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Abstract: The concept of Healthy Cities, introduced by the World Health Organization, demonstrates
the value of health for the whole urban system. As one of the most important components of urban
systems, transportation plays an important role in Healthy Cities. Many transportation evaluation
systems focus on factors such as road networks, parking spaces, transportation speed, accessibility,
convenience, and commuting time, while the vulnerability and resilience of urban transportation are
rarely evaluated. This study presents the preliminary progress in the evaluation of traffic vulnerability
and resilience during precipitation events in 39 Chinese cities. Traffic congestion index data, derived
from the Baidu Map Smart Transportation Platform, and rainfall data, derived from NASA’s global
precipitation measurement, are utilized. Traffic vulnerability index, traffic resilience index, and the
corresponding quantitative methods are proposed, and the analysis results are presented. This study is
of value in improving the understanding of urban traffic vulnerability and resilience, and in enabling
the quantitative evaluation of them in urban health assessment and the Healthy Cities program.

Keywords: Healthy Cities; urban health assessment; urban traffic; precipitation; traffic vulnerability;
traffic resilience

1. Introduction

The rapid advance of urbanization has brought new opportunities, as well as chal-
lenges, for urban residents [1–6]. In 1984, the World Health Organization (WHO) in-
troduced the concept of “Healthy Cities”, with the aim of “continuously creating and
promoting those physical and social environments and expanding those community re-
sources which enable people to mutually support each other in developing all the functions
of life and developing to their maximum potential” [7]. Following the concept of Healthy
Cities, the Chinese government issued the Healthy China 2030 Planning Outline in 2016,
which pointed out that “health is the core content of China’s sustainable development” [1,8].
In 2016, the Office of the National Patriotic Health Campaign Committee Office initiated
the Healthy Cities program to carry out the healthy city assessment [9]. The Ministry of
Housing and Urban–Rural Development of China launched an Urban Health Assessment
program in 2019. The major aim of this program is to propose an evaluation indicator
system to review the healthy status of the natural environment, built-up environment,
social environment, and human beings in representative cities [10].

Transportation is one important component of urban systems. Due to the large
population and active economic activities in cities, the transportation system is often under
pressure, resulting in unhealthy conditions, such as traffic congestion [11–15]. Therefore,
the healthy status of transportation systems in major cities in China has been examined
in the Urban Health Assessment program [10]. Urban road networks, parking spaces,
transportation speed, accessibility, convenience, and commuting time are factors that often

Int. J. Environ. Res. Public Health 2021, 18, 12342. https://doi.org/10.3390/ijerph182312342 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-4630-5147
https://doi.org/10.3390/ijerph182312342
https://doi.org/10.3390/ijerph182312342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182312342
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182312342?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 12342 2 of 13

appear in various urban traffic assessments. However, the vulnerability and resilience of
urban transportation are rarely studied. By focusing on the response of urban traffic to
adverse, or even severe, weather conditions [16–20], this study presents a useful method to
quantitively evaluate the influence of precipitation on urban traffic. It not only considers the
vulnerability of urban traffic during precipitation, but also pays attention to the recovery
of urban traffic after precipitation. The purpose of this paper is to present the details of this
study to demonstrate a feasible way to evaluate the vulnerability and resilience of urban
transportation [21–24].

The rest of this paper is organized as follows: The study area and data are introduced,
followed by the method of evaluating traffic vulnerability and resilience. The next section
focuses on the analysis results. The advantages and limitations of this study are discussed,
leading to the conclusions.

2. Study Area and Data Preprocessing
2.1. Study Area

This study selected 39 major cities in China, covering Beijing–Tianjin–Hebei urban
agglomeration, Yangtze River Delta, Pearl River Delta, and several other densely populated
urban agglomerations. They include four first-tier cities (Beijing, Shanghai, Guangzhou,
and Shenzhen), 12 new first-tier cities (Chengdu, Suzhou, Hangzhou, Chongqing, Wuhan,
Changsha, Nanjing, Zhengzhou, Dongguan, Qingdao, Ningbo, and Xi’an), and 23 second-
tier cities (Wuxi, Foshan, Hefei, Fuzhou, Yantai, Jinan, Wenzhou, Quanzhou, Guiyang,
Lanzhou, Nanning, Jinhua, Changzhou, Nantong, Jiaxing, Taiyuan, Xuzhou, Haikou,
Huizhou, Taizhou, Zhuhai, Shaoxing, and Yangzhou). These cities are located in multiple
climatic zones, from the rainy southern part of China to the less rainy northern part (Figure 1).
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2.2. Data Preprocessing

The data used in this study mainly include urban traffic data and rainfall data. The
urban traffic data are derived from the Baidu Map Smart Transportation Platform (https:
//jiaotong.baidu.com/, accessed on 9 January 2021), and the rainfall data are derived
from NASA’s global precipitation measurement (https://gpm.nasa.gov/data/directory,
accessed on 9 January 2021).

https://jiaotong.baidu.com/
https://jiaotong.baidu.com/
https://gpm.nasa.gov/data/directory
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2.2.1. Collection and Preprocessing of the Traffic Data

The Baidu Map Smart Transportation Platform is capable of calculating the average
speed of vehicles in 100 cities in China, and the traffic congestion index in near real time.
The traffic congestion index is a crucial measure of urban traffic conditions, and is obtained
by dividing the actual travel time by the unobstructed travel time. A congestion index of
1.0–1.5 indicates smooth driving, with 1.5–1.8 indicating slow driving and 1.8–2.0 indicating
congestion, while a congestion index greater than 2.0 indicates severe congestion [25,26].

This study uses the congestion index data of 39 cities in China over a two-year time
span (from January 01, 2018, to December 31, 2019), with a time resolution of one hour.
To eliminate the influence of periodic changes (working and non-working days, and rush
and non-rush hours) on traffic conditions, the study focuses on the evening rush hours of
working days, and selects congestion index data from 5 pm to 8 pm on weekdays in 2018
and 2019.

2.2.2. Collection and Preprocessing of Rainfall Data

The global precipitation measurement provides a set of global rainfall data based
on satellite observations. It has the advantages of high spatial resolution, high temporal
resolution (half an hour), and wide spatial coverage. In addition, it is also highly accu-
rate and has a strong ability to capture solid-state precipitation, heavy rainfall, and low
precipitation [27].

This study adopts global rainfall data from 1 January 2018 to 31 December 2019. The
latitude and longitude coordinates of the cities examined in this study are used to obtain
the daily precipitation data of the grid point where each city is located. The time resolution
is half an hour, with the spatial resolution being the 0.1◦ × 0.1◦ grid and the data unit being
mm/hour. Two adjacent rainfall datum with the half-hour resolution are added together in
order to enable the time resolution to be one hour. The time zone of the data is adjusted
from UTC + 0 to UTC + 8, in order to be compatible with the traffic congestion index data.

3. Proposed Methods

The evening rush of the working day refers to the increase in traffic behavior caused by
people coming home from get off work or participating in evening. If precipitation occurs
in this period, or stops shortly before this period, its impact on urban traffic will be very
significant. Thus, this research mainly focuses on this situation by proposing vulnerability
index and resilience index, and performing quantitative evaluation of the vulnerability
and resilience of urban traffic to precipitation in 39 cities in China. The traffic vulnerability
index refers to the changes in the urban traffic congestion index under different rainfall
intensities, and the traffic resilience index refers to the time window allowing urban traffic
to recover to the historical congestion index after precipitation ends.

3.1. Traffic Vulnerability Index

The traffic vulnerability index is established to evaluate the response of different cities
to different rainfall intensities, measuring urban traffic during precipitation. The basic idea
of establishing this index is described as follows.

Firstly, precipitation intensity classification. Precipitation intensity refers to the amount
of precipitation per unit time, which, in this study, is an hour and the unit of intensity is
mm/h. The precipitation intensity, obtained based on the data from 2018 to 2019, is divided
evenly by uniform interval, and the average value of urban traffic congestion index under
each precipitation category is calculated as follows:

N = (max − min) ÷ interval (1)

In this equation, max and min represent the maximum and minimum hourly precip-
itation for the time period selected by the study, respectively, while interval means the
grading interval. In this study, the interval is 0.1 mm. N is the grading number of a city.
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The next step is regression analysis. Based on the results of the above classification,
scatter plots are drawn and regression analysis is conducted to obtain the regression
coefficient, which is also the vulnerability index of the city traffic under precipitation. This
study adopts the ordinary least squares (OLS) method to estimate the regression coefficient.
The hypothesis testing is performed and p < 0.05 is considered statistically significant.

3.2. Traffic Resilience Index

Traffic resilience index is established to measure the ability of the urban traffic to
return to a normal state after precipitation. The basic idea of establishing this index is as
follows: the traffic recovery time of the city after each precipitation event is calculated, then
the average value of the traffic recovery time after all precipitation in two years (from 2018
to 2019) is obtained. The equation is as follows:

Time =

(
n

∑
i=1

(TEnd − TStart)

)
/n (2)

In this equation, Time represents the time it takes for the city’s traffic to return to its
normal state. TStart and TEnd refer to the beginning and ending moments of this process,
respectively. Further, n refers to the number of precipitation events during the evening
rush hours of the city in the two years (from 2018 to 2019).

TStart is defined as follows: TRainEnd is the ending moment of a precipitation event and
it is also considered as the traffic recovery moment. Since this study focuses on the evening
rush hours, data of the working days with precipitation during the evening rush hours and
no precipitation after the rush hours are chosen. In order to eliminate the influence lag of
precipitation on traffic, data of the working days with precipitation from 16:00 to 20:00 and
no precipitation from 20:00 to 00:00 are chosen. The moment when precipitation ends is
also the moment when the recovery process begins.

TStart = TRainEnd(TRainEnd ≤ 20 : 00) (3)

TEnd is defined as follows: under the influence of rainfall, the moment when the traffic
congestion index reverts to the historical level is considered as the end time of the recovery
process. Since the time resolution of the traffic data in the study is one hour, the traffic
congestion index data of workdays without rainfall are divided at intervals of one hour. In
order to eliminate the effect caused by data fluctuation, the historical level of the hourly
congestion index is obtained by adding the average and the standard deviation of the
congestion index together.

∆I = Inow − (µ + σ) (4)

In this equation, ∆I is the change in the congestion index, I is the actual value of the
congestion index, µ is the average of the historical congestion index and σ is the standard
deviation of the historical congestion index. When ∆I > 0, the congestion index is higher
than the historical congestion index. In this case, the urban traffic is still congested and
is still recovering from precipitation. ∆I ≤ 0 means that the congestion index is equal to
or lower than the historical congestion index. In this case, the urban traffic is no longer in
congestion and this moment is considered as the ending moment of the recovery process.

4. Research Results
4.1. Traffic Vulnerability in 39 Cities

To eliminate the influence of the periodic changes in traffic conditions, the study
uses traffic data and precipitation data of evening rush hours (from 5 pm to 8 pm) of the
working days from 1 January 2018 to 31 December 2019. Based on the traffic vulnerability
evaluation method mentioned above, the traffic vulnerability index and significance test
results of 39 first-tier and second-tier cities in China are obtained, and scatter plots and
OLS fitting line graphs are constructed (Figure 2). The subfigures are arranged according
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to the level of development of each city (first-tier, new first-tier, and second-tier cities), and
each tier is arranged from north to south, according to the latitude of the city. Based on the
results of the regression analysis, hypothesis testing is performed. p < 0.05 is considered
statistically significant, that is, the urban traffic is strongly affected by precipitation and
the traffic vulnerability is relatively high. p > 0.05 is considered statistically insignificant,
that is, the urban traffic is not affected by precipitation. The subfigures of the cities, where
p < 0.05 are marked in red, are shown in Figure 2.
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Following this, the k value of the traffic vulnerability index and p value of each city
are obtained (Table 1). The results show that, for the above 39 cities, the p value of 21 cities
is less than 0.05, and these cities pass the significance test. The p value of the other 18 cities
is greater than 0.05. The cities that passed the significance test are Beijing, Guangzhou,
Shenzhen, Qingdao, Suzhou, Chengdu, Wuhan, Hangzhou, Ningbo, Changsha, Dongguan,
Lanzhou, Yangzhou, Hefei, Changzhou, Shaoxing, Guiyang, Fuzhou, Nanning, Zhuhai,
and Haikou.

Table 1. k value of the traffic vulnerability index and p value of each city.

City Vulnerability Index k p City Vulnerability Index k p

Beijing 0.1096 0.0031 Xuzhou 0.0168 0.4035
Shanghai 0.0250 0.0665 Yangzhou 0.0174 0.0136

Guangzhou 0.0420 0.0000 Nantong 0.0104 0.2566
Shenzhen 0.0361 0.0000 Hefei 0.0363 0.0077
Qingdao 0.0826 0.0083 Changzhou 0.0186 0.0009

Zhengzhou 0.0180 0.3479 Wuxi 0.0110 0.5536
Xi’an 0.0119 0.4312 Jiaxing 0.0126 0.1619

Nanjing 0.0085 0.1489 Shaoxing 0.0213 0.0187
Suzhou 0.0170 0.0370 Jinhua 0.0106 0.2019

Chengdu 0.0514 0.0024 Taizhou 0.0043 0.2781
Wuhan 0.0840 0.0000 Wenzhou 0.0110 0.1246

Hangzhou 0.0314 0.0003 Guiyang 0.0542 0.0091
Ningbo 0.0207 0.0305 Fuzhou 0.0357 0.0145

Chongqing 0.0835 0.0524 Quanzhou 0.0388 0.1404
Changsha 0.0342 0.0039 Huizhou 0.0045 0.5502
Dongguan 0.0412 0.0000 Foshan 0.0152 0.1044

Taiyuan 0.0062 0.8545 Nanning 0.0206 0.0265
Yantai 0.0306 0.1570 Zhuhai 0.0283 0.0012
Jinan 0.0577 0.1303 Haikou 0.0262 0.0003

Lanzhou 0.0533 0.0024

Cities that pass the salience test are in bold.

The traffic vulnerability index and the results of the significance test show that, among
the first-tier cities, Beijing, Guangzhou, and Shenzhen pass the significance test, and Beijing
has a higher vulnerability index than Shanghai and Shenzhen. Among the new first-tier
cities, Qingdao, Suzhou, Chengdu, Wuhan, Hangzhou, Ningbo, Changsha, and Dongguan
pass the significant test, and the vulnerability index of Qingdao, Wuhan, and Chongqing
is relatively large. Among the second-tier cities, Lanzhou, Yangzhou, Hefei, Changzhou,
Shaoxing, Guiyang, Fuzhou, Nanning, Zhuhai, and Haikou pass the significant test, and
the vulnerability index of Lanzhou and Guiyang is relatively large.

The traffic resilience index measures the ability of the urban traffic to respond to
precipitation. This index also reflects the level of urban road network construction, as well
as the level of urban traffic management services. The above-mentioned cities, with a large
vulnerability index, mainly have the following characteristics in terms of topography and
urban traffic patterns (Table 2):
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Table 2. Characteristics of typical cities and their road network.

Name Pattern Form Network Density (km/km2)
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1. Rugged terrain: For example, Chongqing possesses a hilly landscape. Its terrain is
rugged and the connectivity of its road network is poor. There is only a single linking road
between some areas. Moreover, its population density and the density of land development
is high. Another example is Guiyang. Guiyang is located in the middle of the hilly area of
the Guizhou Mountains. This rugged city is crisscrossed by mountains and forests, causing
difficulties in the construction of an urban road network. In addition, the city form of
Guiyang is the “S” type. There are many slopes and dead-end roads in this city, and the
utilization rate of the road network is relatively low.

2. Severe natural obstacles: Take Wuhan as an example. This city is divided into
“Three towns” by the Yangtze River and the Han River. It is a multi-central-cluster-type
city. The trunk roads crossing the river are connected by three bridges over the river,
thus the traffic capacity is limited. Another instance is Lanzhou. This city’s natural
geographical conditions of “two mountains facing each other, one river flowing in the
middle, and the railway separating the city” make the city a valley-shaped linear city. This
kind of natural bottleneck also restricts the construction of a road network system. The
third case is Qingdao. As a typical bay-type city, Qingdao is located in Jiao Zhou Bay,
Shandong Peninsula. Its road system is characterized by “ring-shape + radiation”, with
poor connectivity, and many detours and slopes.

3. Planning bottlenecks caused by history and culture: For instance, in Beijing, due to
historical and cultural factors, there are some closed yards, such as the Forbidden City and
the Summer Palace. As they occupy large areas, vehicles are not allowed to pass through
them, limiting the road network connectivity. In addition, the dense clusters of quadrangles
and winding hutongs within the 2nd Ring Road also bring difficulties to road construction.
The city features single-centered dense blocks that have formed over a long time. Thus, its
traffic mainly depends on the ring road, resulting in poor density and connectivity of the
road network.

The natural bottleneck of topography brings difficulties to urban planning and road
network construction, resulting in low density and poor connectivity of urban road net-
works. According to the Road Network Density Monitoring Report of Major Cities in
China, issued by the Ministry of Housing and Construction in 2020, the average road
network density of major first-tier and second-tier cities in China is 6.1 km/km2 [28]. With
the exception of Chongqing and Guiyang, the road densities of the above-mentioned cities
are all lower than the average levels of their counterparts. Their road networks lack proper
redundancy and are poor in substitutability. In addition, there are many slopes, detours,
and dead-end roads in Chongqing, Guiyang, and Qingdao, causing poor connectivity of
the road network. Therefore, the traffic in these cities is more vulnerable to precipitation.

4.2. Traffic Resilience in 39 Cities

This study uses traffic and precipitation data of evening rush hours of workdays from
1 January 2018 to 31 December 2019 to eliminate the impact of periodic changes in traffic
conditions.

The data of 39 first-tier and second-tier cities in China are analyzed, according to
the above-mentioned evaluation method (Figure 3). The recovery time of each city after
precipitation is calculated (Table 3).
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Table 3. Recovery time of each city after precipitation.

City Name Recovery Time
(Hour) City Name Recovery Time

(Hour)

Shanghai 1.250 Hefei 0.675

Beijing 0.450 Huizhou 0.643
Shenzhen 0.412 Quanzhou 0.611

Guangzhou 0.200 Changzhou 0.529
Changsha 0.804 Guiyang 0.500

Zhengzhou 0.633 Jinhua 0.486
Nanjing 0.511 Yantai 0.451

Dongguan 0.462 Fuzhou 0.440
Suzhou 0.444 Taiyuan 0.400

Chengdu 0.444 Wuxi 0.378
Wuhan 0.441 Yangzhou 0.367

Qingdao 0.359 Taizhou 0.357
Ningbo 0.333 Zhuhai 0.353

Chongqing 0.250 Shaoxing 0.333
Xi’an 0.233 Haikou 0.326

Hangzhou 0.083 Wenzhou 0.281
Lanzhou 0.938 Foshan 0.214
Nanning 0.848 Jiaxing 0.120

Jinan 0.731 Nantong 0.034
Xuzhou 0.682

The traffic resilience evaluation index measures the capacity of recovery and the
resilience of urban traffic after precipitation. The drainage of water on the roads and
the alleviation of traffic congestion after precipitation reflect the development level and
management service level of the city. Based on the analysis of this index, two main factors
that affect the resilience of urban traffic are concluded as follows:

(1) The size of the city: Megacities, such as Shanghai, or province capitals, such
as Nanning, Jinan, Changsha, Zhengzhou, Hefei, and Lanzhou, usually cover an urban
area of more than 3000 square kilometers. These large cities are weak in alleviating
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traffic congestion and in traffic recovery after precipitation. In contrast, cities such as
Nantong, Yangzhou, Shaoxing, Wuxi, Jiaxing, and Haikou cover an urban area of less than
3000 square kilometers. They are relatively strong in alleviating traffic congestion and in
traffic recovery [29].

(2) The level of economic development: Cities such as Nantong, Yangzhou, Shaoxing,
Wenzhou, Wuxi, Jiaxing, and Haikou are located in the southeast coastal areas. These cities
have relatively high levels of economic development, and their infrastructure is relatively
complete. Although Shanghai is also highly developed in its economy, it is poor in traffic
recovery after precipitation, due to its large size and population [30,31].

Cities are complex ecosystems combining nature, society, and economy. Under the
impact of precipitation, it is usually small-scale developed cities that are better in traffic
resilience. The lower population density of small-scale cities alleviates the pressure on
easing traffic congestion. Cities that are highly economically developed are also better in
traffic resilience due to their relatively complete infrastructure, dense road network, and
good drainage capacity for water on the road. These factors contribute to a faster recovery
of traffic to pre-precipitation levels.

4.3. Normalization Evaluation

Normalization is carried out based on the traffic vulnerability index and the traffic
recovery time. The vulnerability index and the recovery index are normalized to be
in the range of 0–1. Let the horizontal axis be the normalized vulnerability index and
the vertical axis be the normalized recovery time, and draw the NVI–NRT (normalized
vulnerability index–normalized time recovery) diagram, which shows the comprehensive
traffic evaluation results of the 39 cities mentioned above (Figure 4). The diagram describes
the traffic resilience of cities during and after precipitation.
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In the NVI–NRT diagram, the greater the abscissa, the greater the degree of vulnera-
bility; the greater the ordinate, the longer the recovery time. The dotted line in the diagram
represents the average level of the vulnerability index and the resilience index of the cities
mentioned above. It is shown that cities with more complex topographical features, such
as Beijing, Qingdao, Chongqing, Wuhan, Lanzhou, and Guiyang, have a high vulnerability
index. Cities that are larger in size, or less economically developed, such as Shanghai,
Nanning, Lanzhou, Changsha, Xuzhou, Zhengzhou, Hefei, and Jinan, have a long recovery
time. The cities in the lower left corner of the diagram, such as Nantong, Jiaxing, Hangzhou,
Foshan, Xi’an, Wenzhou, Ningbo, Haikou, Shaoxing, Wuxi, Yangzhou, and Taizhou, have a
low vulnerability index and a short recovery time. These cities are better in traffic resilience.

5. Discussion

In 2019, the Central Committee of the Communist Party of China and the State Council
issued the Constructing Transportation Power Outline, stating that “we should construct a
modern high-quality integrated three-dimensional transportation network, enhancing the
flexibility of the system. We should build a scheme preventing and controlling the damages
caused by natural disasters to the transportation system, increasing its resistance to natural
disasters” [22–24]. This study meets this demand by introducing a traffic vulnerability
index, a traffic resilience index, and a quantitative method to evaluate the resilience and
vulnerability of urban traffic during the precipitation events in 39 representative cities,
since 2019, for the Urban Health Assessment program.

On the other hand, although the proposed indicators are useful in reflecting the
vulnerability and resilience of traffic systems, they are far from a comprehensive evaluation.
Enrichment of the indicators [32–36], proposing new quantitative methods, and performing
pilot studies in other cities are highly expected.

6. Conclusions

In this study, a traffic vulnerability index and a traffic resilience index are proposed
and utilized to assess the vulnerability and resilience of traffic affected by precipitation in
39 major cities. The results show that Beijing, Qingdao, Wuhan, Chongqing, Lanzhou, and
Guiyang are very vulnerable to precipitation events, due to their relatively rugged terrain
and obvious topographical obstacles, such as a large rivers or high mountains. On the
other hand, Nantong, Hangzhou, Jiaxing, Foshan, Yangzhou, Shaoxing, Wuxi, and Haikou
exhibit good resilience during precipitation events. The major reasons for this are that the
area of these cities is not large, and the transportation infrastructure is relatively complete.

The indicators and the corresponding quantitative methods are valuable for others to
refer when evaluating the vulnerability and resilience of transportation systems. Enrich-
ment of the indicators for vulnerability and resilience, proposing new quantitative method,
and performing pilot studies in other cities are expected.
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