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A B S T R A C T   

Administration of AstraZeneca/Oxford and Johnson & Johnson/Janssen Covid-19 vaccines which use an 
adenovirus vector for DNA delivery has been associated with very rare thromboembolic complications coupled 
with an immune response to platelet factor 4 protein. The cause of this has not yet been identified. It is known 
that binding of coagulation factor proteins to the surface of some adenoviruses can protect their function. Here I 
propose that the thromboembolic events are caused by impairment of coagulation factor X binding to the virus 
capsid. The unprotected capsid then stimulates an immune response leading to platelet activation, increased 
thrombogenicity and formation of an antibody complex with platelet factor 4. Impaired binding of factor X may 
be due to an undiagnosed mutation in affected individuals. Options to test this mechanism experimentally and 
potential remedial actions to resolve the hazard are described. This mechanism offers a remedial route to address 
concerns about the safety of these vaccines, which are otherwise well-positioned to deliver global Covid-19 
immunity across diverse healthcare economies.   

Introduction 

There are continuing investigations to explain the very rare (less than 
0.01%) adverse events associated with thromboembolic complications 
after administration of the Covid-19 vaccines from AstraZeneca (Vax-
zevria injection, Covid-19 Vaccine ChAdOx1-S [recombinant]) [1] and 
Johnson and Johnson/Janssen (COVID-19 Vaccine Janssen suspension 
for injection, Covid-19 Vaccine Ad26.COV2-S [recombinant]) [2], but 
the cause remains unknown. The resulting cautionary guidance from 
medicines regulators has a negative impact on global adoption of these 
vaccines, which are otherwise well-suited for use in diverse environ-
mental conditions and health economies. Analysis of blood samples from 
some of the affected individuals has identified low platelet count and 
antibodies against platelet factor 4 (PF4), analogous to the pro-
thrombotic condition of heparin-induced thrombocytopenia (HIT) [1,3] 
which is characterised by the formation of antibodies against a complex 
of heparin and PF4. The similar, but heparin-independent, immune 
response to an as-yet unidentified characteristic of the vaccine has been 
described as vaccine-induced immune thrombotic thrombocytopenia 
(VITT) [3,4]. Possible explanations for the underlying physiology have 
been reviewed, evaluating their limitations and proposing the experi-
ments needed to test each hypothesis [5]. However, these have not 
identified a root cause which explains both the particular association of 

VITT with adenovirus-vectored vaccines and the very low frequency of 
these events even within that cohort of vaccinated individuals. Initially, 
the anecdotal incidence of these adverse events was reported to be be-
tween 1 in 500,000 and less than 1 in 1 million (or 0.0001%). However, 
more recent stratified meta-analysis estimates the risk for recipients of 
Covid-19 Vaccine ChAdOx1-S [recombinant] to be 1 in 1 million for 
individuals aged 65 years and above, but 1 in 20,000 to 60,000 for in-
dividuals below 55 years of age [6]. The incidences are similar to those 
of inherited blood coagulation factor deficiencies [7], which has 
prompted consideration of a novel causative mechanism for such very 
rare adverse events. 

Background elements of the hypothesis 

Vaccine characteristics 

The two vaccines so far associated with these adverse events use 
different modified adenovirus vectors to deliver DNA encoding for SARS 
CoV-2 spike protein [8,9]. It is not known whether similar adverse 
events have occurred following use of two other adenovirus vector DNA 
vaccines for Covid-19 (Convidecia from CanSino Biologics and Sputnik 
V/Cam-COVID-Vac from Gamaleya National Centre of Epidemiology 
and Microbiology). These four vaccines are differentiated from other 
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nucleic acid Covid-19 vaccines which utilise mRNA in non-virus vectors. 
The Astra Zeneca/Oxford vaccine vector ChAdOx1 is a modified chim-
panzee adenovirus Y25 which is associated phylogenically with human 
adenovirus group E and is generally related to human adenovirus 
serological class 4, although the hexon capsid protein DNA is distinct 
from Group E human adenoviruses [10]. In contrast, the Johnson & 
Johnson/Janssen vaccine is derived from human adenovirus 26 which is 
associated phylogenically with human adenovirus group D [11,12]. 

Factor X binding to adenovirus 

Coagulation factor X protects some adenoviruses (e.g. sub-group C 
Adenovirus serotype 5) from reaction with immunoglobulin (IgM) and 
complement. This protective mechanism is independent of the coagu-
lation factor-mediated infection of hepatocyte by adenovirus 
[13,14,15,16,17]. Protection is achieved by calcium-dependent high- 
affinity binding of factor X to adenovirus [18]. Each virion can bind 
approximately 205 factor X molecules via the 240 homotrimeric struc-
tures within the adenovirus hexon capsid protein, requiring both specific 
highly-variable regions on the hexon protein and gamma-carboxylated 
glutamic acid (Gla) residues located on the factor X molecule [13]. 
This suggests that factor X binds to negatively-charged amino acids on 
the hexon protein via a calcium bridge, but does not exclude an addi-
tional requirement for other structural properties such as heparin 
binding sites [16]. The protective effect is achieved by binding factor X 
zymogen (factor X), without a requirement for activated factor X activity 
[17]. 

Although some naturally-occurring adenoviruses (and particularly 
those in group D) did not show protective binding of factor X using the 
technique of surface plasmon resonance [13], the factor X binding 
properties have not been reported specifically for either of the ChAdOx1 
or Ad26 Covid-19 vaccine modified adenovirus vectors. 

Hypothesis 

This hypothesis proposes that the rare thrombotic adverse events 
after administration of adenovirus-vectored Covid-19 vaccines are due 
to impairment or absence of protective factor X binding to the adeno-
virus hexon protein of the ChAdOx1 and Ad26 capsid. 

Mechanism for thrombotic consequences of factor X not binding to 
adenovirus 

Without protective factor X binding, some characteristics of the 
adenovirus capsid hexon protein will be affected by greater exposure to 
the host environment. In addition to the hexon protein amino acids 
which naturally carry a negative-charge at neutral pH (aspartic acid and 
glutamic acid), sulfation of other amino acids may increase the overall 
negative charge on the virion surface. It has been suggested that up to 
1% of all tyrosine residues in proteins undergo secondary sulfation [19], 
though this may be an overestimate; given the presence of 56 tyrosine 
residues on the hexon monomer protein [20], there could be up to 240 
negatively-charged sulfate groups on the virus capsid (which contains 
240 hexon trimers). An adenovirus capsid surface which is not protected 
by multiple factor X molecules will therefore resemble other polyanionic 
(and possibly polysulfated) species, promoting interactions which are 
consistent with the development of VITT. Two of these potential 
mechanisms are discussed (and depicted schematically in Fig. 1), though 
others may be conceived [5]. 

One model (Fig. 1 panel B) promotes binding of IgM to the exposed 
charged capsid surface along with activation of complement which 
causes platelet activation, with consequential release of PF4, micro-
particles and polyphosphates. The polyphosphates then form an 
immunogenic complex with PF4 as previously described [21] which 
gives rise to VITT. In an alternative model (Fig. 1 panel C), the poly- 
anionic (and possibly poly-sulfated) virus capsid surface mimics 

heparin, binding endogenous free PF4 to form an immunogenic complex 
which then stimulates the generation of antibodies. This immune 
response promotes further platelet activation, causing VITT. 

Cause of factor X not binding to adenovirus 

Assuming that the modified virus vectors used in Covid-19 DNA 
vaccines are protected by factor X binding, the models predict that 
adverse reactions will not occur when there is competent factor X pre-
sent. This may be achieved during the vaccine manufacturing process, 
but would require a source of factor X. This cannot be assumed, because 
factor X will be activated and depleted during the production of origi-
nating serum which is an optional component of cell culture medium 
(but may not even be present in the medium used to manufacture these 
vaccines). Furthermore, protective binding of factor X to adenovirus is 
diminished by activation [17] or inhibition [13]. For these reasons, it is 
unlikely that the virus vector will be manufactured with protective 
factor X bound to the capsid surface. It follows that any virus protection 
would instead be derived from binding to endogenous factor X provided 
by the vaccinated individual. This requires vaccine recipients to have 
competent factor X, which describes most of the population; after 
administration, the virus hexon protein will bind endogenous factor X 
thereby protecting the individual from prothrombotic sequelae and 
VITT. 

However, if an individual lacks competent factor X, protection will 
not occur and the risk of thrombosis will be greater. Factor X deficiency 
is a very rare condition, caused by a mutation of the F10 gene on 
chromosome 13. The incidence of this condition is estimated to be be-
tween 1 in 500,000 and 1 in 2 million [7]. This is the same order of 
magnitude as the estimated incidence of thrombotic events following 
Covid-19 vaccine administration to individuals aged 65 years and above, 
but less than the incidence in younger age groups [6]. Clinical factor X 
deficiency is characterised mostly by missense mutations [7] while a 
total gene deletion is considered incompatible with life [22]. Known 
factor X genotype mutations are associated predominantly with clinical 
bleeding symptoms [23,24], so it is unlikely that an affected individual 
would reach maturity without diagnosis of a bleeding diathesis. 
Furthermore, such haemostatically-compromised individuals should be 
less prone to VITT adverse reactions than the general population. 
However, a gene mutation which does not affect coagulant activity but 
does affect adenovirus binding would be undiagnosed in the absence of a 
clinical prompt for genotyping. 

Although different genes may exhibit different mutation rates, the 
naturally-occurring mutation rate (albeit in the Y-chromosome) has 
been estimated as 3 × 10− 8 mutations/nucleotide/generation [25]. For 
factor X, containing 488 amino acids (1464 nucleotides), the resulting 
mutation frequency would be 1 in 23,000, which is 1–2 orders of 
magnitude greater than the reported incidence of factor X deficiency [7] 
but of the same order as the estimated incidence of VITT [6]. This 
suggests potential for more factor X gene mutations than have been 
identified by clinical diagnosis of impaired haemostasis, though the 
frequency (less than 1%) would not classify them as genetic poly-
morphisms. While a proportion of these mutations may have limited 
clinical significance, it is proposed that some could compromise binding 
to adenovirus without impairing coagulation function. 

Discussion 

Evaluation of the hypothesis 

A recent meta-analysis estimated the incidence of VITT in the over-65 
age group at approximately 1 in 1 million [6] which is the same order of 
magnitude as the incidence of factor X mutations which cause bleeding 
diatheses. However, there are acknowledged limitations to this estima-
tion, and greater confidence in the higher incidence value of 1 in 20,000 
to 60,000 estimated for the under-55 age group. This remains a very rare 
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Fig. 1. Schematic of mechanisms for thrombotic response to adenovirus Covid-19 vaccine. Panel A, normal mechanism: adenovirus vector binds endogenous 
factor X, preventing interaction with IgM, complement and platelet factor 4 (PF4). Outcome: no VITT. Panel B, adverse mechanism 1: adenovirus is unprotected by 
factor X, allowing interaction with IgM, promoting complement activation and activated/aggregated platelet-release of prothrombotic components including PF4 and 
polyphosphate. PF4-IgG immune complexes are formed. Outcome: up-regulation of coagulation and VITT.Panel C, adverse mechanism 2: adenovirus is unprotected 
by factor X, allowing PF4 binding to the polyanionic (possibly polysulfated) capsid surface. Adenovirus-PF4-IgG complexes are formed, activating complement and 
platelets. Outcome: up-regulation of coagulation and VITT. 
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event, requiring large population numbers to identify a possible asso-
ciation with vaccine use. 

The mechanism described here proposes that binding of factor X to 
adenovirus is impaired in a few vaccinated individuals, exposing the 
unprotected vaccine vector to an immune response which then triggers 
these rare thrombotic events. Given a similar incidence of VITT in the 
under-55 age group and in nucleotide mutation rates, this binding 
impairment may feasibly be due to one or more factor X gene mutations 
which do not cause clinically-significant coagulation defects. Although 
such mutations would probably not code for amino acids which signif-
icantly influence coagulant activity, the coagulant-active and 
adenovirus-active binding sites could share common space within the 
three-dimensional protein structure. The occurrence of differences in 
factor X primary structure offers the simplest explanation for impaired 
binding to adenovirus. Studies on human factor X mutations have not 
been conducted, but factor X from different species has been shown to 
exert a differential effect on adenovirus transduction via negatively- 
charged heparan sulphate on cell surfaces [26]; however, the binding 
affinity of factor X to hexon protein may depend more on adenovirus 
type than on factor X species sequence [27]. A more complicated 
mechanism, e.g. involving a putative factor X-binding inhibitor, would 
need to explain the otherwise normal coagulation status of affected 
individuals. 

The proposed mechanism would anticipate a similar incidence of 
impaired factor X protection of adenovirus across all age groups. 
Although this contrasts with the age-stratified meta-analysis for VITT 
incidence, the mechanism remains compatible with these estimates 
given the different confidence intervals reported for each age range [6] 
and the potential for age-related differences in the subsequent immune 
response to exposed adenovirus which leads to VITT. 

Depending on the vaccine production conditions, the vector may be: 
(i) fully-protected by factor X bound during manufacture; (ii) insuffi-
ciently saturated with bound factor X during manufacture; or (iii) reliant 
upon factor X binding after administration to factor X-competent in-
dividuals. The proposed mechanism favours the latter condition. Given 
the blood flow through resting muscle [28] and the tight binding of 
factor X to hexon protein [13], the circulation in healthy individuals 
could supply a sufficient excess of endogenous factor X to saturate the 
adenovirus at the injection site within one minute of the vaccine 
administration (derivation shown in Table 1). However, for individuals 
without adenovirus-binding factor X, the vector would remain unpro-
tected and susceptible to immune reaction with IgM and complement 

activation/depletion (which is consistent with some case histories [29]). 
This would then stimulate the thrombotic sequelae described by VITT. 
Additionally, or alternatively, unprotected sulfated sites on the vector 
hexon protein may mimic aspects of heparin binding to PF4, forming 
immunogenic virion-PF4 complexes which induce anti-PF4 antibodies. 
Either model would explain the clinical symptoms and diagnosis of 
VITT. This mechanism is consistent with recent preliminary results 
indicating an association of VITT antibodies with complexes which 
include the adenovirus [30]. 

One challenge to this proposed mechanism is that previous envi-
ronmental exposure to adenovirus infection would already have elicited 
a thrombotic response in these factor X-compromised individuals before 
exposure to the Covid-19 vaccine. However, given the multiplicity of 
adenovirus groups and serotypes and the variable prevalence reported in 
various adult populations [31,32,33] the number of unexposed in-
dividuals remains greater than 1 in 100, which is more than 2 orders of 
magnitude greater than the estimated incidence of VITT. Although this 
does not disprove the challenge, it demonstrates that a sufficient pro-
portion of the population would not have had prior exposure to 
adenovirus for the proposal to remain feasible. Furthermore, even if an 
individual had prior exposure to adenovirus, the mechanism remains 
consistent with a hypothesis that VITT is a secondary (typically stronger) 
immune response following a second (vaccine) exposure to adenovirus 
[5]. 

Even if disruption of factor X binding to adenovirus is not due to 
protein mutation, the proposed root cause mechanism for VITT remains 
compatible with published evidence about the behaviour of these 
particular vaccine vectors. 

Although the present proposal has focussed on factor X, it is recog-
nised that some adenoviruses can bind factor IX (and possibly other 
coagulation proteins) [14]. The model would remain valid if different 
coagulation proteins were substituted, accepting that the binding af-
finities may vary. 

Consequences of the hypothesis 

Hypothesis testing 

In contrast to the difficulty in identifying a cause for individual 
adverse events retrospectively, this hypothesis has the potential to be 
tested by various studies, using established methods (e.g. gene 
sequencing, immunoassays, immunofluorescent-labelling, light scat-
tering, surface plasmon resonance and cryoelectron microscopy) and 
available samples, including:  

• screening for mutations on the 13F10 gene of affected individuals; 
• measuring human factor X binding to the Covid-19 vaccine adeno-

virus vectors; and  
• measuring IgM/complement/PF4 interactions with the Covid-19 

vaccine vectors in the presence and absence of human factor X. 

Specific experimental controls would be necessary, to avoid 
potentially-confounding effects of excess factor X and excipients in the 
reagents and samples. 

Preventative action 

If this mechanism is proven experimentally, it may be possible to 
eradicate the hazard by modification of the vaccine manufacturing 
process to incorporate a binding step for factor X (or an alternative 
protective agent). Such a step would avoid dependency on endogenous 
factor X to protect each vaccinated individual against VITT. This should 
be feasible given the tight factor X binding constant (10− 9 M or less) 
[13], equivalent to 2 × 10− 8 g (2.5 × 10− 3 International Units) of factor 
X per 0.5 mL vaccine dose (Table 1). The factor X should not be acti-
vated, to avoid cleavage of subsequently-expressed SARS CoV-2 spike 

Table 1 
Derivation of factor X required for binding to adenovirus.  

Parameter Value Formula 

Factor X binding sites per virus particle [13] 205 A 
Assume virus particles per infectious unit 1 B 
Infectious units per 0.5 mL vaccine dose [8,9] 2.5x108 – 1x109 

[a] 
C 

Factor X molecules required per dose 2 × 1011 A × C = D 
Avogadro number 6.02 × 1023 E 
Moles of factor X required per dose 3.4 × 10− 13 D × E = F 
Molecular weight of Factor X [35] 59,000 G 
Grams of factor X required per dose 2 × 10− 8 F × G = H 
Milligram of factor X required per dose 2 × 10− 5 H × 1000 =

I 
Specific activity of factor X, IU/mg of protein  

[36] 
125 J 

Units of factor X required per dose 2.5 × 10− 3 I × J = K 
Resting muscle blood flow, L/minute [28] 2 L 
Plasma in blood, L/L 0.55 M 
Plasma concentration of factor X, IU/L 1000 N 
Factor X flow through resting muscle, IU/min 1100 M × N = O 
Factor X flow per minute excess over dose 

requirement 
4.4 × 105 O/K 

[a]subsequent calculations use 1x109 infectious units per vaccine dose, assuming 
equivalence with number of virus particles. 
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protein (previously reported for SARS CoV-1 [34]) which could impair 
vaccine efficacy. The proposed mechanism predicts that such modifi-
cation during vaccine manufacture would minimise the risk of throm-
botic adverse events in the few at-risk individuals while remaining safe 
for all other vaccine recipients. The additional factor X in a 0.5 mL 
vaccine dose would itself exert negligible haemostatic effect, being or-
ders of magnitude less than normal factor X levels in the circulation. 

Subject to experimental confirmation, this hypothesis may offer a 
route to the enhanced safety and utility of adenovirus-vectored vaccines, 
addressing concerns and facilitating uptake for the benefit of global 
health. 
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incidence of VITT remains unexplained by these findings, so experi-
ments to test the hypothesis are still needed. 
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