallest width of the prediction band for the 
simulated and real data especially for small samples and large error 
variances.
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APPENDIX A

TA B L E  A 1   Means and 95% CIs of the ecological variables for the Fish MMI versus AG data and log(CB) versus log(TP) data

Source Variables n Average

95% CI

Lower Upper

Fish MMI versus AG

GLEIa  & Uzarskib  Fish MMI 30 44.40 39.47 49.33

AG 0.32 0.27 0.38

CB versus TP

Alberta CB 43 2.86 2.62 3.10

TP 1.54 1.44 1.63

BC CB 10 2.40 1.74 3.06

TP 1.12 0.81 1.42

Ontario CB 97 1.76 1.58 1.94

TP 1.06 0.98 1.14

Combined CB 150 2.12 1.96 2.28

TP 1.20 1.13 1.27

aGreat Lakes Environmental Indicators (GLEI) by Bhagat et al. (2007). 
bUzarski et al. (2005). 

Names Parameters

Fish MMI versus AG stress

Estimates 95% Confidence interval

Median 
(�=0.50) Lower Upper

Thresholds �1(�) 0.264 0.179 0.347

�2(�) 0.466 0.393 0.553

Slopes �1(�) 1.447 −41.363 92.828

�1(�)+�2(�) −191.537 −410.675 −107.144

�1(�)+�2(�)+�3(�) 100.594 28.830 193.894

TA B L E  A 3   Estimates from the quantile 
regression at the median (� =0.50) and 
95% quantile-based bootstrap confidence 
intervals of the thresholds and slopes of 
the piecewise linear quantile regression 
lines fitted to the fish MMI versus AG data

TA B L E  A 2   Estimates, standard errors, t-values, p-values and 95% CIs of the thresholds and slopes of the PLRM lines fitted to the Fish 
MMI versus AG data

Names Parameters

Fish MMI versus AG

Estimates SE t p

95% CI

Lower Upper

Thresholds �1 0.263 0.033 7.970 0.000 0.196 0.331

�2 0.488 0.047 10.383 0.000 0.391 0.585

Slopes �1 4.405 36.100 0.122 0.904 −70.110 78.920

�1+�2 −161.700 53.810 −3.005 0.006 −272.800 −50.670

�1+�2+�3 112.300 80.680 1.392 0.177 −54.240 278.800

Note: The statistically significant slopes are highlighted using boldface. 
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TA B L E  A 4   Estimates of the thresholds (�1(�) and �2(�)) and three slopes of the piecewise linear quantile regression models for different 
quantiles � applied to the fish MMI versus AG data

Quantiles Thresholds Slopes

� �1(�) �2(�) �1(�) �1(�)+�2(�) �1(�)+�2(�)+�3(�)

0.10 0.233 0.452 −3.054 −188.587 139.315

0.20 0.239 0.450 0.295 −199.208 139.736

0.30 0.233 0.449 29.514 −176.737 104.842

0.40 0.270 0.448 31.579 −223.464 88.891

0.50 0.264 0.466 1.447 −191.537 100.594

0.60 0.255 0.476 −10.076 −194.742 153.677

0.70 0.264 0.533 −1.939 −109.495 96.979

0.80 0.284 0.564 1.952 −106.214 120.274

0.90 0.264 0.551 23.924 −110.634 62.053

Names Parameters

CB versus TP

Estimates SE t p

95% CI

Lower Upper

Thresholds �1 1.212 0.094 12.894 0.000 1.026 1.399

�2 1.624 0.104 15.615 0.000 1.418 1.830

Slopes �1 1.172 0.326 3.595 0.000 0.528 1.815

�1+�2 3.344 0.698 4.791 0.000 1.964 4.725

�1+�2+�3 0.831 0.441 1.884 0.062 −0.041 1.702

Note: The statistically significant slopes are highlighted by using boldface.

TA B L E  A 5   Estimates, standard errors, 
t-value, p-value, and 95% CIs of the 
thresholds and slopes of the PLRM fitted 
to the CB versus TP data

TA B L E  A 7   Estimates of the thresholds (�1(�) and �2(�)) and three slopes of the piecewise linear quantile regression models for different 
quantiles � applied to the cyanobacteria biomass versus total phosphorus data

Quantiles Thresholds Slopes

� �1(�) �2(�) �1(�) �1(�)+�2(�) �1(�)+�2(�)+�3(�)

0.10 1.228 1.609 0.509 3.564 1.269

0.20 1.201 1.585 0.562 4.414 0.853

0.30 1.066 1.645 0.364 3.532 0.724

0.40 1.230 1.646 1.072 3.693 0.688

0.50 1.110 1.662 0.952 2.904 0.825

0.60 1.176 1.641 1.342 2.931 0.758

0.70 1.155 1.623 1.565 2.679 0.794

0.80 1.146 1.598 1.541 2.874 0.647

0.90 1.200 1.623 1.958 2.946 0.689

Names Parameters

Cyanobacteria biomass versus total phosphorus

Estimates
95% Confidence 
interval

Median (�=0.50) Lower Upper

Thresholds �1(�) 1.110 0.829 1.408

�2(�) 1.662 1.437 1.836

Slopes �1(�) 0.952 −0.316 1.816

�1(�)+�2(�) 2.904 2.121 5.373

�1(�)+�2(�)+�3(�) 0.825 0.214 1.337

TA B L E  A 6   Estimates from the quantile 
regression at the median (� =0.50) and 
95% quantile-based bootstrap confidence 
intervals of the thresholds and slopes of 
the piecewise linear quantile regression 
lines fitted to the cyanobacteria biomass 
versus total phosphorus data
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Methods PLRM PQRM

Fish MMI versus AG

Thresholds 95% CIs 95% CIs

Lower Upper Width Lower Upper Width

�1 0.196 0.331 0.135 0.179 0.347 0.168

�2 0.391 0.585 0.194 0.393 0.553 0.160

CB versus TP

�1 1.026 1.399 0.373 0.829 1.408 0.579

�2 1.418 1.830 0.412 1.437 1.836 0.399

Note: The smaller width in each row is highlighted by using boldface.

TA B L E  A 8   Comparison of width of the 
95% CIs of the thresholds for the PLRM 
and PQRM. The top and bottom portions 
belong to the Fish MMI versus AG data 
and CB versus TP data, respectively

TA B L E  A 9   Comparison of the surface areas in square units of the 80% and 95% prediction bands for loess, PLRM and PQRM

Fish MMI versus AG

Methods Confidence levels Loess PLRM PQRM

Surface area 80% 12.089 17.240 13.668

95% 17.730 27.000 22.078

CB versus TP

Surface area 80% 3.445 3.956 3.485

95% 5.948 6.073 6.099

Note: The top portion belongs to the Fish MMI versus AG data and the bottom portion belongs to the CB versus TP data. The smallest (most precise) 
surface area estimates are highlighted using boldface.
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F I G U R E  A 1   Plots of residuals for piecewise linear regression model (PLRM) and piecewise linear quantile regression model (PQRM) 
fitted to the fish multimetric index (Fish MMI) versus agricultural stress (AG) and cyanobacteria biomass (CB) versus total phosphorus (TP) 
data. In each subfigure, the residual standard deviation is denoted by �. (a) PLRM to Fish MMI versus AG data with �̂=9.055, (b) PQRM to 
Fish MMI versus AG data with �̂=9.179, (c) PLRM to CB versus TP data with �̂=0.614, (d) PQRM to CB versus TP data with �̂=0.618
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