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Abstract: Background: Lung cancer patients have the worst outcomes when affected by coronavirus
disease 2019 (COVID-19). The molecular mechanisms underlying the association between lung cancer
and COVID-19 remain unknown. The objective of this investigation was to determine whether there
is crosstalk in molecular perturbation between COVID-19 and lung cancer, and to identify a molecular
signature, molecular networks and signaling pathways shared by the two diseases. Methods: We
analyzed publicly available gene expression data from 52 severely affected COVID-19 human lung
samples, 594 lung tumor samples and 54 normal disease-free lung samples. We performed network
and pathways analysis to identify molecular networks and signaling pathways shared by the two
diseases. Results: The investigation revealed a signature of genes associated with both diseases
and signatures of genes uniquely associated with each disease, confirming crosstalk in molecular
perturbation between COVID-19 and lung cancer. In addition, the analysis revealed molecular
networks and signaling pathways associated with both diseases. Conclusions: The investigation
revealed crosstalk in molecular perturbation between COVID-19 and lung cancer, and molecular
networks and signaling pathways associated with the two diseases. Further research on a population
impacted by both diseases is recommended to elucidate molecular drivers of the association between
the two diseases.

Keywords: coronavirus; COVID-19; SARS-CoV-2; gene expression; lung cancer; networks; signaling
pathways

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is a worldwide pandemic that has caused unprecedented loss
of human life and devastated the world economy [1–3]. Despite remarkable progress in
the management of patients, the disease continues to cause devastation and overwhelming
health care systems, as the increasing number of COVID-19-positive patients who require
hospitalization and intensive care support continues to rise worldwide [1–3]. This disloca-
tion of the global health care infrastructure is of particular concern in clinical management
and treatment of patients with underlying chronic diseases, such as lung cancer [4,5]. Al-
though currently there is no definitive data showing that COVID-19 causes lung cancer,
emerging evidence from early studies has shown that lung cancer patients have almost
twice the risk of SARS-CoV-2 infection compared to the general population [6,7]. How-
ever, it is not clear from the published reports whether there is crosstalk in molecular
perturbation between COVID-19 and lung cancer.

In a clinical epidemiology study conducted among 102 patients with lung cancer
and COVID-19, researchers at the Memorial Sloan Kettering Cancer Center in New York
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examined the course of disease, impact of anti-tumor treatment and determinants of COVID-
19 severity and recovery [6]. These investigators found that the severity of COVID-19 was
high in lung cancer patients, with 62% of patients being hospitalized and 25% dead [6].
These results have been corroborated by results from a retrospective case study conducted
across three hospitals in Wuhan China, which involved 28 cancer patients suffering from
COVID-19 [7]. In that study, the investigators found that lung cancer was the most common
cancer type in that group (25%) [7]. These observations must be balanced against the
recognition that many lung cancer patients are older and have compromised immune
systems resulting from underlying lung disease and decreased lung capacity, both of which
are risk factors for COVID-19 [5]. Indeed, because of their suppressed immune systems
resulting from chemotherapy, lung cancer patients may be at high risk of developing severe
pulmonary complications due to COVID-19, which could lead to poorer clinical outcomes.
In fact, accumulating evidence from clinical and epidemiological studies suggests that
patients undergoing lung cancer treatment who are immunosuppressed from chemotherapy
are more likely to be infected with SARS-CoV-2 and develop severe complications [6,7].
However, although our understanding of SARS-CoV-2 has undergone a huge leap since its
outbreak, and vaccines have been developed at breakneck speed, the association between
COVID-19 and lung cancer remains poorly understood. Understanding molecular crosstalk
perturbation between COVID-19 and lung cancer has the promise to improve clinical
management of lung cancer in the COVID-19 pandemic era.

Epidemiological studies have shown that the clinical manifestation and severity of
COVID-19 involves a broad range of symptoms, including fever, inflammation, cough
and shortness of breath [1,2]. For example, patients with severe COVID-19 admitted to
the intensive care unit are more likely to have proinflammatory cytokines, such as IFN-γ,
IP-10, MCP-1, IL-1β, IL-4 IL-6 and IL-10, which drive the cytokine storm [8–10]. Severely ill
patients may have poor disease course that progresses rapidly to multiple organ dysfunction
and even death [11,12], and those who have shortness of breath can quickly progress
into acute respiratory distress syndrome (ARDS) and suffer multiple organ dysfunction
or even death within a short period from the time of diagnosis [13–15]. Interestingly,
many of the symptoms exhibited by COVID-19 patients, such as cough, shortness of
breath and inflammation, are also exhibited by lung cancer patients [6,7]. Lung cancer
patients receiving immunotherapy with checkpoint blockade may have increased rates of
complications from COVID-19-related inflammatory changes in the lung [7]. Moreover,
the severity of COVID-19 in patients with lung cancer may be exacerbated by a comprised
immune system. Taken together, these observations call for an urgent need to understand
the crosstalk in molecular perturbation between COVID-19 and lung cancer to improve
clinical management of lung cancer patients in the COVID-19 pandemic era.

Since the outbreak of the pandemic, remarkable progress has been made in under-
standing the genomic basis of COVID-19 [16,17]. The SARS-CoV-2 genome has been
sequenced [16], and the COVID-19 transcriptome has been mapped [17]. These advances
have increased our understanding of the molecular taxonomy of SARS-CoV-2 and led
to successful development of COVID-19 vaccines [18–20]. Yet, despite this remarkable
progress, significant challenges remain. One of the more significant challenges is the lack
of understanding of the molecular mechanisms associating COVID-19 with lung cancer
and a discovery of clinically actionable biomarkers to guide clinical management of lung
cancer patients in the COVID-19 pandemic era. The objective of this investigation was to
characterize the landscape of molecular crosstalk perturbation between COVID-19 and lung
cancer and to identify molecular networks and signaling pathways associating the two dis-
eases. Our working hypothesis was that alterations in the transcriptome in COVID-19- and
cancer-affected lungs could identify a signature of functionally related genes associating
COVID-19 with lung cancer. We further hypothesized that COVID-19 and lung cancer have
shared gene regulatory networks and signaling pathways, which potentially exacerbates
the severity of COVID-19 in lung cancer patients. We addressed these hypotheses using
publicly available gene expression data derived from lung tissue from patients severely
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affected with COVID-19 who succumbed to the disease, patients with lung tumors and
disease-free control lung tissue.

2. Materials and Methods

Our experimental design approach focused on identifying molecular signatures of
genes associated with both diseases, signatures of genes uniquely associated with each
disease and molecular networks and signaling pathways associated with both diseases.
The scientific premise and rationale was that among the genes transcriptionally associated
with each disease, a subset of them are associated with both COVID-19 and lung cancer.
Thus, molecular crosstalk perturbation between lung cancer and COVID-19 was consid-
ered an emergent property of functionally related genes transcriptionally associated with
both diseases, interacting in gene regulatory networks and signaling pathways shared by
the two diseases. We addressed this knowledge gap using an integrative genomic data
analysis approach, combining RNA-Seq data derived from lung tissue of patients severely
affected by COVID-19 who succumbed to the disease, lung tissue from patients affected by
lung cancer and disease-free normal lung tissue controls. The overall project design and
execution workflow, along with sources of RNA-Seq data, are presented in Figure 1. This
section provides a brief but detailed description of sources of data and analysis strategies
employed in this investigation.
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Figure 1. Project design and integrated data analysis workflow of gene expression data from COVID-
19, lung cancer and normal lung samples. RNA-Seq data sets were downloaded from the Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA).

2.1. Sources of Gene Expression Data on COVID-19 and Lung Cancer

Gene expression (RNA-Seq) data on COVID-19-affected lung samples (N = 52 samples)
were derived from human lung autopsy tissue at the Massachusetts General Hospital and
Columbia University Irving Medical Center in New York [21]. Processed data (sequence
read counts) along with associated clinical information were downloaded from the Gene
Expression Omnibus (GEO) database https://www.ncbi.nlm.nih.gov/geo/ (accessed on
10 February 2022) under accession # GSE150316 [21]. The data set was generated using the
Illumina sequencing platform. Details about sample collection, processing, quality control
and preparation for sequencing have been published elsewhere by the data originators [21].
Briefly, gene expression data was derived from lung tissue harvested from patients severely
affected by COVID-19, who succumbed to the disease and underwent autopsy upon
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consent for clinical care [21]. All patients were confirmed for SARS-CoV-2 infection through
qRT-PCR assays performed by the data originators [21].

Gene expression (RNA-Seq) data on 594 lung tumor samples and 52 control sam-
ples along with clinical information were downloaded from The Cancer Genome Atlas
(TCGA) [22] via the Genomics Data Commons (GDC) https://portal.gdc.cancer.gov/ (ac-
cessed on 10 February 2022) using the data transfer tool [23]. The tumor samples were
matched with clinical information for ascertainment of gene expression data. We processed
the two data sets and checked them for quality. We then combined the two data sets to
create one data matrix with three sample groups (COVID-19, lung tumors and normal
lung samples). We performed noise reduction on the combined data set by filtering the
genes with zero and very low expression values across samples. The resulting data set
was normalized with quantile normalization using R Bioconductor implemented in our
RNA-Sequence data analysis pipeline [24,25].

2.2. Bioinformatics Data Analysis

Using normalized data, we performed analysis comparing gene expression levels
between COVID-19-affected and normal lung samples and between lung-cancer-affected
and normal lung samples by computing p-values using the Limma package implemented in
R [24,25]. This unbiased analysis was conducted to identify a signature of genes associated
with COVID-19 and signature of genes associated with lung cancer. We then combined the
two sets of genes to identify a signature of genes associated with both COVID-19 and lung
cancer, and signatures of genes uniquely associated with each disease. The distribution of
genes in the three gene signatures was organized using a Venn diagram. We performed
additional analysis using gene expression data on genes associated with both diseases, by
comparing their expression levels between COVID-19 lung and lung tumor samples to
determine their direction of change, which was characterized as either up or downregulated.
For each analysis, we controlled for multiple hypothesis testing using the false discovery
rate (FDR) procedure [26]. In addition to estimates of p-values, we computed the log2
Fold Change (Log2 FC), defined as the median of gene expression values minus the gene
expression value for each gene. The logFC was used to determine the direction of change,
denoted as down for the negative value and up for the positive value. The genes were
ranked on p-values, logFC and the FDR. We used a volcano plot to visualize the distribution
of p-values and logFC resulting from comparison of gene expression levels within disease
and between the two diseases. Genes were ranked on p-values, FDR and logFC.

To determine whether genes associated with both COVID-19 and lung cancer are
co-regulated and have similar patterns of expression profiles, we performed hierarchical
clustering using the Pearson correlation coefficient as the measure of distance between
pairs of genes and complete linkage as the clustering method. Hierarchical clustering was
performed using Morpheus [27]. To identify molecular networks and signaling pathways
associated with the two diseases, we performed network and pathway analysis using the
Ingenuity Pathways Analysis (IPA) software [28]. We mapped the up and downregulated
genes that were highly associated with both diseases onto networks and canonical pathways.
We used Fisher’s exact t-test in network and pathways analysis to compute estimates of
p-values. Additionally, we computed the Z-scores to assess the likelihood and reliability
of correctly predicting molecular networks to which the genes belonged. The FDR was
used to correct for multiple hypothesis testing in pathway analysis [26]. The predicted
molecular networks and signaling pathways were ranked based on Z-scores and log p-
values, respectively. To characterize the molecular functions, biological processes and
cellular components in which the genes associated with the two diseases are involved, we
performed gene ontology analysis [29], as implemented in IPA [28].

3. Results

Clinical management of lung cancer patients in the COVID-19 pandemic era poses
significant challenges. One of the more significant challenges has been the lack of informa-
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tion about the molecular mechanisms underlying the association between the two diseases.
This knowledge gap has the potential to disrupt essential oncological services provided to
lung cancer patients and lead to suboptimal care with potentially deadly consequences. To
address this key knowledge gap and critical unmet medical need, we performed integrative
genomic data analysis combining gene expression data from lung tissues derived from
COVID-19-affected and lung-cancer-affected individuals to discover a signature of genes
associated with both diseases, signatures of genes uniquely associated with each disease
and molecular networks and signaling pathways shared by the two diseases. Our findings
are summarized in the subsections below.

3.1. Discovery of Signatures of Genes Associated with COVID-19 and Lung Cancer

To discover a signature of genes transcriptionally associated with COVID-19 and a
signature of genes transcriptionally associated lung cancer, we compared gene expression
levels between lung samples derived from patients severely affected by COVID-19 and
normal lung samples, and between lung tumors and normal lung samples.

The results of this investigation are summarized in a Venn diagram in Figure 2. A
comparison of gene expression levels between COVID-19-affected lung and normal lung
tissue samples revealed a signature of 12,014 significantly (p < 0.05) differentially expressed
genes associated with COVID-19 (Figure 2A). The distribution of estimates of p-values
and logFC for all the 12,014 genes is presented in a volcano plot in supplementary Figure
SF1A. A complete list of all 12,014 significantly (p < 0.05) differentially expressed genes
associated with COVID-19, along with their estimates of p-values and logFC, are presented
in supplementary Table S1A.
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orange) and a signature of genes associated with lung cancer ((B), blue). A signature of 9026 genes
associated with both diseases is shown in the intersection.

The same analysis, comparing gene expression levels between lung cancer and normal
lung samples, revealed a signature of 12,420 significantly (p < 0.05) differentially expressed
genes associated with lung cancer (Figure 2B). The distribution of estimates of p-values and
logFC for all the 12,420 genes is presented in a volcano plot shown in the supplementary
Figure SF1B. A complete list of all the 12,420 genes that were significantly (p < 0.05) associ-
ated with lung cancer is presented in supplementary Table S1B. Overall, the investigation
confirmed our hypothesis that transcription profiling using lung samples from COVID-19-
and lung-tumor-affected individuals could identify signatures of genes associated with
each disease (Figure 2).
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The primary goal of the investigation was to identify a signature of genes associated
with both COVID-19 and lung cancer. To achieve this goal, we combined the set of genes
associated with COVID-19 with the set of genes associated with lung cancer and sorted
them by estimates of p-values and logFC. If the signature of genes was significant in both
diseases, as measured by the estimated p-value (p ≤ 0.05), it was considered to be associated
with both diseases. Thus, molecular crosstalk perturbation between COVID-19 and lung
cancer in this portion of the investigation was measured by discovering a signature of
genes associated with or shared by both diseases.

The results of this investigation are summarized in a Venn diagram in Figure 2. The
investigation revealed a signature of 9026 genes transcriptionally associated with both
COVID-19 and lung cancer, confirming our hypothesis (Figure 2, see intersection). In
addition, the investigation revealed a signature of 2988 genes associated with COVID-19
only (Figure 2A) and a signature of 3394 genes associated with lung cancer only (Figure 2B).
Interestingly, a majority of the genes were associated with both diseases.

3.2. Changes in Expression Profiles for Genes Associated with COVID-19 and Lung Cancer

Following the discovery of a signature of 9026 genes associated with both COVID-19
and lung cancer, we conducted additional investigation to determine their differences in
patterns of expression and direction of change. We addressed this issue by comparing the
expression levels of the 9026 genes between COVID-19 and lung cancer. Note that this
analysis framework was crucial in identifying genes with different patterns of expression
profiles (i.e., genes upregulated in COVID-19 and downregulated in lung cancer and vice
versa). The differences in patterns of expression were determined by the estimates of
p-values, whereas the direction of change was determined by the logFC, represented by a
negative value for downregulation and positive values for upregulation.

Comparison of gene expression profiles produced a signature of 7599 significantly
(p < 0.05) differentially expressed up and downregulated genes associated with both
COVID-19 and lung cancer. The remaining 1427 genes did not show differences in patterns
of expression profiles between the two diseases. The distribution of estimates of p-values
and logFC for all the 7599 genes is presented in a volcano plot in supplementary Figure SF2.
Among the significantly differentially expressed up and downregulated genes, 4124 genes
were upregulated and 3475 were downregulated between COVID-19 and lung cancer
tumors. A list of the top 50 most highly significantly differentially expressed (25 up and
25 downregulated) genes along with their estimates of p-values and logFC is presented
in Table 1. A complete list of all the 7599 genes showing differences in patterns of expres-
sion profiles between COVID-19 and lung cancer along with their estimates of p-values,
logFC and direction of change (up/down) is presented in supplementary Table S2. Overall,
the investigation revealed crosstalk in molecular perturbation between COVID-19 and
lung cancer.

3.3. Similarity in Expression Profiles for Genes Associated with Both COVID-19 and Lung Cancer

Quantitative assessment of differences in gene expression levels provides limited
information about the regulatory patterns of the genes perturbed in both diseases. Genes
associated with both diseases could still behave differently in each disease. Therefore, to
characterize the patterns of gene expression profiles and their direction of change among
the genes associated with both COVID-19 and lung cancer, we performed hierarchical
clustering, as explained in the Materials and Methods section. We hypothesized that,
among the genes associated with both COVID-19 and lung cancer, there are differences
in their patterns of expression profiles in the two diseases. Here, we sought to discover
genes that were upregulated in lung cancer and downregulated in COVID-19, and genes
that were upregulated in COVID-19 and downregulated in lung cancer. For this analysis,
we used the top 515 most highly significantly (p < 10−48) differentially expressed up and
downregulated genes associated with both diseases. Note that these genes were selected
from the 7599 up and downregulated genes significantly associated with both diseases.
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Thus, this analysis includes the genes in Table 1. The selection of the top 515 genes used for
hierarchical clustering was crucial to eliminate any spurious patterns of expression profiles.

Table 1. Top 25 upregulated and top 25 downregulated differentially expressed genes between
COVID-19 and lung cancer tumors and their estimates of p-values and logFC.

Gene Name Chromosome logFC p-Value Up/Downregulated

SNRNP200 2q11.2 −7.66807 1.00 × 10−300 Down
MT-CO1 9q21.31 −7.45498 1.00 × 10−300 Down
MT-CO2 20q13.33 −6.52755 1.00 × 10−300 Down
SHOC2 10q25.2 −7.37305 1.69 × 10−300 Down
KRT19 17q21.2 −8.23486 6.20 × 10−290 Down
RPS3 11q13.4 −9.84811 2.78 × 10−289 Down

ZSWIM6 5q12.1 −6.9536 3.27 × 10−275 Down
SFPQ 1p34.3 −10.5243 4.12 × 10−274 Down

SERPINA1 14q32.13 −8.07982 1.13 × 10−273 Down
PAK2 3q29 −5.11624 9.35 × 10−267 Down
VPS35 16q11.2 −5.93836 1.86 × 10−264 Down

ANKLE2 12q24.33 −7.79146 1.73 × 10−260 Down
WDR1 4p16.1 −5.53354 5.42 × 10−260 Down
SORL1 11q24.1 −7.31638 2.00 × 10−258 Down

ZC3H11A 1q32.1 −4.42734 4.58 × 10−257 Down
ZCCHC2 18q21.33 −7.37741 5.73 × 10−255 Down
GOLGB1 3q13.33 −10.4188 1.95 × 10−251 Down
ZFHX3 16q22.2 −7.58576 1.35 × 10−247 Down
MIER1 1p31.3 −7.31554 1.16 × 10−246 Down
P4HB 17q25.3 −6.7194 1.90 × 10−246 Down

TBC1D2B 15q24.3 −8.07794 3.29 × 10−246 Down
SIPA1L1 14q24.1 −7.41523 6.22 × 10−244 Down
CRTAP 3p22.3 −7.55263 5.75 × 10−240 Down
LITAF 16p13.13 −6.36823 1.43 × 10−239 Down

TANC1 2q24.2 −4.77239 5.00 × 10−234 Down
PCDHB13 5q31.3 6.96034 1.94 × 10−161 Up
SYNDIG1 20p11.21 6.746343 1.70 × 10−160 Up

LINC00324 17p13.1 6.797806 1.38 × 10−157 Up
LEKR1 3q25.31 9.303897 1.01 × 10−150 Up

TMEM59L 19p12 7.908565 2.29 × 10−143 Up
SERP2 13q14.11 7.323597 1.24 × 10−141 Up

RTN4IP1 6q21 6.36925 6.08 × 10−139 Up
ZDHHC19 3q29 7.455968 1.05 × 10−136 Up
SEC61A2 10p14 5.899905 1.34 × 10−133 Up
TPT1-AS1 13q14.13 7.189802 3.80 × 10−133 Up

EGFL6 Xp22.2 7.885459 2.92 × 10−128 Up
SPDEF 6p21.31 6.341318 2.09 × 10−124 Up
SARS2 19q13.2 6.014209 3.10 × 10−122 Up
MUC13 3q21.2 7.0324 3.30 × 10−120 Up
SNX32 11q13.1 5.567126 8.27 × 10−119 Up

RPS13P2 1p32.3 7.698321 4.21 × 10−118 Up
ZNF208 19p12 4.720081 2.03 × 10−117 Up

UBASH3A 21q22.3 6.09295 1.18 × 10−114 Up
TMEM128 4p16.3 5.123725 4.21 × 10−110 Up

SEC31B 10q24.31 4.168494 4.12 × 10−106 Up
PRC1 15q26.1 7.932253 2.82 × 10−104 Up

SNRNP25 16p13.3 5.221731 2.26 × 10−103 Up
PCSK9 1p32.3 4.906412 5.31 × 10−103 Up
TCF15 20p13 5.559709 1.73 × 10−100 Up
GREB1 2p25.1 6.243165 1.08 × 10−99 Up
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The results showing patterns of expression profiles for all the 515 up and downreg-
ulated genes associated with both COVID-19 and lung cancer are presented in Figure 3.
Owing to space limitations, the names of genes are not presented in Figure 3, as they could
not fit in the figure. As shown in Figure 3, hierarchical clustering produced two clusters
of genes: a cluster of genes that were upregulated in lung cancer and downregulated in
COVID-19, and a cluster of genes that were upregulated in COVID-19 and downregulated
in lung cancer (Figure 3). This confirmed our hypothesis that, among the genes associated
with both COVID-19 and lung cancer, there are differences in patterns of their expression
profiles in the two diseases. Out of the 515 genes evaluated, 363 genes were upregulated in
COVID-19 and downregulated in lung cancer (Figure 3). The other 152 were downregulated
in COVID-19 and upregulated in lung cancer (Figure 3). A complete list of all the 515 up
and downregulated genes is provided in supplementary Table S3. Overall, this portion
of the investigation further confirmed the crosstalk in molecular perturbation between
COVID-19 and lung cancer by showing that genes associated with both are co-regulated
and have similar patterns of expression profiles.
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Figure 3. Patterns of expression profiles for the top 515 upregulated and downregulated genes in
lung cancer and in COVID-19, generated using hierarchical clustering on genes associated with both
diseases. Genes are represented in rows, and lung cancer and COVID-19 samples in columns. Red
color indicates upregulation and blue represents downregulation.

3.4. Discovery of Molecular Networks and Signaling Pathways Shared by the Two Diseases

To gain insights about the broader biological context in which genes associated with
both lung cancer and COVID-19 operate and to determine whether they share the same
regulatory programs, we performed network analysis. We hypothesized that genes as-
sociated with both COVID-19 and lung cancer are functionally related and interact in
gene regulatory networks. We sought to identify molecular networks associated with
both COVID-19 and lung cancer and to characterize molecular functions, biological and
disease processes, and cellular components in which they are involved. This framework
was crucial to determining whether these genes share the same regulatory mechanisms.
For this investigation, we mapped the top 515 up and downregulated genes that were
co-regulated and highly significantly associated with both diseases onto the networks, as
described in the Materials and Methods section.

The investigation revealed 25 gene regulatory networks with Z-scores ranging from
10 to 55, containing genes with overlapping functions. The results showing the top seven
gene regulatory networks (merged) are presented in Figure 4. Note that to ensure easy
presentation and clarity of networks, only the most interconnected genes (≥3 connections)
in the networks are presented. Genes and networks with fewer interactions were pruned
to remove spurious interactions. The top seven networks (Figure 4) with Z-scores 40 to
55 contained genes predicted to be involved in organismal injury and abnormalities, gene
expression, protein synthesis, RNA damage and repair, connective tissue disorders, amino
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acid metabolism, cellular assembly and organization, small molecule biochemistry, cancer,
DNA replication, recombination and repair, gastrointestinal disease and protein synthesis.
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In addition, the analysis revealed gene regulatory networks containing genes predicted
to be involved in cell-to-cell signaling and interaction, infectious diseases, ophthalmic dis-
ease, hematological disease, immunological disease, RNA post-transcriptional modification,
cardiac arteriopathy, cardiac fibrosis, cardiovascular disease, cardiac dilation, cell cycle,
cellular assembly and organization, respiratory disease, cell-mediated immune response,
cellular movement, cellular function and maintenance, lipid metabolism, drug metabolism,
molecular transport, organ morphology, tissue development, tissue morphology, cell mor-
phology, cellular function and maintenance, cell death and survival, inflammatory response,
organismal survival, carbohydrate metabolism. A complete list of all the predicted molecu-
lar networks, the genes they contain and the top diseases and molecular functions they are
involved in, is presented in supplementary Table S4.

Overall, the results showed that COVID-19 and lung cancer share the same regulatory
mechanisms and that network analysis is a powerful approach for revealing molecular
crosstalk perturbation between lung cancer and COVID-19. Taken together, the inves-
tigation demonstrated that the association between COVID-19 and lung cancer can be
considered an emergency property of molecular networks encompassing many function-
ally related genes, as opposed to the core biological processes driving the association
between the two diseases being driven by responses to molecular perturbation in a small
number of genes.

To determine whether COVID-19 and lung cancer share the same regulatory mecha-
nisms and signaling pathways, gain further insights about the broader biological context
in which genes associated with both diseases operate and discover potential therapeutic
targets, we mapped the top 515 up and downregulated genes that were highly significantly
associated with both diseases onto canonical pathways.
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The results showing the top nine most highly significant signaling pathways associ-
ated with both COVID-19 and lung cancer are presented in Figure 5. The top pathways
discovered included: the Coronavirus Pathogenesis signaling pathway -log(p-value, 3.87E),
which contained the genes DDIT3, E2F6, EEF1A1, RPS11, RPS16, RPS3, RPS4X, RPS9, SER-
PINE1, STING1, SUV39H1, TGFBR2; the Integrin signaling pathways -log(p-value, 3.51E),
containing genes FNBP1, PAK2, PARVA, PARVB, PIK3R2, PLCG2, PPP1R12A, PTEN, RHOD,
RND3, TLN2, TNK2, TSPAN3, TTN; the EIF2 signaling pathways -log(p-value, 3.29E), con-
taining genes DDIT3, EIF1, PIK3R2, PPP1CA, RPL10A, RPL22L1, RPL30, RPL32, RPL36,
RPS11, RPS16, RPS3, RPS4X, RPS9; the mTOR signaling -log(p-value, 2.58E), containing
genes FNBP1, PIK3R2, RHOD, RICTOR, RND3, RPS11, RPS16, RPS3, RPS4X, RPS6KA1,
RPS9, ULK1.
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Figure 5. Signaling pathways associated with both COVID-19 and lung cancer represented as
bars. The orange solid line indicates the threshold above which a signaling pathway was declared
significantly associated with both diseases, as determined by the –log(p-values) shown on the x-axis
above. The y-axis shows names of signaling pathways associated with both diseases.

Additional signaling pathways associated with both diseases discovered included: the
Mitotic Roles of Polo-Like Kinase -log(p-value, 2.47E), containing genes CDK1, HSP90AA1,
PRC1, SLK, SMC3, STAG2; the ILK signaling -log(p-value, 2.45E), containing genes FNBP1,
PARVA, PARVB, PIK3R2, PPP1R12A, PTEN, RHOD, RICTOR, RND3, TMSB10/TMSB4X,
VIM; the Germ Cell-Sertoli Cell Junction signaling -log(p-value, 2.30E), containing genes
FNBP1, JUP, MAP3K3, PAK2, PIK3R2, RHOD, RND3, TGFBR2, TJP1, TUBA1A; the Se-
lenocysteine Biosynthesis II -log(p-value, 2.16E), containing genes SARS2, SEPHS1; and
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages -log(p-value,
2.01E) containing genes FNBP1, MAP3K3, MPO, PIK3R2, PLCG2, PPP1CA, PPP1R12A,
RHOD, RND3, SERPINA1. A complete list of all predicted pathways containing genes
associated with both diseases is presented in supplementary Table S5.

In summary, an integrative analysis combining gene expression data from COVID
and lung cancer samples produced a signature of genes, molecular networks and signaling
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pathways associated with both diseases, confirming the crosstalk in molecular perturbation
between the two diseases. Thus, in the context of common human diseases, molecular
crosstalk perturbation between COVID-19 and lung cancer can be considered an emergent
property of molecular networks and signaling pathways associated with both diseases,
as opposed to the core biological processes associating the two diseases being driven by
responses to changes in a small number of genes dysregulated in only one disease. Taken
together, the investigation demonstrates that integrating large-scale, high-dimensional
transcriptomic data holds promise to discover potential drivers of the severity of COVID-19
in individuals with lung cancer and targets for the development of therapeutic targets.

4. Discussion

Patients with lung cancer have the worst outcomes when affected by COVID-19 [6,7].
The molecular mechanisms associating COVID-19 with lung cancer are not known. This
investigation was conducted to address this knowledge gap. The investigation revealed
a signature of genes, molecular networks and signaling pathways associated with both
diseases. These findings suggest that COVID-19 and lung cancer have shared regulatory
mechanisms. This integrative genomics data analysis framework provides the first step
and is crucial to discovering the molecular drivers of COVID-19 severity in individuals
with lung cancer and the discovery of potential therapeutic targets. To our knowledge,
this is the first study to map the landscape of molecular crosstalk perturbation between
COVID-19 and lung cancer.

A number of epidemiological studies revealing poorer outcomes for COVID-19 in lung
cancer patients have been reported [30,31]. Those poorer outcomes have been attributed
to the compromised immune system resulting from chemotherapy treatment, which lung
cancer patients undergo, a risk factor to SARS-CoV-2 infection [30,31]. The novel aspect
of our investigation is that it provides new knowledge by discovering a signature of
genes, molecular networks and signaling pathways associated with both diseases. This has
not been previously reported. To the extent that imbalance in host immune response to
SARS-CoV-2 drives the development and progression of COVID-19 [32,33], the genes and
pathways discovered in this investigation, if confirmed, could serve as potential clinically
actionable molecular markers and therapeutic targets. For example, the immune-responsive
cytokines and pro-inflammatory genes and the signaling pathways they control associated
with both diseases discovered in this investigation could serve as molecular markers to
guide clinical management of individuals with lung cancer affected by COVID-19 [7,34]
and the development of novel, more effective therapeutics [35–39].

Some of the major challenges in clinical management of COVID-19 include extrapul-
monary manifestations of the disease and its effects on multiple organs, including the
lungs [40–42]. Extrapulmonary manifestations include thrombotic complications, myocar-
dial dysfunction and arrhythmia, acute coronary disease syndromes, acute kidney injury,
gastrointestinal symptoms, hepatocellular injury, hyperglycemia and ketosis, neurologic
illnesses, ocular symptoms and dermatologic complications [40–43]. Although we did not
investigate the association of the discovered genes with extrapulmonary manifestations
in COVID-19, the discovery of genes with multiple overlapping functions involved in
many biological processes suggests that some of the identified genes and gene regulatory
networks may be involved in extrapulmonary activities. Moreover, the lung as an organ
is likely to function in unison with other organs. Under such conditions, the effects of
COVID-19 on the lungs have potential to trigger a cascade of events likely to affect other
organs and lead to extrapulmonary manifestations. Indeed, lungs as organs contain many
cells that can play many different roles. Although we did not examine individual lung cells,
previous studies have shown that transcription profiling could reveal novel mechanisms of
SARS-CoV-2 infection in human lung cells [44,45].

Another finding of significance in this investigation was the discovery of gene reg-
ulatory networks and signaling pathways associated with both diseases. This suggests
that the host–pathogen interactions linking the two diseases are complex. The novel as-
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pect and clinical significance of this finding is that it could increase our understanding
of host–pathogen interactions, a critical step in vaccine and drug development [46]. For
example, the discovery of the coronavirus pathogenesis signaling pathway in this study
has the promise to increase our understanding of the pathogenesis of COVID-19 and the
molecular mechanisms driving the disease. Although signatures of genes associated with
COVID-19 have been reported [17,21], molecular crosstalk perturbation between COVID-19
and lung cancer has not been reported. This framework is crucial for understanding the
SARS-CoV-2 host interactions and discovering the molecular mechanisms driving disease
severity and poorer outcomes in individuals with lung cancer impacted by COVID-19.
Success in understanding the link between COVID-19 and lung cancer has the promise to
ensure no disruption to essential oncological services and could guarantee optimal care in
lung cancer patients in the COVID-19 pandemic era.

The discovery of the integrin signaling pathway associated with both lung cancer
and COVID-19 has clinical significance. In cancer, integrins mediate cell adhesion and
transmit mechanical and chemical signals to the cell interior [47]. Deregulation of integrin
signaling in cancer empowers tumor cells with the ability to proliferate without restraint
and to survive in foreign microenvironments [47]. Integrin signaling drives multiple stem
cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation and
resistance to oncogene- and immune-targeted therapies [47]. These mechanisms of integrin
regulation have the potential to provide a gateway for COVID-19 to drive its adverse effects
on lung cancer patients. Thus, the integrin signaling pathway could serve as a potential
therapeutic target. The discovery of the mTOR signaling pathway was of particular interest
because the application of PI3K-Akt-mTOR signaling axis to COVID-19 disease and to
other chronic conditions, such as obesity, has been reported [48,49]. This is a significant
finding because patients with lung cancer, obesity and related chronic diseases affected by
COVID-19 tend to have poorer outcomes [49,50], which suggests that this pathway has the
promise to serve as a therapeutic target.

The discovery of some rather unexpected connections, such as ophthalmic disease
and cardiac fibrosis, in network analysis was of particular interest. Cardiac involvement
in patients who recovered from COVID-19 has been reported [51]. Recently, cardiopul-
monary recovery after COVID-19 has been reported in a prospective multicenter trial [52].
Ophthalmic manifestations of COVID-19 have been reported [53]. Although the molecu-
lar mechanisms associating ophthalmic disease and cardiac fibrosis with COVID-19 are
not well characterized, the connections observed in this investigation could partially be
explained by the functional versatility of identified key genes.

This investigation shows that COVID-19 and lung cancer have shared regulatory
programs and signaling pathways. However, the limitations of the study must be acknowl-
edged. The investigation used data from COVID-19- and lung-cancer-affected individuals,
not patients affected by both diseases. In addition, we did not perform mechanistic exper-
iments to confirm the results from computational analysis. This was because such data
were not available. With these limitations in mind, the manuscript emphasizes modeling
the biological association between COVID-19 and lung cancer and considers this the first
step in a long road to discovery of the molecular mechanisms driving the two diseases
and adverse outcomes. Such line of research would require molecular and clinical data on
individuals affected by both diseases. In addition, experimental confirmation of genomic
discoveries would be necessary. That framework will be crucial to ensure the translation of
genomic discoveries into clinical practice to improve clinical management of lung cancer
patients in the COVID-19 pandemic era.

5. Conclusions

A key knowledge gap and critical unmet medical need in the clinical management of
lung cancer patients in the COVID-19 pandemic era is the characterization of molecular
mechanisms associating the two diseases. Using an integrative genomic data analysis
approach, combining gene expression data from individuals affected by COVID-19 and
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individuals affected by lung cancer, we discovered a signature of genes, molecular networks
and signaling pathways associated with both diseases. The investigation demonstrated
that integrative data analysis, combining transcriptomic data from COVID-19 and lung
cancer, is a powerful approach to deciphering the molecular mechanisms linking the two
diseases. Further research on a population affected by both COVID-19 and lung cancer and
experimental confirmation of the results is recommended to discover molecular drivers of
the association between the two diseases, clinically actionable biomarkers and potential
therapeutic targets. Such an investigation will be crucial to ensuring the translation of
genomic discoveries in clinical practice to improve essential oncological services and
guarantee the optimal care of lung cancer patients in the COVID-19 pandemic era.

6. Patents

No patents resulted from the work reported in this manuscript.
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