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Abstract: The cloud computing and microsensor technology has greatly changed environmental
monitoring, but it is difficult for cloud-computing based monitoring system to meet the computation
demand of smaller monitoring granularity and increasing monitoring applications. As a novel
computing paradigm, edge computing deals with this problem by deploying resource on edge
network. However, the particularity of environmental monitoring applications is ignored by most
previous studies. In this paper, we proposed a resource allocation algorithm and a task scheduling
strategy to reduce the average completion latency of environmental monitoring application,
when considering the characteristic of environmental monitoring system and dependency among
task. Simulations are conducted, and the results show that compared with the traditional algorithms.
With considering the emergency task, the proposed methods decrease the average completion latency
by 21.6% in the best scenario.
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1. Introduction

With the development of industry and the acceleration of urbanization, we must pay attention
to environmental monitoring, because air quality has a paramount impact on human health.
The collection and processing of environmental data are prerequisites for environmental monitoring
and pollution warning. As a novel technology, the Internet of Things (IoT) is considered to be a
pollution monitoring solution, which attracts attention from both academia and industry. In addition,
cloud computing makes up the lack of computing resources and energy capacity in environmental
monitoring terminals devices. In an environmental monitoring system based on IoT and cloud
computing technology, the environmental data collected by the sensors are simply processed by the
IoT devices and uploaded to the cloud server. Subsequently, the cloud server processes and analyzes
the environmental data uploaded from all sensors. However, with the decrease of granularity of
environmental monitoring and the increase of data analysis application amount, the centralized cloud
computing architecture is facing challenges, such as high latency, low coverage, and lagged data
transmission [1].

Edge computing, as a new computational paradigms, reduces the application completion latency
and the energy consumption of data transmission by distributing cloud resources closer to where
data generation [2]. Fang et al. [3] has proven that edge computing could enhance the real-time
performance of service completion, with reducing computing load and power consumption in
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the cloud, by offloading computing request to edge servers closer to the IoT device for execution.
The authors in [4] proposed a generalized logical sphere(GLS) modeling scheme in order to avoid
servers overload.

In edge-computing based environmental monitoring system, sensors collect the environmental
data in real time and transmit them to the edge computing server in order to execute necessary
processing and analysis, which reduces system energy consumption and network traffic [5].
The accuracy of environmental monitoring is affected by positioning problems of monitoring sensors.
To solve this problem, Fei et al. [6] investigated advanced parameter prediction skills and proposed a
a smart collaborative tracking scheme to improve particle filter approaches. A number of previous
works have proven that resource allocation strategies could reduce task completion latency and
energy consumption [7–9]. Fengxian et al. [10] design a genetic algorithm and particle swarm
optimization-based algorithm to solve resource allocation problem. However, the dependency between
subtasks was not considered in this study. Non-dominated sorting genetic algorithm II was adopted in
order to realize multi-objective optimization to reduce the execution time and energy consumption
of edge computing devices in paper [11]. Songtao et al. [12] has proven that resource allocation
policy is determined by the computing workload of a task and the maximum completion time of its
immediate predecessors. In [13], a smart collaborative automation (SCA) scheme was proposed in
order to improve resource usage. Du et al. [14] proposed an algorithm, which obtained allocation
decision via semidefinite relaxation and randomization, but the communication among subtasks
are ignored by this work. The authors in [15] took dependencies among subtasks into account,
and proposed an multistage greedy adjustment (MSGA) algorithm to solve the task allocation problem.
They minimized the completion time of application by jointly considering the network flows and tasks.
Laizhong et al. [16] focus on the task offloading problem in order to find out the optimal tradeoff
between task completion latency and energy consumption. They proposed a modified fast and elitist
nondominated sorting genetic algorithm to solve the offloading problem. However, in this work,
the tasks are considered to be undivided, which wastes the parallel computing capability of edge
computing servers. Authors in [17] created un-excuted task queue at the MEC server and proposed
an online algorithm to allocate resources. Pereira et al. [18] propose an allocation and management
resources mechanism to reduce the model complexity of resource allocation algorithm. The authors
in [19] take the dependency between task into account, and proposed a deep reinforcement learning
approach to make offloading decision, the difference among tasks is ignored by this work. Xu et al. [20]
adopt Non-dominated Sorting Genetic Algorithm II to shorten the resource allocating time of the
computing tasks and reduce the energy consumption of the edge computing servers, but this work did
not consider the dependencies among tasks.

In most previous studies, the particularity of environmental monitoring applications has not been
considered. For example, air pollution tracing analysis can only be performed on certain servers with
wind direction information of the region. In addition, as the chromosome size increases, the time
complexity of the resource allocation algorithm increases exponentially [10]. In order to reduce the
solution space of genetic algorithm, we cluster subtasks in genetic algorithm by k-means algorithm,
which makes the resource allocation algorithm converge faster.

This study targets the minimum time cost of task completion in environmental monitoring system
by fully utilizing the parallel computing capacity of edge computing. The main contributions of this
work are outlined, as follows:

• We first introduce the computing model of task with dependency and formulate resource allocation
problem. Taking the communication among subtasks into account, we propose a resource
allocation algorithm based on GA. The proposed algorithm can reach a better sollution than
GA under a same generation, by clustering the subtasks with heavy dependency and decreasing
the size of sollution space.

• The impact of dependency among subtasks on completion time has been discussed in the
contribution above. To solve this problem, a task scheduling strategy proposed that reordering
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the task queue on edge computing server according to the priority of subtasks can reduce the
average task completion latency when considering emergency task.

The remainder of this paper is organized, as follows. Section 2 introduces the system model and
formulates the resource allocation problem. Section 3 introduces the proposed resource allocation
algorithm and task scheduling strategy. Section 4 describes a simulation analysis of the proposed
algorithm and compares it with the traditional algorithm. Section 5 concludes the study.

2. System and Computation Model

This section describes the system model of edge-computing based environmental monitoring
system and formulates the resources allocation problem.

2.1. System Model

In the traditional centralized cloud computing system, the data procession is mainly on cloud
computing server. IoT devices collect environmental data periodically and transmit it to the edge
gateways and cloud server. After processing on cloud, the results are returned to end devices.
By deploying resources (i.e., computing resource and storage resource) on edge gateways, they can
process some data locally, then return the processing results to IoT devices directly or transmit data to
cloud for further processing.

In this work, we extend the edge-cloud heterogeneous collaborative network architecture in [3],
which reduces the network bandwidth occupation, as shown in Figure 1. This network architecture
consists of four parts: cloud layer, region layer, roadside layer, and IoT device layer. The devices in IoT
layer collect environmental data and upload task to the directly connected roadside server in roadside
layer. The roadside servers process data collaboratively or transmit them to a regional server according
to resource allocation policy. Regional servers has more computing resources than roadside servers
and it is responsible for executing regional tasks. When the devices in the edge network are overloaded,
the task will be uploaded to cloud server. After completing all of the tasks uploaded from IoT devices,
partial data will recored into databases on cloud server. Fei et al. [21] proposed a smart collaborative
distribution scheme to solve the data privacy-preserving problem in such a distribution system.

We assume that there are E environmental monitoring sensors that are located in a region,
denoted by a set of E = {1, 2, 3, ..., E}, which are installed on roadside or indoors to collect
environmental data (i.e., PM2.5, PM10, SO2, NO, CO, and temperature, etc.) and offload environmental
monitoring task into the edge computing system.

For each monitoring region, S represents a set of computing resources, including a set of roadside
edge computing servers Sroad, a set of regional servers Sregion, and a cloud computing server Scloud as
shown in Figure 1. Each server Si has its own resource (computing resource, bandwidth, and device
layer) can be represented, as follow:

Resi = { fi, Bwi, f lagi}, (1)

where f lagi indicates which layer the server Si located on. Which can be denoted as follow:

f lagi =


0 if Si ∈ Sroad,

1 if Si ∈ Sregion,

2 if Si ∈ Scloud.

(2)

The virtual machines adopts time sharing policy, and execute various task circularly. A space
sharing strategy was adopted in order to task processing mechanism for each virtual machine.
Before being executed, the arriving task waits in the waiting queue as shown in Figure 2.
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Figure 1. Edge-computing based environmental monitoring system model.

Figure 2. Server Model.

2.2. Application Model

We utilize a directed acyclic graph A = (M, D) to describe the dependency relationship among
these subtasks. M represents the modules of an environmental monitoring application, and D
indicates the data dependency between two modules. Each module mi ∈ M has its own resource
requirement (computing resource requirements , bandwidth requirement, and minimum processing
layer), which can be denoted as follows:

mi = {li, Bwi, layeri}, (3)

where layeri ∈ {0, 1, 2} indicates module mi can only be processed on which layer or above.
Each dependencydi ∈ D can be denoted as di = {msrc, mdest, datai}, which describe that the

processing result with datai bytes of msrc is the input data of mdest. Each mi ∈ M represents a subtask
and a dependency dj = {mi, mk, dataj} indicates the precedence constraint between subtask mi and
mk, such that subtask mk cannot start execution until mi executed.
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2.3. Latency Model

We let fn,m denote the computation resource of server Sn which is allocated to subtask m.
The execution latency of subtask m is given by:

Texc
n,m = lm f−1

n,m (4)

Let Ttrans
m,n,w denote the subtask m transmission latency from server n to w. Subsequently, we discuss

the impact of dependency among subtasks on resource allocation algorithm. The dependencies among
subtasks constraining a subtask cannot be processed until all of its predecessors have already been
executed. Therefore, resource allocation algorithm must consider the latency of subtasks waiting for
their predecessors completed. Subsequently, we give the definition of ready time of a subtask [22].

The ready time of a subtask is defined as the earliest time when all immediate predecessors of the
subtask have completed execution. Therefore, the ready time of subtask m which executed on server w
is given by

RTm = max
k∈pred(m)

{RTk + Texc
k,j + Ttrans

k,j,w }, (5)

where pred(m) denotes the set of immediate predecessors of subtask m.

2.4. Resource Allocation Problem Formulation

In this section, we formulated the resource allocation problem that was subject to several
constraints. Each task t of an environmental monitoring application a can be denoted as
t = {T , tdeadline}, where T indicates a set of subtask correspond with modules M of a. To ensure
the Quality of Service (QoS) of environmental monitoring application, task t should be completed
before tdeadline. In terms of the limited computation resource of edge computing servers, we consider
the resource allocation problem: decide which server should execute the subtask ti ∈ T . We defined
the integer decision variable xi ∈ S that indicates subtask ti executed on server xi, where S represents
a set of servers that can serve the region where the sensor located. The variable of resource allocation
is as follows: X = {x1, x2, ..., xm}. We propose minimizing the task completion latency Tcomp.

Formally, the resource allocation problem can be formulated, as follows:

minimize
X

max
k∈T
{RTk}+ Tc

k,xk
(6)

subject to: ∀i ∈ S , ∀j ∈ T , (7)

Tcomp ≤ tdeadline, (8)

f lagxi ≥ levelj,j ∈ T , (9)

STj ≥ max
k∈pred(j)

{RTk + Texc
k,s + Ttrans

k,s,xj
,} (10)

Constraint (8) is a completion time constraint that restricts the total completion time of all
the subtasks of an environmental monitoring application that is limited by the required maximum
completion time tdeadline, which is determined by the type of application. The deadline of routine
monitoring application (e.g., generating pollution map) is typically larger than emergency applications
(e.g., pollution warning). Constraint (9) states subtask tj can only be executed on a certain devices on
layerj or above. STj in constraint (10) describes that the start time of subtask j is not earlier than the
latest time of its predecessors executed and transmitted to server xj.

3. Resource Allocation Algorithm and Task Scheduling Strategy

As aforementioned, to reduce average task completion time, the resource allocation algorithm and
task scheduling policy need to consider the dependencies among subtasks. In this section, an improved
GA based resource allocation algorithm and a task scheduling policy were proposed. When a task is
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offloaded to the edge computing network, the server implements the resource allocation algorithm for
this task, and outputs a resource allocation policy that specifies the processing server of each subtask.
During the operation of the edge computing system, each edge server periodically sorts the task queue
by implementing the proposed task scheduling strategy.

3.1. GA Based Resource Allocation Algorithm

In term of the cost of genetic algorithm is positively correlated with the amount of subtasks and
specific subtasks of environmental monitoring application can only be executed on certain servers.
In this paper, we propose a suboptimal algorithm, named combined genetic algorithm (CGA), as shown
in Algorithm 1.

The Flow of CGA

A number of works use the Genetic Algorithm to deal with the resource allocation problem.
Genetic algorithm adopts the idea of survival of the fittest from the theory of evolution. It performs
crossover and mutation operations on a population of solutions until reaching the optimal solution.
However, with the increase in the number of subtasks to be allocated, the time cost of genetic algorithm
increases rapidly. In addition, resource allocation policies tend to assign more dependent subtasks
to the same server. If two subtasks with heavy dependency are divided to be executed on the same
server, the communication latency between the two subtasks can be ignored. In addition, calculating
the resource allocation result also consumes the resources of edge computing system, and it is usually
calculated on roadside server with fewer computing resource. Based on this characteristic, this paper
uses the k-means clustering method to cluster subtasks, and take each subtask group as the smallest
unit of resource allocation, in order to reduce the size of the solution space. CGA in this work can be
described, as follows:

(1) Clustering subtasks: the k-means clustering algorithm first selects the k subtask as initial
centroids. Subsequently, it calculates the dependencies among subtasks, and adds a subtask with the
heaviest dependency with a certain centroid into the its subtask group. Next, k-means recalculates
the centroids of each subtask group and repeats the previous operations until the centroids are stable,
as shown in Algorithms 2 and 3. To cluster subtask of an application, we consider divided subtasks
with heavy communication dependency into a same group. By clustering {t1, t2, t3}, {t4, t5, t7},
each subtask cluster can be the smallest unit in resource allocation algorithm, as shown in Figure 3.

Figure 3. Clustering substaks.

By grouping the subtasks, the cost of genetic algorithm and the communication among subtasks
can be reduced. However, subtask grouping makes us consider the feasibility of solution in the
generation initial population, crossover, and mutation operations. Because a certain subtask in a group
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can only be executed on specific server, the whole group should be scheduled to specific server, which
can be described, as follows:

f lagx ≥ max{layeri}, i ∈ Gj, (11)

where Gj denotes a subtask group and f lagx denotes the server layer of solution of group Gj.
CGA optimizes a set of initial random solutions to a acceptable solution, by evolutionary

operations (selection, crossover, and mutation). The crossover and mutation operations of CGA
can maintain solutions keep diversity avoid falling into local optimal trap.

(2) Chromosome and Fitness Function: in this paper, we use real coded GA. Each individual is
defined by the chromosome, which describes a solution of problem (6). Figure 4 shows the chromosome
structure of an individual. xi in chromosome structure denotes a target server that is assigned to
subtask cluster ci.

Figure 4. The chromosome structure.

To evaluate the feasibility of an individual, the fitness function is defined, as follows:

Fitness(X) = max
i∈ot
{RTi + Tc

i,xi
}, (12)

where ot is a set of subtask without outdegree in task DAG. It describes that the end task of
an application.

(3) Initialization and Selection: as shown in Algorithm 1, first get the subtask cluster of an
environmental monitoring Application a by Algorithm 2. Subsequently, generate the initial solution
population randomly, but constrained by (11). The selection operation of CGA restricts partially
individuals that fare better than others can survive.

Algorithm 1: Get subtasks cluster.
Input: T
Output: subtask cluster

1 Initial subtask centers center[]<- Algorithm(T );
2 c[1], c[2], ..., c[k]; ; // Store subtasks clustring result
3 for i = 1 to k do
4 add center[i] into c[i];

5 while Not converged do
6 for subtask t in T do
7 Choose maximum dependency d of subtasks in center[];
8 Cluster with this centroid;

9 Select the subtask with the heaviest dependency in each group as the centroid;

10 return c[1], c[2], ..., c[k];
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Algorithm 2: Get initail subtask center.
Input: DAG with subtasks T
Output: k centroids

1 center[]; // Centroid to be determined
2 count=0;
3 for subtask t in T with outdegree=0 or indegree=0 do
4 Add t into center[];

5 if count = k then
6 return center[];

7 if count>k then
8 choose k largest degree with the heavier dependency subtasks;
9 remove other count-k tasks from center[];

10 else
11 choose k-count smallest degree with the heavier dependency subtasks;
12 add these k-count tasks into center[];

13 return center[];

Algorithm 3: CGA.
Input: S ,T
Output: resource allocation policy X

1 population size α;
2 elitism rate β;
3 mutation rate γ;
4 iteration times δ;
5 subtasks cluster = Algorithm(DAG with subtasks T )
6 generate α feasible solution randomly and add them to Pop;
7 for i = 1toδ do
8 for each solution p in Pop do
9 calculate fitness for p;

10 new population Pop1;
11 new population Pop2;
12 number of elitism ne = α · β;
13 select the best ne solutions in Pop and add to Pop1;
14 number of crossover nc = (α− ne)/2;
15 for j=1 to nc do
16 select two solutions xA and xB from Pop;
17 generate xC and xD by crossover from xA and xB;
18 add xC to Pop2, add xD to Pop2;

19 for solution x in Pop2 do
20 if random(0 : 1) ≤ δ then
21 generate a new solution x′ randomly;
22 while Algorithm3(x′) = false) do
23 x′ = generate a new solution randomly;

24 add x′ into Pop2;

25 Pop = Pop1 + Pop2;

26 return the best solution xbest in Pop;
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(4) Crossover and Mutation: to maintain the diversity of population and reach a better solution
to resource allocation problem, CGA applied crossover and mutation operations iteratively to the
population. In each iteration, the selection chooses suitable individuals for crossover operation.
Subsequently, the crossover operation is applied to these individual in order to generate their
offsprings. Because subtasks are already clustered, in this work we only consider crossover one
bit in a chromosome, in order to maintian local search capability. As shown in Figure 5, crossover
operation select one bit randomly from chromosome of Parent α and Parent β, and generates offspring α

and offspring β. Because the crossover operation switch the same index on chromosome that indicates
a same subtask group, the solutions of offsprings generated by crossover are also feasible.

Figure 5. Crossover operation.

To avoid the population falling into local optimal trap, the mutation operation alter chromosome
of individual randomly, but constrained by (11).

3.2. Task Scheduling Strategy

As aforementioned in Section 2, the ready time is an important factor of the completion time of a
task. Additionally, the earliest start time of a subtask is when the predecessors of this subtask completed
and transmitted to the server that this subtask assigned. Clearly, reducing the completion time of the
latest predecessor task could reduce the completion time of the whole task. However, the ready time
and deadline of task are ignored by traditional first come first service (FCFS) task shceduling strategy.
In order to reduce the cost of ready time and take deadline into account, we propose a task scheduling
strategy shown as Algorithm 4. When a subtask is completed, the server records the subtask Id
into completion table that maintained on each server. Additionally, servers sort the waiting queue
periodically according to the priorities of subtasks in waiting queue. The sorting operation follows
that, if a subtask being executed earlier could reduce the completion time of whole task, it should be
served in advance.

Subtasks t1, t2, t3 and t∗1 with green describes these subtask has been executed, as shown in
Figure 6. Therefore, serving t4 ahead of time can fully use the parallel computing capacity of edge
computing system to reduce the waiting time.

In addition, the proposed task scheduling strategy also tends to serve the emergency task.
The strategy sort the task queue on server according to priority p of subtask, which can be calculated
by Equation (13).

p = α(tdeadline − tcur)
−1 · c, (13)

where tdeadline denotes the deadline of the task that depends on the type of environmental monitoring
application. tcur describes Current system time. c describes the number of completed subtasks in the
set of peer subtasks, which denoted by pt in Figure 6. Peer subtasks are defined as the predecessors of
successors of ti, which can be described, as follows:

∀tj ∈ pt, ∃d
′
= {mi, mk} and d

′′
= {mj, mk}, (14)

where mi and mj denote the application modules of ti and tj in DAG, respectively. Because resource
allocation results are carried by data packages in edge network. The task completion record can be
requested quickly according to the allocation result, even if it is not maintained on the current server.
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Algorithm 4: Task scheduling strategy.
Input: q[ ],C
Output: q

′
[ ]

1 for each subtask ti in q[ ] do
2 peer subtask pt[ ] = pred(sucr(ti));
3 c = amount of completed subtask in pt[ ];
4 Calculate the priority p of ti by Equation (13);

5 q
′
[ ] = sort q[ ] by p;

6 return q
′
[ ];

Figure 6. Task scheduling.

4. Simulation and Result

4.1. Experimental Environment

In this work, we extend iFogsim to support the architecture in Section 2. The Tuple class
is modified to implement successors to inherit the resource allocation result and task deadline.
The modified FogDevice class communication with other devices located on a same layer to implement
collaborative computing and load balancing. The resource allocation algorithm interface is placed
inside the FogDevice.

Servers settings: environmental monitoring sensors are installed on roadside monitoring station
or vehicles, and connected to roadside edge server. The CPU capacity of each roadside edge server is
in the range of 3000–6000, and the Ram range of 4000–8000. The CPU capacity, Ram, and bandwidth of
region server are 8000–12,000, 20,000, and 10,000, respectively. We set the CPU capacity of cloud server
as 44,000, the Ram as 40,000, and the bandwidth as 10,000. Additionally, we set two type of connection
between end device (monitoring station and vehicles) and edge server: fixed number, random number.
The detailed settings are shown in Table 1.

Table 1. Experimental simulation parameter settings for servers.

CPU (MIPS) RAM (MB) Up/Down Bandwidth
(bytes/ms) Busy/Idle Power (W)

Cloud server 44,000 40,000 10,000/10,000 1648/1332
Region server 8000–12,000 8000 10,000/10,000 107.34/83.43

Roadside server 3000–6000 4000–8000 5000/10,000 87.43/60.43

After setting up the network architecture and devices on each layer. The application model is set,
as shown in Figure 7.
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Figure 7. Environmental monitoring application modules.

The mapping relationship between application modules and servers on different layers are shown
in Table 2.

Table 2. Mapping between application modules and servers.

Layer Application Module

Cloud

Data recording
Pollution map generation

Regional pollution visualization
High-value data analysis

Vedio recording

Region

Data preprocessing
High-value data analysis

Regional pollution visualization
Vedio recording

Roadside
Data preprocessing

High-value data analysis
Vedio recording

IoT Device Data collecting
Pollution warning

4.2. Simulation Result

In this section, we evaluate the performance of the proposed method in the iFogsim simulation
environment. We compare our method with the basic genetic algorithm to prove the effect of our
resource allocation algorithm and task scheduling strategy. In our experiment, we first observe the
convergence of GA and CGA in a same time of resource allocation. Subsequently, we compare the
average task completion latency with different sensor amount deployed on a roadside server, in order
to ascertain a suitable number of sensor per roadside server to serve. In addition, the simulation
result of average task latency with a different amount of request per sensor offload in unit time
prove the minimum time granularity for environmental monitoring in this experimental environment.
In the following results, GA represents basic Genetic Algorithm, CGA denotes the Combined Genetic
Algorithm we proposed, and combined genetic algorithm with task scheduling strategy is denoted
by CGA&Q.
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4.3. Convergence Analysis

Figure 8 shows the different convergence between GA and CGA. On account of grouping subtasks,
CGA converged earlier than GA in earlier iterations, but GA could reach a better sollution than CGA
in later iterations. However, consider the roadside server’s lack of computing resource, the iteration is
set to the range 50–200 times in this work. Obviously, in this range, the CGA we proposed could reach
a better sollution than GA.

Figure 8. Convergence of GA vs. CGA.

4.4. Performance Analysis

In this section, we first show the performance of proposed algorithm versus GA with different
sensor amount under a roadside server. Figure 9 plots the average task completion latency as the result
in different methods. Each sensor offloads 16 environmental monitoring tasks in a time unit. When less
than seven sensors are deployed on a roadside server, the effect of CGA&Q is not obvious, due to the
size of task queue on each server being small. With the increase of sensor number, the performance of
proposed method becomes higher. In the ten scenarios, the average completion latency optimization
ratio (GA vs. CGA&Q) is 14.1%, 10.0%, 10.5%, 9.8%, 7.6%, 13.6%, 12.0%, 22.4%, 16.4%, and 13.0%.
As the sensor number grows above 10, it has been hard for completion latency to meet the demand
of environmental monitoring application. Therefore, in following simulation, we set the number of
sensors that are deployed on roadside server to 10.

Figure 10 shows the average completion latency with different task number per sensor offloaded in
a unit time. In the eight scenarios of different task amount, the average completion latency optimization
ratio (GA vs. CGA&Q) is 18.4%, 16.4%, 15.5%, 18.1%, 21.6%, 21.1%, 18.7%, and 6.9%. Because each
bit in the chromosome only denotes one subtask, the sollutions in the initail population of GA will
cost more time on communication than CGA. When we decrease the number to 8, the performance
of CGA is better than CGA&Q. Because the priority of subtask in each task queue are non-real time
(behind the current system state). As task number decreases, the task queue refresh speed increases.
It degrades the performance of the task scheduling strategy.

To ascertain the ratio of subtasks number executed by the different layer servers, We deploy
10 sensors on each roadside server, and set region server connected with eight roadside servers.
Figure 11 summarizes the utilization of server on different level. As the amount of tasks increases,
the proportion of tasks allocated to cloud computing increases from 14.06% to 31.41%. Meanwhile,
the average completion latency increased from 1458 ms to 2910 ms, because more subtasks were
allocated to the cloud server. Even if the less task offloaded into edge computing system, the region
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server and cloud server still execute the task partially, because a certain specific subtask can only be
executed on the cloud or region server.

Figure 9. Impact of sensor amount on average completion latency.

Figure 10. Average completion latency of application by GA, CGA, and CGA with task scheduling.

Figure 11. The utilization of servers in each layer.
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5. Conclusions

This paper takes the characteristics of environmental monitoring applications into account, and
presents a resource allocation algorithm and task scheduling strategy for an edge-computing based
environmental monitoring system. By clustering subtasks with heavy communication dependency,
the proposed method reduces the cost of calculating results of resource allocation and accelerates the
convergence of the genetic algorithm in the early iterations. In addition, we propose a task scheduling
strategy to fully use the parallel computing capacity of edge computing system. Subsequently,
we ascertain the suitable setting of environmental monitoring system in the environment of this work.
However, the clustering subtask should be dynamically adjusted to the status (i.e., real-time resources
and load of edge servers) of edge computing system. Additionally, the additional communication
cost (e.g., if completion information are not on current server, it will be transmitted by edge network)
caused by task scheduling strategy has not been investigated. In future work, we plan to improve the
proposed methods to adjust the allocation policy dynamically, and implement a real-world testbed in
order to improve the proposed method and system model in terms of cost of resources and availability
of monitoring service.
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E , E set and number of environmental monitoring sensors
S Set of servers
Si server i
fi, Bwi, f lagi computing capability, bandwidth, and device layer of server i
A application
mi application module i

li, Bwi, layeri
computing resource requirements, bandwidth requirement, and minimum
processing layer of mi

di subtask dependency
msrc, mdest, datai source module, destination module, and input data
Tc

n,m execution time of subtask m on server Sn

Ttrans
m,n,w transmission latency of m from server n to w

RTm ready time of subtask m
STj start time of subtask j
Tcomp completion time
tdeadline deadline of task
X solution of resource allocation
p priority of subtask
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