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ABSTRACT: A methodology for predicting proximate and ultimate
analysis data was developed by using near-infrared spectroscopy (NIR)
combined with chemometric methods. The quantitative model has high
accuracy, as evidenced by low root-mean-square-error of prediction
(RMSEP) values (e.g., 0.41% for volatile matter and 0.29% for carbon).
The model was further applied to tobaccos with distinct aroma profiles,
and the predicted ultimate and proximate data lead to aroma
classification with 86.6% accuracy. This methodology can be expanded
to the aroma discrimination of imported tobaccos from Brazil, the United
States, Canada, and Zimbabwe, demonstrating its broad reliability.
Compared with traditional analyses, this NIR-based approach offers a fast
and accurate method for large-scale tobacco evaluation, highlighting its
potential for enhancing tobacco quality characterization through a
quantifiable, digital, and high-throughput process.

1. INTRODUCTION
Thermochemical technologies such as combustion, gas-
ification, pyrolysis, and carbonization have been developed to
convert coal, biomass, and other organic materials into heat,
fuel, and other high-value products.1,2 The properties of these
organic materials vary significantly depending on the species
and origins, leading to distinct characteristics during the
thermal conversion process. Thus, investigation of the
feedstock properties is highly necessary. At present, proximate
and ultimate analysis is frequently used to evaluate the fuel
quality of coal and biomass for energy applications.3−5

Proximate data refer to the contents of moisture (M), volatile
matter (VM), fixed carbon (FC), and ash (A). Ultimate
analysis data include the contents of carbon (C), hydrogen
(H), oxygen (O), nitrogen (N), and sulfur (S), which are the
main elements of the organic components in feedstock. These
indexes are closely related to conversion efficiency, heat
production, and product formation in the thermal conversion
process. The results of the proximate and ultimate analyses of
coal and biomass can offer a guideline for setting and adjusting
thermal conversion process parameters. These results can
improve the process operation flow according to the
composition characteristics of different raw materials.6−9

As a special lignocellulose biomass, tobacco mainly under-
goes two chemical reactions during smoking, namely, pyrolysis
and combustion. Hence, the cigarette itself can be regarded as
a miniature reactor where pyrolysis and combustion reaction

occurs.10,11 Proximate and ultimate analysis data have great
application prospects in the prediction of smoke generation
and combustion state such as temperature field distribution of
a combustion cone.12 Meanwhile, thermochemical processing
technologies, especially pyrolysis, have shown potential for the
utilization of tobacco wastes. Proximate and ultimate analysis
of tobacco feedstock has significant instructions for the
construction of this system.
In addition to the application for energy purposes, proximate

and ultimate analysis data are also closely associated with the
quality of feedstock.3,13,14 For example, proximate and ultimate
data can be used to predict the mechanical durability (MD)
and main chemical constituents of biomass.3,13,14 The results
of proximate and ultimate analyses are the most basic
parameters for the quality evaluation of coal.14,15 For example,
the contents of VM and element H on a dry, ash-free basis can
reflect the degree of coalification and are an important basis for
coal classification. The quality of tobacco has many
dimensions, including external attributes such as origin,
position, and grade as well as internal quality attributes such
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as aroma and sensory. Its evaluation involves multiple
procedures including purchasing, processing, cigarette product
design, maintenance, etc., which is of pivotal importance to the
tobacco industry.16,17 Currently, the quality characterization of
tobacco mainly relies on manual grading and sensory
evaluation. These methods have the disadvantages of strong
subjectivity and difficulty in quantification. In fact, the results
of proximate and ultimate analyses are essentially data
reflecting the overall chemical composition of tobacco, which
is the basis of its quality. Therefore, there should be a
theoretical correlation between the proximate and ultimate
results and tobacco quality. These data have considerable
potential for the digital prediction and characterization of
tobacco quality. However, the wide variety of tobacco and the
high fluctuation of its quality as an agricultural product make it
difficult and costly to acquire tobacco proximate and ultimate
data, limiting the full exploitation of these data. Establishing an
efficient, rapid, and low-cost detection method for proximate
and ultimate data is a prerequisite for the in-depth application
of these data in the tobacco field.
Near-infrared (NIR) spectroscopy is a valuable tool in

tobacco analysis due to its rapid and nondestructive nature,
allowing for the comprehensive assessment of chemical
compositions without damaging the samples.18 In recent
years, the integration of chemometric techniques with NIR
spectroscopy has significantly advanced the field of tobacco
analysis. Studies have shown that chemometrics can enhance
the accuracy and efficiency of NIR spectral analysis, allowing
for a more comprehensive understanding of tobacco’s chemical
composition.19−21 For example, an adaptive strategy for
selecting representative calibration samples in the continuous
wavelet domain was developed to improve the performance of
NIR spectral analysis.19

Although proximate and ultimate analysis data have been
widely used in the fields of coal and biomass, the application of
these data in tobacco has not been reported. Herein, we put
forward the application of the rapid detection method for
proximate and ultimate analysis data based on near-infrared
(NIR) spectra to the tobacco field for the first time. Combined
with chemometrics methods, the quantitative analysis models
of proximate analysis data, namely, VM, FC, A, and the
elements C, O, and N in tobacco, were established, realizing
the simultaneous, rapid, and accurate analysis of these six
parameters used for energy purposes. Among them, C and O
are the two elements with the highest content in tobacco, and
the content of N is an important index to evaluate the quality
of tobacco. The main nitrogen compounds in tobacco, such as
nicotine and amino acids, play a decisive role in sensory
characteristics. Due to the strong hygroscopic property of
tobacco, samples are easily affected by environmental moisture
in the process of pretreatment and storage. To avoid the
interference of water absorption on the results of proximate
including ultimate analysis and ensure that these data can
better reflect the characteristics of tobacco, we choose dry basis
data to characterize the results of tobacco proximate and
ultimate analysis. Furthermore, the potential of proximate and
ultimate analysis data in tobacco quality characterization was
discussed. Especially, tobacco aroma can be accurately
discriminated using these data combined with PLS-DA
algorithms. In recent years, pattern recognition algorithms
such as support vector machine (SVM),22−24 k-nearest
neighbor (KNN),23,24 extreme learning machine (ELM),22

and partial least-squares-discriminant analysis (PLS-DA)22,25

have been proven to be an effective method for the quality
analysis of agricultural products. In this work, PLS-DA
algorithms were adapted for its efficacy in classifying samples
into predefined groups based on complex data sets, as it
combines dimensionality reduction with classification to
enhance interpretability.26

2. MATERIALS AND METHODS
2.1. Near-Infrared Spectroscopy. All tobaccos used in

this work were obtained from the Technology Center of China
Tobacco Zhejiang Industrial Co., Ltd. (Hangzhou, China). All
tobacco samples were ground and sieved. The tobacco powder
with a size ranging from 40 to 60 mesh sieves was collected in a
sealed valve bag before subsequent measurements.
NIR diffuse reflectance spectra (1000−2500 nm) were

collected from dry powder samples using an Antaris II FT-NIR
analyzer (Thermo Fisher Scientific, USA), equipped with an
integrating sphere operated at an 8 cm−1 resolution (wave-
number range of 10,000−3800 cm−1). All tobacco powders
were placed in a rotating cup over a water-free 50 mm diameter
quartz window. Instrument performance was verified before
analysis using instrumental self-examination. Individual spectra
represented an average of 64 scans.

2.2. Proximate and Ultimate Analysis. After the tobacco
powder samples were air-dried, their contents of M, VM, FC,
and A were determined for 199 samples by an automatic
industrial analyzer (5E-MAG6700, Changsha Kai-Yuan
Hongsheng Technology Co., Ltd.), according to the national
standard GB/T 212-2008. The contents of the element C, H,
and N in tobacco powder samples were analyzed by an element
analyzer (5E-CHN2200, Changsha Kai-Yuan Hongsheng
Technology Co., Ltd.) based on GB/T 476-2008 and GB/
T19227-2008. The O element content of the oxazole is
calculated by subtracting the content of C, H, N, M, and A
from 100%. To avoid the influence of water absorption on the
test results during the sample placement and pretreatment, the
proximate and ultimate analysis data were converted into the
dry base.

2.3. Quantitative Model of Proximate and Ultimate
Analysis Data. The quantitative model was developed using
the partial least squares (PLS) method based on NIR
spectroscopy and proximate and ultimate analysis of 199
samples. Before modeling, the Monte Carlo cross-validation
(MCCV) method was performed as the outlier detection step.
Then, the data set was randomly divided into a calibration set
(149 samples) and a test set (50 samples). The PLS method
was used to build a calibration model. Five-fold cross
validation was performed for the calibration set to calculate
the root-mean-square error of the cross-validation (RMSECV)
value. An F test based on the results of cross validation was
used to select the optimal number of latent variables. The
significance level was set to 0.25 as previously suggested.27

Prior to building the PLS model, all data were mean-centered.
The root-mean-square error (RMSE) and determination

coefficient (R2) are used as a measure of model performance.
RMSE is defined as follows,

=
y y

N
RMSE

( )pre ref
2

(1)

where ypre is the predicted value, yref is the actual value, and N
is the number of samples. The root-mean-square error of
prediction calibration (RMSEC) is the RMSE calculated from

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05472
ACS Omega 2024, 9, 48196−48204

48197

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the calibration samples, serving as a measure of fit. RMSECV is
calculated from the cross-validated samples. The root-mean-
square error of prediction (RMSEP) is calculated from test
samples.
R2 is defined as follows,

= =

=

y y

y y
R 1

( )

( )
i
N

i i

i
N

i

2 1 ref, pre,
2

1 ref, ref
2

(2)

where y̅ref is the mean of the actual values. R2c is the R2

calculated from the calibration samples. R2p is the R2

calculated from the test samples.
2.4. Classification Model of Aroma Styles. An addi-

tional 172 tobacco samples with typical characteristic aromas
and 67 imported tobacco samples with unclear aroma labels
were selected. The NIR-based model was adapted to predict
the proximate and ultimate analysis data for these samples.
The aforementioned 172 tobacco samples with typical

characteristic aromas was used to develop a partial least-
squares-discriminant analysis (PLS-DA) model to classify the
tobacco aroma. According to ecological and sensory
evaluations, the aroma of flue-cured tobaccos in China can
be divided into three styles: fresh, neutral, and burnt. Based on
PLS-DA, a three-dimensional system was performed to
represent aroma styles. The labels are defined as fresh [1 0
0], neutral [0 1 0], and burnt [0 0 1]. The aroma type of any
sample can be quantified as [a, b, and c], where a, b, and c
represent the significance degree of fresh, neutral, and burnt
aroma, respectively. The prediction aroma was determined as
the maximum values of a, b, and c. The model developed a
method for calculating the values of [a, b, c] based on
proximate and ultimate analysis data predicted from 172
samples, enabling the classification of the aroma style. In
addition, the aroma classification model was then applied to
determine the aroma style of 67 imported tobacco samples.
As for the classification model, the accuracy of the training

model was reported to evaluate the quality of the PLS-DA
model. The accuracy is calculated as

= ×N
N

accurary 100%cor
(3)

where Ncor is the number of correctly classified samples. This
provides a direct measure of how well the model classifies the
data.

3. RESULTS AND DISCUSSION
3.1. Analysis of Samples. Table 1 lists the ranges, mean

values, and standard deviations (SD) for proximate and
ultimate analysis data of 199 tobacco samples. As shown in
these reference data, the dry basis contents of VM, FC, and A
and the elements C, O, and N in 199 tobacco samples fell

within the following ranges: VM (71.55−75.63%), FC (14.75−
20.36%), A (6.28−13.59%), C (42.42−48.42%), O (35.66−
40.64%), and N (1.66−2.95%). The correlation between these
six parameters was also analyzed using Pearson coefficient, as
shown in Table 2. The correlation between FC and A is
relatively significant with Pearson coefficients of −0.68. As for
the relationship between ultimate analysis data, there is a
moderate negative correlation of the O element with C and N
elements, with the Pearson coefficients of −0.59 and −0.60,
respectively. In terms of the relationship between ultimate and
proximate data, C was moderately correlated with FC and A, as
listed in Table 2.
NIR spectra of the 199 types of tobacco samples are

illustrated in Figure 1. Seven major principle bands were
presented for all of the samples. The peaks from 6175 to 7351
cm−1 corresponded to the 2 × C−H stretching + C−H
deformation.28−31 The peaks at around 8300 and 5800 cm−1

were ascribed to the third and the second overtone of C−H
bonds, respectively.28 The peak around 5180 cm−1 was
attributed to the O−H stretching and H−O−H deformation
of moisture.28 The peaks at 4771 and 4401 cm−1 were mainly

Table 1. Statistics of Proximate and Ultimate Analysis Data for Tobacco Samples

full set calibration set validation set

parameter range mean SD range mean SD range mean SD

VM (d%) 71.55−75.63 73.93 0.87 71.55−75.63 73.91 0.88 72.24−75.51 73.99 0.84
FC (d%) 14.75−20.36 17.81 1.05 14.75−20.36 17.81 1.08 15.90−20.20 17.81 0.96
A (d%) 6.28−13.59 8.26 1.12 6.28−13.59 8.28 1.17 6.58−10.72 8.20 0.98
C (d%) 42.42−48.42 45.78 1.11 42.42−48.42 45.78 1.15 43.97−48.23 45.79 0.98
O (d%) 35.35−40.64 38.05 1.15 35.66−40.64 38.03 1.16 35.35−40.39 38.11 1.12
N (d%) 1.56−2.95 2.18 0.28 1.66−2.95 2.18 0.27 1.56−2.86 2.16 0.29

Table 2. Pearson Correlation Coefficient between Six
Parameters

parameter
VM (d
%)

FC (d
%) A (d%) C (d%) O (d%) N (d%)

VM (d%) 1.00 −0.33 −0.47 −0.10 0.40 0.26
FC (d%) −0.33 1.00 −0.68 0.66 0.01 −0.03
A (d%) −0.47 −0.68 1.00 −0.54 −0.33 −0.18
C (d%) −0.10 0.66 −0.54 1.00 −0.59 0.53
O (d%) 0.40 0.01 −0.33 −0.59 1.00 −0.60
N (d%) 0.26 −0.03 −0.18 0.53 −0.60 1.00

Figure 1. Spectra of the flue-cured tobacco samples.
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Table 3. Result of PLS Models for Determination of the VM, FC, and A Contents in Tobacco

parameter wavenumber (cm−1) LV RMSEC RMSECV RMSEP R2c R2p mean (Y)

VM d% 3800−10000 cm−1 11 0.39 0.69 0.41 0.80 0.76 73.91
FC d% 3800−10000 cm−1 15 0.40 0.70 0.41 0.86 0.82 17.81
A d% 3800−10000 cm−1 13 0.35 0.56 0.32 0.91 0.89 8.28

Figure 2. Correlation between the predicted content obtained by the quantitative analysis models and actual one detected by an industrial analyzer
of (a) VM, (b) FC, and (c) A.

Figure 3. Regression coefficients of the quantitative analysis models for (a) VM, (b) FC, and (c) A.

Table 4. Result of PLS Models for Determination of C, O, and N Contents in Tobacco

parameter wavenumber (cm−1) LV RMSEC RMSECV RMSEP R2c R2p mean (Y)

C d% 3800−10000 cm−1 17 0.25 0.52 0.29 0.96 0.90 45.78
O d% 3800−10000 cm−1 8 0.48 0.70 0.48 0.88 0.84 38.03
N d% 3800−10000 cm−1 16 0.03 0.06 0.05 0.99 0.97 2.18

Figure 4. Correlation between the predicted content obtained by the quantitative analysis models and actual one detected by an element analyzer
of (a) C, (b) O, and (c) N.
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assigned to 2 × O−H deformation + 2 × C−O stretching and
O−H stretching + C−C/C−O stretching, respectively.29 The
absorption peak for the asymmetrical C−O−O stretch in the
third overtone of cellulose was also located around 4770
cm−1.30 The peak at 4012 cm−1 corresponded to the C−H
stretching + C−C stretching of starch. This peak was also
related to C−H stretching and deformation combination of the

aromatic structure.31 Overall, the NIR spectra of 199 tobaccos
did not appear to be significantly different.

Figure 5. Regression coefficients of quantitative analysis models for (a) C, (b) O, and (c) N.

Figure 6. (a) Score plot of the two first PCs for 172 tobacco samples. (b) Orthonormal principal component coefficients for each variable of
proximate and ultimate data.

Table 5. Statistical Results (Standard Variation) of 172 Flue-Cured Tobacco Samples

parameter sample size statistic V d% FC d% A d% C d% O d% N d%

fresh 79 mean 60.67 16.74 6.35 2.37 33.07 51.10
std 2.51 0.23 0.34 0.26 0.78 0.63

neutral 47 mean 57.56 16.26 6.98 2.29 33.65 51.11
std 2.99 0.31 0.37 0.28 1.35 0.76

burnt 46 mean 60.59 15.70 7.51 2.46 31.53 51.07
std 2.35 0.35 0.43 0.29 1.38 0.61

Figure 7. Confusion matrix for aroma recognition results of the model
on 172 tobacco samples.

Figure 8. Values of a and b predicted by the PLS-DA model for 172
tobacco samples.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05472
ACS Omega 2024, 9, 48196−48204

48200

https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05472?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.2. Establishment of Quantitative Analysis Models
for Proximate Analysis Data. The 199 tobacco samples
were numbered from 1 to 199 and randomly divided into 149
calibration samples and 50 test samples according to the ratio
(3:1) of the calibration set to test set. Partial least-squares
algorithm written by MATLAB software was used to correlate
the contents of VM, FC, and A in 149 calibration samples with
the corresponding NIR spectra. The quantitative analysis
models of VM, FC, and A of tobacco based on NIR spectrum

Figure 9. Coefficients of the PLS-DA model for the calculations of (a)
a, (b) b, and (c) c.

Figure 10. Aroma styles of 67 imported tobaccos recognized by the model.

Table 6. Aroma Recognition Results of the Model for 67
Tobacco Samples

parameter
sample
size statistic fresh neutral burnt

aroma
recognition

BZ 30 mean 0.25 0.09 0.66 burnt
std 0.19 0.21 0.24

CA 4 mean 1.14 0.07 −0.20 fresh
std 0.27 0.09 0.19

US 4 mean −0.44 0.39 1.05 burnt
std 0.16 0.13 0.11

ZW 29 mean 0.12 0.55 0.33 neutral
std 0.11 0.12 0.13
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were finally established via RMSEC and RMSECV. Table 3
shows the wavenumber range for developing the model and
the number of latent variables (LV), RMSEC, RMSECV,
RMSEP, R2p and R2c of the model. The mean contents (mean
(Y)) of VM, FC, and A for 199 tobacco samples are also listed
in Table 3. Quantitative analysis of these six parameters relied
on the full band spectrum, i.e., 11,000−3800 cm−1. NIR
spectra were preprocessed with first-order derivative.
Figure 2 shows the scatter plots of VM, FC, and A contents

predicted by a quantitative analysis model and measured by an
industrial analyzer for calibration and test set samples.
Therefore, the established models can be used for the accurate
detection of tobacco proximate analysis data. The regression
coefficient of the model was used to analyze the contribution
of different wavenumbers in the NIR spectra to VM, FC, and A
contents, as shown in Figure 3. The contents of VM exhibited
strong correlation with the absorption intensity of NIR
spectroscopy at 5000−5500 cm−1, namely, 5506, 5411, and
5218 cm−1. This band mainly corresponds to the combination
of O−H stretching and other modes of vibration, such as C−H
bending and C−O stretching in polyhydric alcohols such as
glucose and cellulose.18 There also existed a strong correlation
between the VM content and NIR at 4433 cm−1, which may be
attributed to the C−H bending and C−H stretching
combination.32 As shown in Figure 3b,c, the waveband of
3800−6000 cm−1 is crucial for the quantitative analysis of both
FC and A. Especially, FC contents were strongly correlated
with NIR spectroscopy at around 5004 and 4409 cm−1, among
which the peak around 5004 cm−1 was related to the stretching
and deformation of the O−H bands.33 Ash is mainly composed
of a series of inorganic salts. Although inorganic salts
themselves have no infrared activity and cannot be
characterized by NIR, their content can be detected indirectly
by forming chelates with hydrogen-containing organic groups,
thus changing the shape of the NIR spectrum. The NIR
absorption intensity at wavenumber 4113 cm−1 has an
important contribution to the quantitative analysis of ash, as
shown in Figure 3c.

3.3. Establishment of Quantitative Analysis Models
of C, O, and N Elements. In accordance with the same
analysis method of proximate analysis data aforementioned, we
established quantitative analysis models of C, O, and N
elements. Table 4 shows the wavenumber, LV, RMSEC,
RMSECV, RMSEP, R2p, and R2c of the model. RMSEP values
of C, O, and N were 0.29, 0.48, and 0.05, respectively, which
were relatively small compared with mean (Y), indicating high
accuracy of the quantitative analysis models of C, O, and N.
Figure 4 shows the scatter plots of predicted and true values of
C, O, and N contents, indicating high accuracy of the
quantitative analysis models established for the prediction of C,
O, and N contents.
Figure 5 shows the regression coefficients of the quantitative

analysis models of C, O, and N based on the NIR spectra. It
can be concluded from Figure 5a that wavenumbers from 4000
to 6000 cm−1 were optimal for the carbon content prediction
model. This range contained a variety of vibrational modes of
carbon-containing groups, for example, the combination of C−
H stretching and deformation in structures such as CH2, CH3,
aromatics, −CHO, and the first overtone of C−H stretch-
ing.29,34 Especially, the content of element C was positively
correlated with NIR spectra at 5122 cm−1, which is mainly
ascribed to second overtone of C=O stretching in −CO2H.29

As shown in Figure 5a−c, the C, O, and N contents are

strongly correlated with the absorption intensity of NIR
spectroscopy at around 4900 and 4400 cm−1. The band of
4900 cm−1 corresponds to the second overtone of C=O
stretching in −CONH−.34 The peak of 4400 cm−1 is mainly
related to the combination of C−H bending and C−H
stretching; in addition, the N−H stretching and C=O
stretching combination of amino acid is also in this position.34

For different elements, the positive and negative characteristics
of the model coefficients in these two positions are different.
Specifically, the C and O model coefficients at around 4900
and 4400 cm−1 are negative and positive, respectively, which is
reversed for N.

3.4. Application Potential of Proximate and Ultimate
Analysis Data in Tobacco Quality Characterization. For
the tobacco industry, the formula of cigarettes is composed of
flue-cured tobaccos with different aroma styles. In China,
based on sensory evaluations, the aroma of flue-cured tobaccos
can be divided into three styles: fresh, neutral, and burnt.35,36

The aroma style represents the aroma characteristics of
tobacco. The fresh style is characterized by a light, fresh, and
green aroma. The burnt style is characterized by heavy, burnt,
and nutty aroma. The neutral style presents a smooth aroma
that is excluded from both fresh and burnt styles. A practical
problem is that the aroma style is determined by only the
formulator through sensory evaluation, which is relatively
subjective. Especially, for imported flue-cured tobacco, differ-
ent evaluators have great dispute on the evaluation of its flavor
style. At present, there is still a lack of objective methods to
evaluate the aroma of imported tobacco in China.
This work focuses on the correlation of proximate and

ultimate analysis data with an aroma type of domestic flue-
cured tobacco and establishes an aroma classification model
based on NIR-predicted proximate and ultimate analysis data.
The model can be applied to the aroma identification of
imported tobacco from Brazil, the United States, Canada, and
Zimbabwe.
Specifically, 172 tobacco samples from China with three

aroma styles were collected. The proximate and ultimate
information were obtained by the aforementioned models
through NIR spectra. Principal component analysis (PCA) was
performed to investigate the variability of proximate and
ultimate data and search for differentiation and groupings
among tobacco with different aroma styles. Figure 6a reports
the score plot of the two first PCs for 172 tobaccos.
Figure 6b shows the orthonormal principal component

coefficients for each variable, which refers to the six indicators
of proximate and ultimate analyses in this work. All six
variables are represented in this biplot by a vector. The
direction and length of the vector indicate how each variable
contributes to the two principal components in the plot.36 The
first principal component (PC1), on the horizontal axis, has
positive coefficients for element O, FC, and VM with the
vectors directed into the right half of the plot. The largest
absolutely value of coefficients in the first principal component
is element O, which indicates a larger contribution of O
content to PC1. Statistical results of proximate and ultimate
data for 172 flue-cured tobaccos are listed in Table 5. Burnt-
style tobacco has the lowest average content of the O element.
This is consistent with the results in Figure 6, which shows that
burnt-style tobacco tends to be distributed on the left side of
the score plot, corresponding to lower PC1 values.
On the whole, PCA results showed that there was no

obvious regularity in the distribution of 172 samples. Except
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for the weak regularity that burnt-style tobaccos were prone to
distribute on the more negative side along the PC1 direction,
all samples were basically uniformly distributed along the PC2
direction, as shown in Figure 6a.
The PLS-DA model was developed to classify the aroma

based on NIR-predicted proximate and ultimate data of
tobacco. A three-dimensional system was performed to
represent aroma styles. As mentioned in Section 2.4, the labels
are defined as fresh [1 0 0], neutral [0 1 0], and burnt [0 0 1].
The aroma type of any sample is quantified as [a b c], where a,
b, and c represent the significance of fresh, neutral, and burnt
aroma, respectively. The prediction aroma was determined as
the maximum values of a, b, and c.37 Using the PLS-DA
algorithm, the model developed a method for calculating the
values of [a−c] based on proximate and ultimate analysis data
predicted from 172 samples, enabling the classification of the
aroma style.
The confusion matrix in Figure 7 shows the classification

performance of the model. Each number in the confusion
matrix represents the number of samples classified into a
specific category; a correctly classified sample appears along
the diagonal of the matrix, while misclassified samples appear
off-diagonal. For example, there existed 79 fresh aroma-style
tobacco samples, among which 75 samples were correctly
classified, while the remaining four samples were misclassified
as the neutral aroma style. As shown in Figure 7, only 23
samples were predicted with wrong classification. The accuracy
of the model was 86.6%. This result is close to the
misclassification error of artificial sensory evaluation, indicating
that the model had reliable accuracy.
Figure 8 shows the values of (a) and (b) predicted by the

PLS-DA model for each sample. It can be observed that fresh-
style tobaccos were almost located on the positive part of
horizontal axis while the vertical axis separate the neutral type
from fresh and burnt types. Figure 9 shows the regression
coefficients of the PLS-DA model for the calculations of a, b,
and c. It can be concluded that the fresh type is positively
correlated with N, O, VM, and FC and negatively correlated
with C and A. The neutral type is positively correlated with C,
A, and negatively correlated with N and VM.
The model was then applied to flue-cured tobacco from

Brazil (BZ), Canada (CA), the United States (US), and
Zimbabwe (ZW). Figure 10 shows the prediction values of
aroma parameters a−c for 67 imported tobaccos. Table 6 lists
the number of samples from different origins and the
corresponding aroma identification results. The tobaccos
were classified into burnt, fresh, burnt, and neutral styles,
respectively. This result is consistent with the preference and
formulation orientation of China Tobacco Industry Company
for imported tobacco, providing a reliable quantitative basis
and strong proof for the aroma classification of imported
tobacco for the first time.

4. CONCLUSIONS
In this study, we developed quantitative models using NIR
spectroscopy combined with chemometrics to rapidly and
accurately measure the proximate analysis data (e.g., volatile
matter, fixed carbon, and ash) and ultimate analysis data (e.g.,
C, O, and N elements) of tobacco samples. We also found
significant correlations between these data and tobacco aroma
styles, offering a pathway to more objective quality evaluation.
Different from traditional, subjective methods, our approach
provides a scientific basis for digital characterization of biomass

intrinsic quality. This work supports the shift from experiential
to data-driven quality assessment and paves the way for future
research in this area.
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