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Abstract

Objective

The aim of this study was to employ a kinetic model with dynamic contrast enhancement-
magnetic resonance imaging to develop an approach that can efficiently distinguish malig-
nant from benign lesions.

Materials and Methods

A total of 43 patients with 46 lesions who underwent breast dynamic contrast enhancement-
magnetic resonance imaging were included in this retrospective study. The distribution of
malignant to benign lesions was 31/15 based on histological results. This study integrated a
single-compartment kinetic model and dynamic contrast enhancement-magnetic reso-
nance imaging to generate a kinetic modeling curve for improving the accuracy of diagnosis
of breast lesions. Kinetic modeling curves of all different lesions were analyzed by three
experienced radiologists and classified into one of three given types. Receiver operating
characteristic and Kappa statistics were used for the qualitative method. The findings of the
three radiologists based on the time-signal intensity curve and the kinetic curve were
compared.

Results

An average sensitivity of 82%, a specificity of 65%, an area under the receiver operating
characteristic curve of 0.76, and a positive predictive value of 82% and negative predictive
value of 63% was shown with the kinetic model (p = 0.017, 0.052, 0.068), as compared to
an average sensitivity of 80%, a specificity of 55%, an area under the receiver operating
characteristic of 0.69, and a positive predictive value of 79% and negative predictive value
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of 57% with the time-signal intensity curve method (p = 0.003, 0.004, 0.008). The diagnostic
consistency of the three radiologists was shown by the k-value, 0.857 (p<0.001) with the
method based on the time-signal intensity curve and 0.826 (p<0.001) with the method of the
kinetic model.

Conclusions

According to the statistic results based on the 46 lesions, the kinetic modeling curve method
showed higher sensitivity, specificity, positive and negative predictive values as compared
with the time-signal intensity curve method in lesion classification.

Introduction

Breast cancer is a common cancer in women worldwide. Currently, noninvasive imaging tech-
niques used to screen and diagnose the disease include mammography, sonography, magnetic
resonance imaging (MRI) and tomosynthesis [1-3]. MRI provides not only morphologic infor-
mation regarding lesions, but also information regarding the functional characteristics of
lesions, such as tissue perfusion and enhancement kinetics. In addition, the image quality of
MRI is not significantly impaired by dense tissue, which leads to a higher sensitivity in the
detection of breast lesions [4-8]. MRI can better characterize lesion characteristics and the
information about lesion vascularity can be obtained with the use of contrast medium [9].
Therefore, the trend of using MRI for the diagnosis of breast cancer is rapidly increasing.
Recently, dynamic contrast-enhanced MRI (DCE-MRI), an MRI technique that employs a
time-signal intensity curve, also known as a kinetic curve, obtained by repeated MRI scans
after contrast agent injection has emerged as a useful tool for the screening of breast cancer due
to its high detection sensitivity [10-12]. In this technique, the shape of the time-signal intensity
curves usually classified as persistent enhancing (Type 1), plateau (Type 2), or washout (Type
3). Type 1, a persistent enhancing curve, which demonstrates a persistent increase in signal
intensity after contrast injection, is correlated with benign lesions. Type 2, a plateau curve,
which shows a slow or rapid increase in the beginning and then exhibits a sharp bend and pla-
teau, is indicative of malignancy. Type 3, a washout curve, which has a drop-off in signal inten-
sity with time after a rapid initial rise in the beginning, is known to be relatively specific for
malignant lesions [8]. However, several studies have reported that time-signal intensity curves
have a very high sensitivity but a relatively low specificity for the diagnosis of breast cancer
[10,13-16]. Many studies have applied kinetic models to improve the diagnosis of breast
lesions. Henderson et al. developed a technique by which blood flow, blood volume, and capil-
lary permeability can be measured simultaneously in breast tumors [17]. Delille et al. demon-
strated that the ratio of regional blood flow and blood volume quantified by a kinetic model
can be used to distinguish a breast tumor from benign or normal tissue [18]. By using a two-
compartment model, Brix et al. found that the ratio of capillary transfer coefficient/capillary
plasma flow can be used to distinguish benign lesions from malignant tumors [19].

This study aimed to use a kinetic model with DCE-MRI to improve the specificity of the
diagnosis of breast cancer as compared with the time-signal intensity curves method. We
developed a quantitative measurement of breast lesions with DCE-MRI using a single-com-
partment model. This method first identifies a region of interest (ROI) that represents one
compartment, and further analyzes the concentration of contrast and the flow from the inlet
and outlet in the ROI. The diagnostic results using kinetic model were compared and corre-
lated with the pathologic findings from the breast lesion specimens.
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Materials and Methods
Patients

This retrospective study assessed patients with detectable breast lesions who underwent breast
MRI in our hospital between 2011 and 2014 [S1 Dataset]. All cases contained definitive patho-
logical diagnosis in their medical records. Totally, 43 female patients were included in this
study, and data of 46 breast lesions were collected for analysis. The age distribution of the
patients was between 30 and 65 years (45.23+8.16). The data used for this study were anony-
mously collected, and this study was approved by the Institutional Review Board of our hospi-
tal prior to the start of the study (CMUH103-REC3-052).

MRI

All collected data were acquired using our 3T MR scanner in China Medical University Hospi-
tal, Taiwan (Signa HDxt, GE Healthcare, USA). Patients were asked to lie on the 8-channel
breast coil with prone position when preforming the examination. The standard breast MRI
protocol in our hospital included a T2-weighted fat-suppression sequence (short T1 inversion
recovery, STIR), a regular T1-weighted fast spin echo (FSE) sequence without fat-suppression,
and a dynamic contrast enhanced (DCE) T1-weighted fat-suppression sequence. All images
were performed on transverse section (S1 Dataset). About the dynamic scan, we used a high
spatial resolution 3D imaging technique, VIBRANT, which was provided by the vendor. This
technique applies dual shim volumes which contains advantage of homogeneity during fat sup-
pression. Such feature was important for the diagnosis of breast lesions as well as our further
data analysis. An intravenous bolus injection of gadodiamide (0.1 mmol/kg body weight,
Omniscan, GE Healthcare, Ireland) was carried out by using an automated injector with con-
sistent rate of 2.6 ml/sec, we also applied another 20ml of saline wash. A total of eight continu-
ous volumes were acquired for the DCE-MRI section, while the injection was started at the
beginning of the second phase. The DCE-MRI employed the following parameters: slice
number/volume = 78, slice thickness = 1.8 mm, field-of-view = 360x360 mm”®, matrix

size = 512x512 which was automatically interpolated into 1024x1024, repetition time (TR) =
10.35 ms, echo time (TE) = 4.25 ms, flip angle = 10, echo train length = 1.

Kinetic data were evaluated by placing an ROI as the compartment. ROIs should be placed
into the area that exhibits strongest enhancement in each series. The ROIs were ensured to be
within the lesion throughout the entire dynamic series. The change in the concentration of the
contrast agent over time was calculated by analyzing the change in the gray-scale intensity in
the corresponding area inside the ROL

Histological diagnosis

All patients received echo-guided biopsy or MRI-guided biopsy. All samples were embedded in
paraffin and serially cut for immunohistochemical stains. Histological diagnoses were deter-
mined by an experienced pathologist.

Kinetic model

The single-compartment model used in this study is based on Fick principle which was devel-
oped by Adolf Fick. The Fick principle has been applied in a variety of clinical situations, for
example, the measurement of cardiac output. It is shown in the following equation [20]:

C2(t) = == - C1(1) (1)
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where AM (gray level/phase time) is the change in the gray level of the ROI from the
DCE-MR], F is the blood flow, and CI (gray level/pixel) and C2 (gray level/pixel) are the aver-
age gray levels of the inlet and outlet blood flow in the compartment, respectively. By adding
the AM value and replacing CI with the change in gray level of the arterial inlet in the ROI, the
values of C2 and F can be calculated by employing a least square fit. ROIs were within the lesion
or the ascending aorta throughout the entire dynamic series by manual selection. The kinetic
modeling curve can be generated from the change of the C2 versus time.

Statistical analysis

By using this kinetic model, each C2 value corresponding to each image phase was obtained,
and the plot of the C2 values of the phase is called a kinetic modeling curve. All the kinetic
modeling curves of the different lesions were analyzed by three experienced radiologists and
classified as follows: Type 1: persistent enhancing type, Type 2: plateau type, Type 3: washout
type. The results were then compared with the pathologic findings from the breast lesion histo-
logical diagnosis, and analysis was performed using a statistical analysis software, Statistical
Product and Service Solutions (SPSS), to plot the receiver operating characteristic (ROC) curve
and then calculate the area under the curve (AUC), sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV). The results of the analysis were also com-
pared with those obtained using the time-signal intensity curve method that is currently often
used in the clinical setting. The consistency among the three radiologists was analyzed by
Kappa (k) value statistics.

Results

Of the 46 lesions analyzed in this study, 31 (67%) were malignant, which included 25 invasive
ductal carcinoma (IDC), five ductal carcinoma in situ (DCIS), and one mucinous carcinoma.
As shown in Fig 1, the plot of the calculated C2 values to image phase (kinetic modeling curve,
Fig 1B) can be determined based on the kinetic model. The findings of the three radiologists
based on the time-signal intensity curve and the kinetic curve were compared. The consistency
of the three radiologists was as shown in Table 1, the k-value was 0.857 (p<0.001) with the
method based on the time-signal intensity curve and 0.826 (p<0.001) with the method of the
kinetic model. In addition, the correlation between blood flow and phase time was determined
using linear regression, and the analysis showed that the squared correlation coefficient (%)
was 0.90 (Fig 2).

Using pathological examination of the breast biopsy as the standard, the results obtained
using the time-signal intensity curve method showed an average sensitivity of 80+2%, a speci-
ficity of 55£4%, an area under the ROC of 0.69+0.01, and a PPV of 79+2% and NPV of 57+4%.
On the other hand, when the kinetic model was used, the results showed an average sensitivity
of 82+2%, a specificity of 65+4%, an area under the ROC curve of 0.76+0.01, and a PPV of 82
+1% and NPV of 63+1% (Table 1). A comparison of the area under the ROC curve obtained by
the different radiologists using different methods is shown in Fig 3. Using the time-signal
intensity curve, for lesions categorized as of the persistent enhancing type (Type 1), the patho-
logic findings showed that the percentages of benign and malignant lesions were 57+4% and 43
+4%, respectively. For those categorized as of the plateau type (Type 2), the percentages of
benign and malignant lesions were 26+2% and 74+2%, respectively. And for lesions catego-
rized as of the washout type (Type 3), the percentages of benign and malignant lesions were 20
+2% and 80+2%, respectively. However, using the kinetic model, for samples categorized as
Type 1 lesions, the percentages of benign and malignant lesions from pathologic findings were
83+5% and 17+5%, respectively. For those categorized as Type 2 lesions, the percentages of
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Fig 1. Application of the time-signal intensity curve and the kinetic curve in breast MRI analysis. (a)
MRI of a 58-year-old female showed an invasive ductal carcinoma on the upper outer quadrant of the left
breast. The green circle indicates the region of interest (ROI) that was used for estimating the change in the
C1 value, and the red circle represents the ROI for measuring the AM. (b) The blue line is the time-signal
intensity curve, and the orange line was generated from a plot of the C2 values to form a kinetic modeling
curve.

doi:10.1371/journal.pone.0152827.g001

benign and malignant lesions were 32+6% and 68+6%, respectively. And for those categorized
as Type 3 lesions, the percentages of benign and malignant lesions were 18+2% and 82+2%,
respectively (Table 2).

Discussion

Several studies have reported that the time-signal intensity curve has a high sensitivity but a
low specificity in the diagnosis of benign and malignant breast lesions [10,13-16]. In the pres-
ent study, we also employed the time-signal intensity curve to predict the malignant status of
breast lesions, which showed an average sensitivity and specificity of 80% and 55%, respec-
tively. Our result was similar to the diagnostic rate given by previous studies [10,13-16]. When
the kinetic modeling curve was used, the average sensitivity and specificity were significantly
increased to 82% and 65%, respectively. This result indicated that the kinetic modeling curve
has a higher diagnostic accuracy as compared with the time-signal intensity curve (Table 1 and
Fig 3). In addition, Table 2 demonstrates that the time-signal intensity curve method incor-
rectly categorized 43% of Type 1 lesions as malignant on average, while the kinetic model
method only incorrectly categorized 17% of the cases. In addition, 20% of Type 3 lesions were
incorrectly categorized as benign with the time-signal intensity curve method, while 18% of the
cases were incorrectly categorized as benign with the kinetic model method. These results indi-
cated that the kinetic modeling curve method has a higher diagnostic performance for malig-
nancy in Type 1 and Type 3 lesions than the time-signal intensity curve method.

Table 1. The findings of the breast lesions from three radiologists based on the time-signal intensity curve and the kinetic curve. The sensitivity
(SN), specificity (SP), area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), negative predictive value (NPV), and

kappa (k) value are presented.
Reviewer

Time-signal intensity curve 1
Time-signal intensity curve 2
Time-signal intensity curve 3
Kinetic modeling curve 1
Kinetic modeling curve 2
Kinetic modeling curve 3

doi:10.1371/journal.pone.0152827.1001

SN(%)
81
81
77
81
81
84

SP(%) AUC PPV(%) NPV(%) p-value k-value
60 0.72 78 57 0.017 0.86
53 0.68 81 60 0.052
53 0.67 77 53 0.068
67 0.77 83 63 0.003 0.83
67 0.77 83 63 0.004
60 0.74 81 62 0.008
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Fig 2. Linear regression analysis for the correlation between blood flow and phase time.

doi:10.1371/journal.pone.0152827.9002

The kinetic model is a mathematical model widely used in quantifying medical imaging
information. When used with dynamic imaging processing, this mathematical model can be
applied to obtain dynamic (time-sequence) imaging quantitative data. Therefore, this kinetic
model provides a time sequence of image changes caused by contrast medium that makes the
diagnosis more effective. For example, cerebral blood flow could be quantified by using a
model that tracks the translation of radioactive substance between the blood and tissue [21]. A
similar model was also used on the analysis of radiolabeled material and successfully quantified
the density of dopamine transporter in human brain. The dopamine is known as an important
neurotransmitter that involves in many brain functions [22]. The kinetic model could also be
applied to DCE computed tomography (DCE-CT) and DCE-MRI [23]. Several studies had
developed different techniques to improve the application of kinetic model for diagnosis. For
example, Sheiman and Sitek applied a single-compartment kinetic model in DCE-CT to quan-
tify small-bowel perfusion and pancreatic perfusion in order to assess inflammatory bowel and
pancreatic diseases [24,25]. For an application in DCE-MRI, Martin and coworkers used a sim-
ple kinetic model with contrast-enhanced first-pass perfusion MR imaging to analyze renal
blood flow, and found that the measurements correlated well with phase-contrast imaging

ROC curve —— Time-signal
1 intensity curvel
0.9 —— Time-signal
0.8 intensity curve2
207 —— Time-signal
=06 intensity curve3
=05 Kinetic modeling
5 0.4 curvel
v 03 Kinetic modeling
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1-Specificity

Fig 3. Comparison of the area under the ROC obtained by three radiologists using two different
methods.

doi:10.1371/journal.pone.0152827.9003
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Table 2. Percentages of benign and malignant Type 1 (persistent enhancing), Type 2 (plateau) and Type 3 (washout) lesions diagnosed by three
radiologists based on the time-signal intensity curve and the kinetic curve.

Reviewer

Time-signal intensity curve 1
Time-signal intensity curve 2
Time-signal intensity curve 3
Kinetic modeling curve 1
Kinetic modeling curve 2
Kinetic modeling curve 3

doi:10.1371/journal.pone.0152827.t002

Type | Type Il Type lll
Benign Malignancy Benign Malignancy Benign Malignancy
57% 43% 25% 75% 21% 79%
60% 40% 25% 75% 17% 83%
53% 47% 29% 71% 21% 79%
80% 20% 33% 67% 17% 83%
88% 12% 37% 63% 17% 83%
80% 20% 25% 75% 20% 80%

[26]. Roberts and colleagues demonstrated that dynamic contrast-enhanced MRI has the
potential to be used for quantifying the difference in microvascular function between patients
with and without Sjogren syndrome [27].

Several studies reported mathematical methods that improve the diagnostic accuracy of
time-signal intensity curve [16, 28-31]. Shimauchi et al. developed the computer-aided method
to quantify kinetic heterogeneity of breast lesions and the best AUC value was 0.69 for a 3T
scanner [28]. In our study, all images were scanned by a 3T MR scanner. The average AUC
value was 0.76 with kinetic modeling curve method. This result indicated that the kinetic
modeling curve method was a potential tool to differentiate between malignant and benign
breast lesions from MR imaging.

When kinetic model is used with MRI, in order to accurately estimate the parameters in the
equation, the MRI signal intensity should be proportional to the concentration of the contrast
agent. Martin and colleagues studied the correlation between MRI contrast agent concentration
and MRI relative signal intensity [26]. They found that, if it is assumed that the gadolinium-
chelate relaxivity is not dependent on tissue type, the MR signal intensity increases linearly
below a contrast agent concentration of 3.5 mmol/L. In current study, the concentration of
contrast agent used was 0.1 mmol/kg, which was within the range of linear correlation. There-
fore, at the concentration we used, the kinetic model can minimize the T1 and T2* effects of
imaged tissue and the influence of the imaging sequence properties, suggesting that adjustment
was not necessary in this study because these factors did not affect the analysis within the linear
range.

Baltzer and coworkers identified that non-mass lesions were the major cause of false-posi-
tives in time-signal intensity analysis of breast MRI [15]. In this study, 20% of the samples were
non-mass lesions (k = 0.817), and the false-positive rate of these non-mass lesions was 35%
with time-signal intensity analysis. The false-positive rate increased to 63% when the kinetic
model was used, which indicated that non-mass lesions were also the main reason for the high
false-positive rate. To overcome this issue, it has been suggested that dynamic bilateral imaging
and the distribution of non-mass lesions enhancement should be taken into consideration dur-
ing the analysis, which can reduce false-positive diagnoses [8].

In the correlation analysis using linear regression, the blood flow obtained from the kinetic
model was proportional to the MRI phase time (r* = 0.90, Fig 2). This indicated that the esti-
mated blood flow was in a reliable range. However, individual differences might still exist and
may have affected the diagnostic findings. In addition, this study used a single-compartment
model based on Fick principle, while Kety and Schmidt attempted to improve the model based
on Fick principle and created a new Kety-Schmidt method [32]. This Kety-Schmidt kinetic
model has more complete assumptions and has been successfully applied to DEC-MRI [26].
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Moreover, many researchers have also used two-compartment kinetic models in MRI analysis.
For example, Liu et al. defined the blood and liver as two different compartments, and evalu-
ated the reticuloendothelial system function using MRI [33]. We are undertaking an investiga-
tion into whether moving from single-compartment to two-compartment modeling can
increase the diagnostic accuracy of breast lesions.

In conclusion, MR images provide various kinds of information for the diagnosis of breast
lesions, which include morphology, enhancement characteristics and kinetic analysis. Each of
them provides useful, irreplaceable values to the diagnosis. The aim of this study was to
improve the kinetic analysis but not to provide a replacement of diagnostic standard. Cur-
rently, morphological images still play an important role in the diagnosis of breast lesions. In
this study, we integrated a single-compartment kinetic model and DCE-MRI to generate a
kinetic modeling curve to improve the diagnostic accuracy of breast lesions. In the 46 lesions
analyzed, the kinetic modeling curve method had higher sensitivity, specificity, positive and
negative predictive values as compared with the time-signal intensity curve method. The results
suggested that the kinetic modeling curve method could be a potential tool to differentiate
benign from malignant breast lesions from MR imaging. Although this study remains limita-
tion of small sample size, the results should qualify sufficient reliability. In the future, we will
continue the data enrollment to improve the credibility of our approach. Moreover, through
analyzing the longitudinal follow-up data by using this kinetic model, it might also give us
some light about its possibility to become a predictor of disease progression.
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