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Biological and engineering studies of Hess-Murray’s law are focused on assemblies of tubes with impermeable walls. Blood vessels
and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray’s
law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in
a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the
configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e.,
breaking the symmetry of the flow distribution) may occur in this symmetrical dichotomous system. To derive expressions for the
optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of
vessels is only conforming to Hess-Murray’s law optimum as long as they have impervious walls. Findings also indicate that the
optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes.
Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the
assembly of vessels.

1. Introduction

In nature, the function of many flow systems is to deliver
a fluid flow from a finite-size volume to one point (and
vice versa) [1]. Tree-shaped networks provide the solution
to house and facilitate fluid flow. They play a vital role in
the organization and operation of tracheobronchial system,
blood vessels, river basins, and so forth. These networks
branch by dichotomy with a regular reduction of their length
and diameter, and they have been found to have fractal
properties [2–5]. The tip of each tube bifurcates to form two
daughter tubes, along the length of the network. Repetition
of these bifurcations generates the stereotyped, hierarchically
organized branched architecture of the tree [6]. Therefore,
bifurcation is the building block of trees and deserves to be
analyzed.

The sizes of the tubes in the bifurcation are important fac-
tors in determining the efficiency of physiological processes.
Despite the remarkable variety and complexity of natural

tree-shaped flow networks, a relationship exists between
parent and daughter tube sizes [1, 6–8]. The studies of Hess
[9] and Murray [10] show that, in the cardiovascular system,
when a parent vessel branches into daughter vessel, the cube
of the parent vessel’s diameter equals the sum of the cubes of
the daughter vessels’ diameters.This reduction of diameter of
daughter vessels is essential for a proper functioning of the
cardiovascular system and is usually termed as Hess-Murray
law. This law predicts the relationship between the diameters
of parent and daughter tubes for internal flows obeying
laminar conditions. Hess-Murray’s law has been most often
applied to symmetry and asymmetric branching. In both
cases it is assumed that the pressure drop over the daughter
tubes is similar which is valid for a symmetry bifurcation
but is only appropriated for a very low degree of branching
asymmetry [11]. For a symmetric bifurcation, the ratio of
daughter and parent tubes’ diameters can be written more
simply as equal to a homothetic factor of 2−1/3.
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Hess-Murray law can be derived based on minimization
of the energy required to synthesize, maintain, and pump
blood (principle of minimum work) [10], minimization of
flow resistance under the constraints posed by the space
(constructal law) [1, 12], minimization of volume under
constant pressure drop and flow rate [13], applying to a
constant shear stress in all tubes [14], and so forth.

Using the constructal law, Bejan et al. [12] later derived
an equation predicting the lengths of branching tubes by
minimizing the overall flow resistance over a finite-size space.
For laminar flow, they also found that the cube of the length
of a parent tube should be equal to the sum of the cubes of the
lengths of the daughter tubes.Thismeans that in a symmetric
bifurcation, for example, successive tubes are also homothetic
with a size ratio of 2−1/3. Uylings [15] and Bejan et al. [12]
derived equations predicting the sizes of branching tubes
whose internal flows obey turbulent conditions. Revellin
et al. [16] and Miguel [17] also presented extensions of
Hess-Murray’s law for non-Newtonian fluids that exhibit
shear-thinning and shear-thickening behavior. Miguel [18]
analyzes the optimal arrangement of vessels when there is
dependence of apparent viscosity of blood on vessel diameter
and hematocrit (Fåhræus-Lindqvist effect). Following the
Haynes marginal zone theory, he obtain comprehensive
expressions for the branching sizes of parent and daughter
vessels providing easier flow access.

Although targeting the cardiovascular tree [9], experi-
mental data have shown Hess-Murray’s law holds well in
medium sized blood vessels [17], in the respiratory tract
airways of warm-blooded vertebrates such as humans and
dogs [10], and in the tubes for fluid transport in plants [19].
This means the vascular and bronchial trees not only in
warm-blooded vertebrates but also in tree flow systems of
animals and plants have reached similar design solutions.

From the considerable amount of literature comparing
Hess-Murray’s law to physiological studies, there are also
cases where vessels deviate from the optimum perspective
[20–22]. Studies show deviations from the Hess-Murray law
for proximal bifurcations of aorta and some pulmonary veins
[20, 21]. The diameter of acinar airways (respiratory region
of lungs) seems to fall less steeply than that of conducting
airways that obey Hess-Murray law [22, 23]. Some authors
point out that these deviations might be due to structural
constraints. They argue that since deviations are small, the
penalty of deviating from Hess-Murray’s law is also small.
Thus, structural constraints are likely to influence their
design [21]. Miguel [23] derived analytical expressions for
the optimum way to connect parent and daughter vessels
together having permeable walls. This work has brought
out the idea for the optimum branching sizes of vessels
influenced by the wall permeability. Although important, the
analytical approach presented in this paper is based on several
assumptions [23] and is lacking 3D details that can enrich the
understanding of the influence of the permeable boundary
[24].

Generally, in the body, fluid flow is laminar and there
are evidences that turbulent flows may even pose health risk
[25, 26]. Notice also that tubes that are part of the circulatory
and respiratory systems may be able to transport fluids and
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Figure 1: Schematic representation of a T-shaped flow structure (�̇�,
mass flow rate, D, diameter, and L, length).

solutes across the walls. For example, a network of capillaries
(vascular tree) surrounds the respiratory tree (acinus zone)
and brings blood into close proximity with air within the
alveolus [27]. The exchange of oxygen and carbon dioxide
is accomplished through semipermeable walls of both alveoli
and capillaries.

This paper seeks to answer the following question: Are
small deviations from the Hess-Murray law observed in
permeable vessels tolerated because of small punitive increase
of resistance penalty, or is there optimum way to connect
parent and daughter vessels together to achieve the higher
performance? Here, we present a numerical study devised
to investigate the influence of wall permeability on the
optimum geometrical relationship governing the ratio of
sizes of the tubes in a branching network. The study focuses
specifically on T bifurcation transporting fluid under steady
laminar flow of incompressible fluids. Analytical expression
for the optimum daughter-parent sizes ratio is presented and
compared with Hess-Murray law.

2. Methods

2.1. Geometrical Configuration of Branching Tubes in a
T-Junction. Figure 1 illustrates the symmetrical T-shaped
assembly of cylindrical tubes. Parent tube bifurcates and its
size may change by a certain factor. The ratio of successive
diameters and lengths (daughters to parent vessels) can be
written as

𝐷2
𝐷1
= 𝑎𝐷,

𝐿2
𝐿1
= 𝑎𝐿,

(1)

where 𝑎𝐷 and 𝑎𝐿 are scale factors or homothety ratios, 𝐷
is the diameter, 𝐿 is the length, and the subscripts 1 and 2
mean parent and daughter tubes. According to Hess-Murray
law, for laminar flow, 𝑎𝐷 = 𝑎𝐿 = 2−1/3 but in this paper
branching tubes with homothety ratios between 0.1 and 1.0
are also studied. In order to compare the performance of each
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assembly of tubes to fluid flow, the following constraints are
considered:

𝜋
4
[𝐷1
2𝐿1 + 2𝐷2

2𝐿2] = const,

2𝐿1𝐿2 = const.
(2)

The constraints represented by these equations physically
define that both the total volume occupied by the tubes and
the total space occupied by the planar assembly of tubes are
fixed, respectively.

The optimal branching rule for the assembly of tubes
(best design) is the one that maximizes the flow access (or
minimizes the total flow resistance) subject to constraints (see
(2)).

2.2. NumericalModeling. The standard finite volumemethod
is used to solve the coupled Navier–Stokes equations under
steady-state, isothermal, and incompressible conditions.
Thus, the essence of our phenomenological description is the
following set of equations:

∇V⃗ = 0, (3)

𝜌V⃗ (∇V⃗) = −∇𝑃 + 𝜇∇2V⃗, (4)

where V is the velocity, 𝜌 is the density, 𝜇 is the dynamic
viscosity, and 𝑃 is the pressure.

For a porous wall, flow is modeled by adding an extra
source term to the momentum conservation equation (see
(4)). Here, we assume that this source term 𝑆 is due to viscous
effects only (Darcy flow [28–30]):

⃗𝑆 =
𝜇
𝐾
V⃗, (5)

where K is the permeability of the porous material which
measures the ability of a material to transmit fluid through
itself [29, 30].

These governing equationswere solved inAnsys FLUENT
software [31] using the segregated method with implicit
formulation.TheCOUPLED algorithmwith underrelaxation
was selected for the pressure-velocity coupling. For (4), the
convective term is discretized using second-order-upwind
scheme in order to obtain sufficiently accurate solutions. In
order to obtain a stable and accurate iterative process, the
relaxation factors for momentum and pressure were set to
0.75 and 0.75, respectively. The residual values of governing
equations (3) and (4)were all set to 10−4 and 10−6, respectively.

At the parent tube, fluid is introduced at a constant
mass flow rate and at a temperature of 309.15 K. The fluid is
expelled to the outside through the daughter tubes. Nonslip
boundary conditions are considered along solid obstacles-
fluid interface, and the pressure exterior of the configuration
is constant along the axial. In this study, laminar flows of
two Newtonian fluids are studied. The Reynolds number,
based on the hydraulic diameter of the inlet tube, used in
all computations is 103. Both air (𝜌 = 1.1405 kg/m3; 𝜇 =
1.9043 × 10−5Pa⋅s) and blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 ×
10−3Pa⋅s) are used as fluids in the simulations. While air is
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Figure 2:Grid of the domain for the T-shaped flow structure (D2/D1
= L2/L1 = 2−1/3).

considered a Newtonian fluid, blood is associated with non-
Newtonian effects. However, in large arteries and veins, non-
Newtonian effects cease because of high shear rates and blood
behaves as a Newtonian fluid [32] which is the case reported
here. The wall permeability of branching tubes is assumed
to be constant along the assembly and ranging from 0m2
(impermeable wall) to 10−1m2.

Ansys GAMBIT software [33] was used to build the grid
over the branching tubes geometries. A grid independence
analysis was performed and various grid sizes were investi-
gated. A computational grid containing around 1.6 million
tetrahedral elements was found to be appropriate (Figure 2).

3. Optimum Branching Design for an
Optimal Flow Access

According toMurray [10] an optimumarrangement of vessels
for fluid flow is achieved with the least possible biological
work. Although originally derived from the principle of
minimum work, Hess-Murray law can be obtained based on
other optimization principles [1, 8, 11–18].

The occurrence of flow configuration (design) is a uni-
versal phenomenon that occurs everywhere, whether in
animate and inanimate systems, social dynamics (pedestrian
traffic flows), or manmade systems. The constructal law [1]
is about the generation of configuration throughout flow
system. It resolves many contradictory ad hoc statements of
“optimality,” end design, such as minimum and maximum
statements (entropy, mass, power, etc.). This law states that
for a finite-size flow system to persist in time its configuration
must evolve in such a way that it provides easier access to its
currents. Easier access means minimum flow resistance (vis-
cous friction), because these thermodynamic “imperfections”
cannot be avoided. Therefore, the optimal T-shaped flow
structure is the one whose impact (penalty) on the access to
fluid flow is minimum, which means that the total resistance
is minimum.

The search for the branching design offering the mini-
mum total resistance can be performed based on

𝑅 = Δ𝑃
𝜙
, (6)

where 𝑅 is the total flow resistance and 𝜙 is the mass flow
rate.The results can be also presented in a dimensionless form
according to
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𝑅∗ = 𝑅
𝑅 𝑎𝐷=𝑎𝐿=2−1/3

. (7)

Here 𝑅∗ is the total dimensionless flow resistance and
𝑅𝑎𝐷=𝑎𝐿=2−1/3 is the flow resistance in a T-shaped assembly of
vessels designed according to𝐷2/𝐷1 = 𝐿2/𝐿1 = 2

−1/3.

4. Results

The velocity and pressure fields in the T-shaped structures
were numerically obtained for a Reynolds number of 1000.

Velocity and total pressure contours taken for air and
blood flow thorough T-shaped geometries with impermeable
wall (𝐾 = 0m2) and with permeability between 10−5 and
10−1m2 are depicted in Figures 3 and 4.

Figures 3(a)–3(d) and 4(a)–4(d) show that the velocity
and total pressure contours are similar for both air and
blood flows. This means that Newtonian fluids under the
same Reynolds number exhibit similar behavior. Our sim-
ulations (Figures 3(a)(A) and 3(e)(A) and Figures 4(a)(A)
and 4(e)(A)) also indicate that velocity and total pressure
contours are highly sensitive to the homothety ratios 𝑎𝐷 and
𝑎𝐿. T-shaped assembly of vessels designed with optimal ratios
(see Figures 5–8) show a more uniform distribution. More-
over, the results depicted at Figures 3(a)–3(e) and 4(a)–4(e)
show a strong influence of wall permeability on both velocity
and total pressure contours. Note that the presence of holes
along the walls leads to fluid flow through the walls, which
significantly affects the flow dynamics as well as the stress
distribution, regardless of fluid properties.

It is remarkable to notice that an asymmetric flow dis-
tribution occurs in symmetric T-shaped assembly of vessels
(Figures 3(a)–3(d)). This inhomogeneity of the flow distribu-
tion is the result of the effect of inertia on the momentum
transport, and the Reynolds number should significantly
influence it. This agrees with the 2D study of a symmetric Y-
assembly of rectangular channels performed byAndrade Jr. et
al. [34]. Geometrical constraints also influence the inhomo-
geneity of the flowdistribution. According to Figures 3(a) and
3(e) we conclude that the asymmetry flow is less significant
for a lower homothety ratio between diameters of daughter
and parent tubes aD. This means that the area available when
fluid flow meets the daughter vessels influences the flow
symmetry. Figures 3(a)–3(d) also underline the progressive
influence of the wall permeability on the flow distribution. A
strong decrease of flow asymmetry with the permeability is
observed.

In summary, the asymmetric flowoccurring in symmetric
T-shaped geometries is determined by not only the Reynolds
number and the homothety ratio aD, but also by the ability of
the vessel wall to transmit fluid through itself.

Another interesting result is that, at the point where fluid
flow meets the bifurcation, as the flow negotiates the sharp
corners a small zone of flow separation is visible. At opposite
side of wall, flow also becomes detached to form a separation
zone with a free boundary layer. This region is characterized
by lower shear stresses than the opposite side of daughter
wall. As evident from Figures 3(a)–3(e), the region of flow
separation is not dependent on fluid properties (viscosity and

density) but varies markedly with both the wall permeability
and the homothety ratios (aD, aL). It is possible to associate
regions of more pronounced flow separation with branched
structures designed with nonoptimal ratios (see Figures 5–8).
On the other hand, flow separation becomes negligible for
higher permeabilities.

From Figures 3(a)–3(e) and 4(a)–4(e), there are some
conclusions to be drawn. First, the optimum way to connect
parent and daughter vessels together is not dependent on the
fluid properties. Second, the existence of low shear separation
zones, where fluid has smaller velocity, and regions of higher
shear, with different velocities and pressure magnitudes and
in different sites of the daughter tubes, which depends on
the wall permeability and on the vessel sizes, contributes to
different resistance of theT-assembly of tubes. An implication
of these results is noteworthy. The optimum arrangement
of vessels is dependent on both size of vessels and wall
permeability. For this reason, to obtain the optimal solution
for the vessels arrangement, we study next the dependence of
flow resistance on aD, aL, and K.

Based on our numerical results, the total dimensionless
flow resistance defined according to (7) is obtained for the
geometries studied. These results are depicted at Figures 5–8.
These plots show that the dimensionless flow resistance is
a function concave up in the interval 0 < aD ≤ 1, with a
minimum resistance at the bottom of the curve.

Figures 5–8 show dependence of flow resistances on
the fluid properties, homothety ratios (aD, aL), and wall
permeabilities. As expected from the analyses of Figures
3(a)–3(e) and 4(a)–4(e), one observes that the shift of
minimum resistance with 𝑎𝐷 is only dependent on the wall
permeability. As mentioned before, Miguel [23] presented
an analytical approach for fluid flow through porous-walled
tree-shaped networks.This approach considers that the losses
on the connection of large and small vessels together are
negligible compared with friction losses through the vessels.
The junction losses have a sizeable effect on optimized
geometry when a dimensionless parameter called svelteness,
defined by the ratio between the external and internal length
scales, is lower than the square root of 10 [35]. Therefore,
our results cannot be directly compared to analytic study of
[23] since the svelteness of our T-assembly of tubes ranges
from 6.4 to 7.2. However, general trends of variation can be
compared. As noted inMiguel’s study, the total flow resistance
depends on the homothety ratio of the branching vessels as
well as on the wall permeability of vessels, which agree with
our numerical results. Our results also match the findings
obtained by Bejan et al. [12] for T-assemblies of tubes with
impervious walls.

According to the constructal law [1, 7, 12], maximum
flow access means minimum flow resistance subjected to the
space constraints represented by (2). Thus, the optimum way
to connect parent and daughter tubes together to achieve
the fastest access to fluid flow can be obtained from Figures
5–8. Table 1 shows the optimum homothety ratio aD when
the tube segments are part of a configuration obeying aL =
2−1/3. This is particularly suitable for network of tubes that
must fit inside of space with a characteristic length constraint:
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Figure 3: Continued.
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Figure 3: (a) Velocity contours (middle plane) for a T-shaped structure designed according to D2/D1 = L2/L1= 2−1/3 and impervious walls
(K = 0m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s). (b) Velocity contours (middle
plane) for a T-shaped structure designed according to D2/D1 = L2/L1 = 2−1/3 and permeable walls (K = 10−5m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇
= 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s). (c) Velocity contours (middle plane) for a T-shaped structure designed
according to D2/D1 = L2/L1 = 2−1/3 and permeable walls (K = 10−3m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 =
1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s). (d) Velocity contours (middle plane) for a T-shaped structure designed according to D2/D1 = L2/L1 = 2−1/3
and permeable walls (K = 10−1m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s). (e)
Velocity contours (middle plane) for a T-shaped structure designed according to D2/D1 = 0.5 and L2/L1 = 2−1/3 air (𝜌 = 1.1405 kg/m3; 𝜇 =
1.9043 × 10−5 Pa⋅s): (A) impervious walls (𝐾 = 0m2); (B) permeable walls (𝐾 = 10−1m2).

the reduction of tube length by a constant factor occurs
in both the respiratory and cardiovascular trees. Optimality
may be also sought for both diameters and lengths. Table 2
shows the optimum homothety ratios 𝑎𝐷 and 𝑎𝐿 with the wall
permeability.

As expected from the analyses of Figures 3(a)–3(e) and
4(a)–4(e), Tables 1 and 2 show that the optimum homothety
ratios aD and aL are independent of the fluid properties

(viscosity and density). For tubes with impervious walls, both
homothety ratios for diameters and lengths must obey a scale
factor of 0.8 which agrees with Hess-Murray law and the
findings of Bejan et al. [12] (i.e., aD = aL = 2−1/3). In addition,
our results agree with the findings of Miguel [23] indicating
that the optimum homothety ratios 𝑎𝐷 and 𝑎𝐿 depend on the
permeability of vessel walls.
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Figure 4: Continued.
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Figure 4: (a) Contours of total pressure (middle plane) for a T-shaped structure designed according toD2/D1 = L2/L1 = 2−1/3 and impervious
walls (K = 0m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s). (b) Contours of total
pressure (middle plane) for a T-shaped structure designed according to D2/D1 = L2/L1 = 2−1/3 and permeable walls (K = 10−5m2): (A) air (𝜌
= 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s). (c) Contours of total pressure (middle plane) for a
T-shaped structure designed according to D2/D1 = L2/L1 = 2−1/3 and permeable walls (K = 10−3m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 ×
10−5 Pa⋅s); (B) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s). (d) Contours of total pressure (middle plane) for a T-shaped structure designed
according to D2/D1 = L2/L1 = 2−1/3 and permeable walls (K = 10−1m2): (A) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5Pa⋅s); (B) blood (𝜌 =
1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s). (e) Contours of total pressure (middle plane) for a T-shaped structure designed according to D2/D1 = 0.5
and L2/L1 = 2−1/3 air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5Pa⋅s): (A) impervious walls (𝐾 = 0m2); (B) permeable walls (K = 10−1m2).

A comparison between Tables 1 and 2 shows that the
optimum homothety ratio aD is the same for an assembly of
tubes obeying aL = 2−1/3 or for T configuration of tubes with
optimum lengths and diameters. This is a remarkable result
that testifies the robustness of this optimum aD result.

5. Conclusion

Hess-Murray law is attempted to explain the best way to
connect bifurcating tubes by predicting the relationship
between the diameters of parent and daughter tubes at each
bifurcation. In this paper, we attempt to describe the best
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Figure 5: Dimensionless flow resistance, 𝑅∗, for a T-shaped structure with impervious walls (K = 0m2): (a) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043
× 10−5Pa⋅s); (b) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s).
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Figure 6: Dimensionless flow resistance,𝑅∗, for a T-shaped structure with permeable walls (K = 10−5m2): (a) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043
× 10−5Pa⋅s); (b) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s).
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Figure 7: Dimensionless flow resistance,𝑅∗, for a T-shaped structure with permeable walls (K = 10−3m2): (a) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043
× 10−5Pa⋅s); (b) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s).
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Figure 8: Dimensionless flow resistance,𝑅∗, for a T-shaped structure with permeable walls (K = 10−1m2): (a) air (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043
× 10−5Pa⋅s); (b) blood (𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3Pa⋅s).
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Table 1: Optimal branching diameters for the assembly of tubes with L2/L1 = 2−1/3.

K (m2)
Blood Air

(𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s) (𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s)

(𝐷2/𝐷1)optimum 𝑅∗minimum (𝐷2/𝐷1)optimum 𝑅∗minimum

0 0.8 1.0 0.8 1.0
10−5 0.8 1.8 0.8 1.7
10−3 0.7 4.8 0.7 4.5
10−1 0.6 30.6 0.6 6.5

Table 2: Optimal branching diameters and lengths for a T-shaped assembly of tubes.

𝐾 (m2)
Blood

(𝜌 = 1060 kg/m3; 𝜇 = 2.78 × 10−3 Pa⋅s)
Air

(𝜌 = 1.1405 kg/m3; 𝜇 = 1.9043 × 10−5 Pa⋅s)

(𝐷2/𝐷1)optimum (𝐿2/𝐿1)optimum 𝑅∗minimum (𝐷2/𝐷1)optimum (𝐿2/𝐿1)optimum 𝑅∗minimum

0 0.8 0.8 1.0 0.8 0.8 1.0
10−5 0.8 0.8 1.6 0.8 0.8 1.6
10−3 0.7 0.9 4.4 0.7 0.9 4.3
10−1 0.6 0.9 29.3 0.6 1.0 6.1

design of a T-shaped assembly of tubes with permeable walls.
A numerical study of Newtonian fluids under laminar flow
conditions is carried out in assembly of tubes with different
scale factors or homothety ratios for diameters and lengths. In
order to compare the performance of each assembly of tubes
to fluid flow, both the total volume occupied by the tubes and
the total space occupied by the planar structure are fixed.

Among other results, we show that an asymmetric flow
occurs in symmetric T-branched structures. Inertial force
seems to break the symmetry of the flowdistribution and, as a
result, it depends on Reynolds number. The flow asymmetry
is also found to depend both on the wall permeability and on
the homothety ratio aD. Our results show that T-assemblies
of tubes are not homothetic with a unique size ratio but
present different values that depend on wall permeability.
For diameters, the homothety ratio decreases with wall
permeability but the homothety factor for lengths increases
with the wall permeability. Different homothetic ratios are
a necessary consequence to connect large and small vessels
together to achieve maximum fluid-flow access. Successive
tubes segments in the T configuration are homothetic with
a size ratio of 2−1/3 (Hess-Murray law) only for tubes with
impermeable walls.
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