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1 |  INTRODUCTION

The past decade of neuroscience research has seen a growing 
interest in the role of the gut microbiota in central nervous 
system (CNS) health and disease.1 The link between intestinal 
microbiota and CNS has led to the definition of a so- called 
“gut– brain axis,” a bidirectional communication network be-
tween the digestive tract and the brain.2 This interaction is 
maintained through complex mechanisms, only partially un-
derstood, including the roles of the vagus nerve and the enteric 

nervous system, hormones, immune signaling molecules 
such as cytokines and chemokines, and neurotransmitters.3 
Accumulating evidence links microbiota alterations, usually 
referred to as dysbiosis, to CNS disorders including multiple 
sclerosis,4 Parkinson disease,5 and Alzheimer disease.6

In this context, the exploration of the connection between 
gut microbiota and epilepsy is sparse, mainly focusing on the 
microbiota change induced by the ketogenic diet.7 Recently, 
significant differences in the intestinal microbiota have 
been reported in patients with epilepsy compared to healthy 
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Abstract
A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, 
including those affecting the central nervous system. Recently, significant differences 
in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, 
have been reported in an observational study. However, an active role of the intestinal 
microbiota in the pathogenesis of epilepsy, through the so- called “gut– brain axis,” 
has yet to be demonstrated. In this study, we evaluated the direct impact of microbiota 
transplanted from epileptic animals to healthy recipient animals, to clarify whether 
the microbiota from animals with epilepsy can affect the excitability of the recipients’ 
brain by lowering seizure thresholds. Our results provide the first evidence that mice 
who received microbiota from epileptic animals are more prone to develop status 
epilepticus, compared to recipients of “healthy” microbiota, after a subclinical dose 
of pilocarpine, indicating a higher susceptibility to seizures. The lower thresholds for 
seizure activity found in this study support the hypothesis that the microbiota, through 
the gut– brain axis, is able to affect neuronal excitability in the brain.
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volunteers,8 as well as in WAG/Rij rats, a genetic model of 
absence epilepsy.9 Moreover, the transplant of the intesti-
nal microbiota from chronically stressed to naive rats has 
been demonstrated to facilitate kindling epileptogenesis.10 
However, to our knowledge, a direct proepileptogenic effect 
of gut microbiota collected from epileptic donors has yet to be 
demonstrated. In particular, it is not well established whether 
the intestinal microbiota alterations induced by epilepsy 
could, by themselves, modify brain activity and increase sei-
zure susceptibility, possibly facilitating epileptogenesis.

We investigated whether the transplantation of micro-
biota derived from epileptic mice might play a role in the 
etiopathogenesis of epilepsy by increasing brain excitability 
of naive/healthy mice. In particular, such microbiota samples 
were collected and transplanted into healthy recipient pups 
with immature gut microbiota. Recipient mice were then sub-
mitted to a pro- brain- excitability challenge with a subclinical 
dose of pilocarpine, to fully explore whether this “epileptic” 
microbiota could increase susceptibility to seizures.

2 |  MATERIALS AND METHODS

Animal care and experimental procedures were conducted 
in accordance with the guidelines of the European Union 

directive 2010/63/EU. All protocols were approved by the 
local ethical committee (C.I.R.S.A.L., University of Verona) 
and Italian Ministry of Health (authorization 1107/2015- PR). 
NMRI mice acquired from Charles River were housed in in-
dividually ventilated cages (IVCs), one animal per cage, with 
autoclaved food and water ad libitum, and kept in a sound- 
attenuated room at constant temperature (22 ± 1.0℃) and hu-
midity (60 ± 5%), with an inverted 12/12- h light– dark cycle 
with lights on at 7:00 p.m., corresponding to Zeitgeber time 
(ZT) 0. The IVC system allows maintenance of mice with 
semidefined microbiota for up to 5 months and performance 
of gut colonization equally efficiently as with those obtained 
in isolator systems (details in Supporting Information).11

2.1 | Donor group

A cohort of male, 7- week- old donor (D) mice were ran-
domly assigned to control (D- CTL) or pilocarpine (D- EPI) 
groups (Figure 1A). A dose of 300 mg/kg of pilocarpine was 
intraperitoneally injected in D- EPI animals to induce sta-
tus epilepticus (SE) according to the pilocarpine model of 
temporal lobe epilepsy.12 Methyl- scopolamine (1 mg/kg ip) 
was administered 30  min prior to pilocarpine to minimize 
peripheral cholinergic effects. Animals of the D- CTL group 

F I G U R E  1  (A) Experimental 
design and timeline. Donor mice at 
experimental Day 0 were 7 weeks old. 
EEG, electroencephalography; FMC, 
fecal microbiota collection; FMT, 
fecal microbiota transplantation; SRS, 
spontaneous recurrent seizures. (B) 
Representative samples of EEG activity 
recorded 24 days after FMT and 1 day 
prior to subclinical pilocarpine challenge. 
Mice that received microbiota from 
epileptic donors (R- EPI) showed frequent 
spikes, two of which, indicated by ocher 
arrowheads, are also shown in the expanded 
segment to the right. (C) Paroxysmal EEG 
activity following subclinical pilocarpine 
administration in an R- EPI mouse versus 
a normal EEG trace in a subject that 
received microbiota from control donors 
(R- CTL)
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intraperitoneally received an equal volume of phosphate- 
buffered saline (PBS; pH = 7.4). All animals were observed 
for 2 h after either pilocarpine or PBS injection, and the be-
havior was monitored and scored using a revised version of 
the Racine scale for mice.13

2.1.1 | Detection of spontaneous 
recurrent seizures

Following the injections, all animals were visually moni-
tored for 2 weeks (8 h per day) to detect convulsive seizures, 
that is, the spontaneous recurrent seizures (SRSs) typical of 
pilocarpine- treated mice, as well as to rule out any other gross 
behavioral anomalies in both groups. D- EPI mice showing 
overt SRSs were selected as microbiota donors together with 
normal D- CTL animals.

2.1.2 | Fecal sample collection

Fecal samples were obtained from 21 D- EPI and 13 D- CTL 
mice 40 days after pilocarpine/PBS administration. All sam-
pling procedures were performed during the dark phase 
(ZT14– ZT16). Several stools were collected for each ani-
mal and placed in sterile tubes (1.5 ml) prefilled with 30% 
glycerol in PBS, then frozen and stored at −80℃ (details in 
Supporting Information).

2.2 | Recipient group

Two weeks after arrival at the local animal facility, mice 
were mated and dams were treated with antibiotics (ampicil-
lin 1 g/L, vancomycin .5 g/L, neomycin 1 g/L added to the 
autoclaved drinking water) from the 12th day of pregnancy 
until delivery, to limit the transfer of maternal microbes to 
pups.14 Newborn mice were kept with the mother until wean-
ing at postnatal day 21 (P21).

2.2.1 | Fecal transplantation

Upon weaning, male mice from eight different litters were 
randomly assigned to one of two recipient (R) groups. 
Animals in the R- EPI group received microbiota from a sin-
gle D- EPI, epileptic mouse, whereas the R- CTL group re-
ceived microbiota from single D- CTL mice (Figure 1A). For 
each R mouse, 50 mg of stool were resuspended in 1.25 ml 
of sterile saline solution. The suspension was centrifuged at 
3000 ×  g for 15  min, and the precipitate was dissolved in 
saline (400 mg/ml) and used for transplantation.15

Mice were inoculated at ZT14– ZT16 via oral gavage 
(50 µl per animal) in sterile conditions at P21 and again at 
P24. Following fecal microbiota transplantation (FMT), mice 
were visually monitored for 14 days (4 h per day) to detect 
behavioral abnormalities, including convulsions.

2.2.2 | Surgery and 
electroencephalographic recording

Two weeks after FMT, both R- EPI and R- CTL animals 
were surgically implanted with epidural recording electrodes 
(right ipsilateral frontoparietal bipolar derivation) for chronic 
electroencephalographic (EEG) monitoring. Ten days after 
surgery, all recipient animals were connected to the EEG 
acquisition setup and signals were amplified and digitized 
at a sampling frequency of 1 kHz (details in Supporting 
Information). Twenty baseline hours of EEG signals were 
collected for each animal and saved for offline analysis.

2.2.3 | Analysis of EEG baseline recording

EEG signals obtained during the 20- h- long baseline record-
ings were digitally filtered (high- pass at .5 Hz, low- pass at 
70 Hz, 50- Hz notch filter) and examined for the presence of 
“spikes.” EEG spikes were defined as high- voltage (>4 SD 
above background) positive or negative single deflections 
that lasted <50 ms. Each putative spike detected in a 2- h pe-
riod (ZT18– ZT20) was confirmed by an expert observer by 
visual inspection (Figure 1B).

2.2.4 | Pilocarpine subclinical challenge

One day after baseline recordings, a subclinical dose of 
pilocarpine (260  mg/kg) was intraperitoneally injected in 
all recipient mice, and the clinical SE was EEG- recorded 
and visually monitored for 120 min. Methyl- scopolamine 
(1  mg/kg) was injected 30  min before the challenge to 
prevent peripheral cholinergic effects of pilocarpine. The 
onset of SE was established by behavioral observation and 
confirmed by EEG inspection (Figure 1C).

2.3 | Statistical analysis

The Mann– Whitney U test was used to compare the num-
ber of single spikes between the two groups of recipient 
mice. The log- rank test was used to compare the survival 
curve of SE between R- EPI and R- CTL groups. An alpha 
level of p < .05 was used to indicate statistically significant 
differences.
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3 |  RESULTS

In baseline conditions, the visual inspection of 2 h of artifact- 
free EEG revealed a higher number of single spikes in R- 
EPI compared to R- CTL (Mann– Whitney U = 79, p = .039; 
Figures 1B, 2A), potentially suggesting increased susceptibil-
ity to seizures in animals inoculated with microbiota derived 
from epileptic mice. On the other hand, no seizures were ob-
served in either group during baseline recordings, and no sig-
nificant differences were found in the signals’ power spectral 
density (data not shown). Following the administration of a 
subclinical dose of pilocarpine (260 mg/kg ip), R- EPI mice 
were more prone to develop SE compared to R- CTL mice 
(Figures 1C, 2B). In detail, 120 min after pilocarpine injec-
tion, ~50% of the R- EPI mice entered SE (10/21), whereas 
only one mouse in the R- CTL group showed the typical 
signs of SE (1/13) and only at a time when all but one R- 
EPI mouse had already entered SE. In accordance with these 
observations, the log- rank test showed a significant differ-
ence between the two recipient groups (χ2 = 5.78, p = .017), 
suggesting that microbiota derived from epileptic mice may 
lower the seizure threshold in healthy recipients (Figure 2B).

4 |  DISCUSSION

A growing body of evidence underlines the importance of 
gut microbiota in the development and progression or im-
provement of CNS pathologies, including multiple sclero-
sis,4 Parkinson disease,5 and Alzheimer disease.6 Neuronal 
excitability is a cornerstone of brain function, and microbiota 
obtained from stressed animals have been shown to facili-
tate kindling- induced seizures.10 Here we report an increased 

susceptibility to seizures in healthy mice after FMT from epi-
leptic donors.

The so- called “double- hit” hypothesis states that an insult 
that in itself is not sufficient to lead to epilepsy could trigger 
a cascade of epileptogenic events once combined over time 
with a second subclinical stimulus. As previously shown, the 
microbiota is altered in both human8 and experimental ep-
ilepsy.9 We propose that the specific alterations caused by 
epilepsy in donors represent the first “hit” in recipient mice. 
In our experimental design, the transplantation of microbi-
ota altered by chronic epilepsy was not sufficient to trigger 
seizures in the 3 weeks following FMT; however, the same 
animals were significantly more likely to develop SE upon 
the subsequent administration of a subclinical dose of pilo-
carpine (the second “hit”). In this respect, the pilocarpine 
challenge, previously shown to act on inflammatory path-
ways,16 could be regarded as similar to inflammatory condi-
tions often associated with the onset of convulsive seizures, 
such as fever and influenza, in subjects who may have been 
previously sensitized.

The notion that brain excitability can be modulated via 
gastroenteric signaling is not new. The ketogenic diet has 
long been regarded as beneficial in drug- resistant epilepsy 
in some children and adults.17 Only recently, however, the 
intestinal microbiota was recognized as an active contributor 
to this effect.7 Evidence from both experimental and clini-
cal research suggests that probiotics, prebiotics, FMT, and 
nutrition- based therapies targeting the gut– brain axis may 
provide safe and effective support in patients with several 
forms of neurological diseases,18 including epilepsy.19

The functional data provided in the present study, together 
with previously published observational data, highlight the 
necessity to identify alterations in the intestinal microbiota 

F I G U R E  2  (A) Distribution of the number of single spike episodes detected over the 2- h electroencephalographic recording in both recipient- 
pilocarpine (R- EPI) and recipient- control (R- CTL) mice. In each violin plot, the continuous horizontal line is the median, and the dashed lines 
represent the 25th and 75th percentiles. (B) Survival curves for R- EPI and R- CTL mice, showing the percentage of animals that entered status 
epilepticus during the 120 min following a subclinical dose of pilocarpine
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composition and to understand the molecular mechanisms 
of microbiota– gut– brain interactions in models of epilepsy. 
Ultimately, a better understanding of the role of microbiota in 
the gut– brain axis in epilepsy could lead to the identification 
of integrative therapeutic approaches.
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