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Abstract Aside from facilitating solubilisation and absorption of dietary lipids and lipid-soluble
vitamins, amphipathic bile acids (BAs) also act as bioactive signalling molecules. A plethora
of conjugated or unconjugated primary and bacterially modified secondary BA moieties have
been identified, with significant divergence between species. These molecules are excreted into
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the external environment of the intestinal lumen, yet nuclear and membrane receptors that
are sensitive to BAs are expressed internally in the liver, intestinal and neural tissues, amongst
others. The diversity of BAs and receptors underpins the multitude of distinct bioactive functions
attributed to BAs, but also hampers elucidation of the physiological mechanisms underpinning
these actions. In this Topical Review, we have considered the potential of BAs as cross-barrier
signalling molecules that contribute to interoceptive pathways informing the central nervous
system of environmental changes in the gut lumen. Activation of BAs on FGF19-secreting
enterocytes, enteroendocrine cells coupled to sensory nerves or intestinal immune cells would
facilitate indirect signalling, whereas direct activation of BA receptors in the brain is likely to
occur primarily under pathophysiological conditions when concentrations of BAs are elevated.
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Corresponding author D. O’Malley: Department of Physiology, School of Medicine, College of Medicine and Health,
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Abstract figure legend Illustration of the microbial modification of hepatic primary bile acids into secondary bile acids.
In addition to facilitating lipid digestion and absorption, bile acids act as bioactive signalling molecules by binding to
bile acid receptors expressed on enterocytes, neural afferent-coupled enteroendocrine cells and immune cells.

Context

The continuous flowof information between the brain and
the gut is significant in the context of maintaining physio-
logical homeostasis (Mayer, 2011). Neural, immune, end-
ocrine and metabolic pathways have all been implicated
in this communication axis. Moreover, accumulating
evidence, providing microbes with a role in modulating
brain function and host behaviour (Stilling et al., 2015),
has resulted in renaming of this bidirectional circuit as
the microbiota–gut–brain axis (Bienenstock et al., 2015;
Chakrabarti et al., 2022). Microbes interact with the
host immune system and are also capable of stimulating
sensory enteroendocrine cells (El Aidy et al., 2015;
O’Malley, 2016). However, they also have an innate
capacity to produce neuromodulatory factors, including
central neurotransmitters and short-chain fatty acids
(Fung et al., 2021; Lyte, 2014). Increasing attention is also
being focused on the dynamic, symbiotic relationship that
exists between bacteria with bile salt hydrolase (BSH)
activity and luminal bile acids (BAs).
Most physiologists have familiarity with the digestive

function of BAs, where their amphipathic structure
enables solubilisation and absorption of dietary lipids and
fat-soluble vitamins in the proximal intestine. However,
given that numerous cell types, both in the gut and in
other peripheral and central organs, express BA receptors
(Deutschmann et al., 2018; Gadaleta, Oldenburg et al.,
2011; Jonas et al., 2019; Ward et al., 2013), BAs are also
classified as bioactive signalling molecules. The primary
human BAs, cholic acid (CA) and chenodeoxycholic
acid (CDCA), are synthesised and conjugated by liver
hepatocytes. Conjugation makes BAs more soluble in the
aqueous environment of the intestinal lumen and mini-
mises potentially damaging interactions between BAs and

apical facing plasma membranes. The majority of BAs
are transported from the distal ileum back to the liver
via the portal vein as part of the entero-hepatic cycle.
However, a small proportion escape reuptake andpass into
the colon, the gut region where BSH-comprising bacteria
are most abundant. Interactions between BSH-bacteria
and primary BAs result in deconjugation reactions,
which in turn facilitate further microbially mediated
transformations. BSH activity is a ubiquitous trait in
gut-residing bacteria, which may have evolved through
host-driven selection (Jones et al., 2008). Dynamic inter-
actions between microbes and BAs result in a great
diversity of microbially modified secondary BA species
(Guzior & Quinn, 2021), including deoxycholic acid
(DCA) and lithocholic acid (LCA), in a variety of
conjugated and unconjugated forms (Fig. 1). There
are many receptors which bind BAs, with variable
binding affinities and response potencies, resulting in
a multitude of distinct bioactive functions. However,
we will focus on the two BA receptors that exclusively
bind BAs, nuclear farnesoid X receptors (FXR) and
membrane-expressed G protein-coupled BA receptor
1 (GPBAR-1), also named Takeda G-protein-coupled
receptor 5 (TGR5). In the context of this rapidly
evolving research field, we have examined BAs as
potential signalling molecules participating in inter-
oceptive signalling from the intestines to the central
nervous system (CNS).

Bile acid synthesis and secretion

BAs are a class of metabolites that interact with micro-
biota and have significant importance both in gut and
whole-body homeostasis (Chavez-Talavera et al., 2017).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Location-specific changes in concentrations and diversity
of BAs are influenced by diet, host metabolites and
microbial interactions (Chiang & Ferrell, 2020). Derived
from cholesterol, BAs are the major component of
hepatic bile and act as lipid emulsifiers in the small
intestine. Two inter-regulated pathways, the classical
pathway in the endoplasmic reticulum, regulated by cyto-
chrome CYP7A1, and the alternative pathway in the
mitochondria, regulated through cytochromes CYP27A1
and CYP8B1, produce CA and CDCA, together and
separately, respectively. Regulation of all three enzymes is
mediated through microbial actions on the liver (Sayin
et al., 2013) and the flux through each pathway can be
altered by cholesterol cell localisation and overload (Ren
et al., 2004) and by endoplasmic reticulum stress (Henkel
et al., 2017). Therefore, all cells and tissues carrying
mitochondria have the potential to produce CDCA.

BAs classically function at a critical micelle
concentration to spread or emulsify fats for digestion and
for cellular uptake from the gut lumen. The critical micelle
concentration is different for individual BAmoieties. This
is important when considering microbial modifications
of BAs and in the context of the sometimes-convergent
nature of BA representation called signatures, associated
with different disease states. To reduce their pKa and
optimise the critical micelle concentration, BAs are
conjugated to an amino acid, usually taurine or glycine,
which represent approximately 25% and 75%, respectively,
of conjugates in humans. Variations in the ratios of glyco-
and tauro-conjugated BAs are influenced by host enzymes
and also by diet. Glycine conjugation is favoured in adult
humans, pigs and cows, where vegan or herbivorous diets
are more prevalent (Vessey, 1978), whereas in animals
with an omnivorous or carnivorous diet, BAs are primarily

conjugated to taurine. In new-borns, taurine-conjugated
BAs predominate and indeed, liver taurine levels are
higher in infants. Interestingly, in the first week of life CA
is the main BA with representation of CA:CDCA as being
2.5:1; this normalises in the first month of life to 1.2:1
(Murphy & Signer, 1974). Conjugated BAs in areas of
low pH are toxic to some bacteria and may influence gut
residency and colonisation resistance (Ducarmon et al.,
2019). Other modifications, such as glucuronidation or
sulphonation, target BAs for excretion (Takikawa et al.,
1985), although all of these BA modifications can be
reversed by gut bacteria.
Functionally, BAs act as signallingmolecules by binding

to and activating BA receptors, of which there are many.
However, only two bind BAs exclusively. Activation of
nuclear FXR is key to regulating de novo BA synthesis
(Laffitte et al., 2000). Indeed, mice lacking FXR exhibit
BA dyshomeostasis (Degirolamo et al., 2015), in addition
to defects in lipid metabolism (Hanniman et al., 2005),
changes in centrally regulated behaviours (Huang et al.,
2015) and immune response (Gadaleta, van Erpecum
et al., 2011). Membrane-expressed GPBAR-1 or TGR5 is
a G-protein-coupled BA receptor, which induces cyclic
adenosine monophosphate (cAMP) synthesis leading to
activation of the protein kinase-A pathway and gene
transcription (Kawamata et al., 2003). LCA is the most
potent natural agonist of TGR5 (Kawamata et al., 2003),
and has been shown to influence glucose metabolism,
neuronal function, immune system control and liver
regeneration (Guo et al., 2016).
There is, however, significant variability in receptor

binding affinity and response potency, depending on
BA species and conjugation state, resulting in a plethora
of biological outcomes. It is important to note that

Figure 1. Species divergence in bile
acid profiles
The figure illustrates the critical role that
luminal bacteria play in generating a diverse
array of bile acids. It also highlights species
differences between mice and humans in
the range and conjugation status of bile
acids.
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significant species diversity exists between rodents
and humans. In mice, the primary BAs are CA and
α- and β-muricholic acid (MCA), which is derived
from CDCA through the actions of 6β-hydroxylase.
Ursodeoxycholic acid (UDCA), a primary BA in mice
but a ‘tertiary’ bile acid in humans, is a weak TGR5
agonist (Carino et al., 2019) and neutral toward FXR.
6β-Hydroxylation alters the physicochemical properties
of BAs, such that these molecules are more hydrophilic
but less potent detergents. The signalling properties
of murine BAs is also significantly altered as CDCA,
the most potent endogenous FXR agonist, is converted
into MCA, which is actually an FXR antagonist (Guo
& Chiang, 2020). Additionally, murine BAs are almost
exclusively conjugated to taurine (Dawson & Karpen,
2015) and differences in rodent microbial profiles results
in different secondary bile acids (Fig. 1). These factors
make it difficult to translate observations from rodent
studies to human conditions. Indeed, FXR agonists,
which exhibited promise in experimental models of
chronic liver disease (Ali et al., 2015), have not been as
successful in humans. For example, the efficacy of FXR
agonists for the treatment of non-alcoholic steatohepatitis
was limited by dose-related side effects (Fiorucci
et al., 2020).

Interactions between bile acids and intestinal
microbes

The human body is host to its own unique, co-evolved
microbial ecosystems where microbes (bacteria, viruses
and fungi) reside. Bacteria have evolved to occupy
specific spatial and temporal intestinal niches. They can
form complex, sometimes symbiotic interactions with the
host, as well as syntrophic interactions with other micro-
bes. These interactions result in microbially produced
factors and metabolites that may act as signalling
molecules. The functional diversity of the intestinal tract
confers on it the capacity to both impact and indicate
health and disease status (Long et al., 2017). Modern
meta-omics approaches have made characterisation and
connection possible. Meta-genomics identify micro-
bes and their genetic potential, meta-transcriptomics
examine potential functionalities, meta-proteomics
identify expressed functionality and meta-metabolomics
asses the metabolites and actual functional outcomes. The
major phyla (>90%) represented in the mature gut are
Firmicutes and Bacteroidetes (Hugon et al., 2015). Diet,
immunity and genetics add further to the complexity
of microbial intestinal colonisation, enrichment and its
associated metabolism (Scepanovic et al., 2019). Indeed,
debate continues regarding the features of a healthy
microbiota and its associated healthy metabolic capacity
(Moya & Ferrer, 2016).

In the absence of a gut microbial community, BA
moieties would have remained a conservative set of
molecules. Bacterial enzymatic modifications in the gut
lumen are responsible for the huge diversity of BAs
detected regionally in the liver, the gut, the systemic
circulation (Staley et al., 2017) and even the brain (Zheng
et al., 2016), breast milk (Forsyth et al., 1983) and
ovarian follicles (Yang et al., 2021). Often, secondary bile
acids are more potent agonists for BA receptors (Ridlon
et al., 2016). The gatekeepers, microbial BSHs, are a
ubiquitous feature of almost all phyla represented in the
gut environment (Jones et al., 2008). BSHs belong to the
N-terminal nucleophile (Ntn) hydrolase superfamily of
proteins. Discovered in 1995, these enzymes hydrolyse
the amide bond conjugated to the BA steroid nucleus
and differ in their substrate specificity (Brannigan et al.,
1995). Individual species of bacteria can carry none, one
or indeed multiple copies of BSHs (Fang et al., 2009; Prete
et al., 2020), which may or not be active. These enzymes
selectively remove the amine from liver-conjugated BAs,
rendering them susceptible to further modification by
microbes (Joyce et al., 2014; Song et al., 2019).
BSH activity may confer a protective advantage for

bacterial species survival and colonisation, so that BSH
activity is among the selection criteria for probiotics
(Jones et al., 2008; Vizoso Pinto et al., 2006). Additionally,
in liberating amino acids, glycine and taurine, bacteria
may be able to use these amino acids as an energy
source. Therefore, another role for conjugated BAs
could be to carry these amino acids to the intestines
for further use, or alternatively, to act as a sink for
nitrogen elimination in the faeces. BAs that escape
ileal uptake and dihydroxylation can undergo microbial
re-amidation, oxidation esterification, deglucuronidation
and desulphatation (Quinn et al., 2020; Ridlon &
Hylemon, 2012; Ridlon et al., 2006). BAs that have under-
gone oxidation, epimerization and dehydroxylation are
usually recycled to the liver, repaired and re-secreted into
bile, whereas themajority of BAs excreted in the faeces are
products of 7α-dehydroxylation (Hirano et al., 1981).

Direct bile acid signalling in the central nervous
system

Only a small proportion of BAs escape the enterohepatic
circuit to gain entry to the systemic circulation allowing
them to function as steroid hormones. However, with the
exception of UDCA and tauro-UDCA, which can cross
the blood–brain barrier at physiological concentrations,
most BAs are restricted to the peripheral circulation
(Parry et al., 2010). Nonetheless, BA receptors including
TGR5 (Keitel et al., 2010) and FXR (Huang et al.,
2016) have been detected in neurons, astrocytes and
microglia in the brain. Indeed, endogenous neurosteroids

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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also bind to TGR5, resulting in increases intracellular
cAMP and calcium (Keitel et al., 2010). Neurosteroids
have been implicated in the pathological consequences
of hepatic encephalopathy in the CNS. In a mouse
model of hepatic encephalopathy, activation of TGR5
is protective against neurological decline evoked, by
suppressing neuroinflammation (McMillin, Frampton,
Tobin et al., 2015). The brain also represents a potential
site of BA synthesis. Indeed, twenty BAs and oxysterols
were detected in rat brain regions (Zheng et al., 2016).
Altered CYP8B1 and CYP7A1 expression were also
detected in human brain tissue (Cali et al., 1991;
Ogundare et al., 2010). Additionally, when serum BAs
are at supra-physiological concentrations, as in the case
in cholestasis, a leaky blood–brain barrier facilitates
passive movement of BA into the CNS. In an animal
model of cholestasis, specific BAs were taken up into
hypothalamic neurons, which express BA transporters
(McMillin, Frampton, Quinn et al., 2015), resulting
in suppression of corticotropin-releasing factor (CRF)
synthesis and secretion (Quinn et al., 2014). Others
have reported that BAs have an indirect inhibitory
effect on the hypothalamic–pituitary–adrenal (HPA)
stress axis, either through their actions on glucocorticoid
receptors (McMillin, Frampton, Quinn et al., 2015) or by
suppression of hepatic glucocorticoid clearance (McNeilly
et al., 2010).

CRF is secreted as part of an adaptive response to
a perceived environmental threat and thereby activates
HPA axis activity. Chronic activation of the HPA axis is
associated with altered bowel morphology, function and
visceral pain sensitivity (O’Malley et al., 2010; Parker et al.,
2019) and is frequently co-morbid in individuals with the
functional bowel disorder, irritable bowel syndrome (IBS)
(Spiller, 2004). Stress and the subsequent activation of
the HPA axis also impacts on the luminal environment
of the gut, as noted by direct changes in luminal BA
profiles (Silvennoinen et al., 2015) and indirect effects
through modification of the microbiome (Madison &
Kiecolt-Glaser, 2019). Although more research is needed
to elucidate the precise consequences of BA-induced
suppression of the HPA axis activity on gut luminal
contents, an impaired stress response is associated with
an inadequate host defence against pathogens and an
imbalance in intestinal microbiota would, in turn, modify
the BA pool. Thus, under certain pathophysiological
conditions, BAs may influence central regulation of gut
function (Ni Dhonnabhain et al., 2021).

Sensitivity of intestinal sensory nerves to bile acids

Intrinsic to a bidirectional axis are signalling conduits
that inform the CNS about the luminal environment of
the intestine. Direct and indirect neural, immune and

endocrine pathways facilitate this function (Mayer, 2011;
Öhman et al., 2015). The versatility of BAs as signalling
molecules is underpinned by widespread expression of
both nuclear and membrane receptors throughout the
organism, in addition to direct and indirect modes of
signalling. BA profiles vary with diet, transit through
the intestine and changes in the microbiome. Although
not comparable to any human condition, germ-free
mice, have proved extremely useful in investigating the
capacity of luminal microbial factors to modify host
physiology. Germ-free mice exhibit elevated levels of
BAs and increased activation of membrane-expressed
TGR5 receptors (Selwyn et al., 2015). In the absence
of luminal microbes, intrinsic primary afferent neurons,
proposed to be a neural starting point for the relay
of information regarding the gut lumen to the brain,
are less excitable (McVey Neufeld et al., 2015). TGR5
receptors have been detected on intrinsic primary afferent
neurons (Alemi et al., 2013), indicating a possible neurally
regulated signalling pathway. Moreover, activation of
TGR5 receptors has been implicated in gut-to-brain
satiety-related signalling via the vagus nerve (Wu et al.,
2020). The vagus nerve appears to have a central role
in mediating microbiome–CNS communication, as in
mouse studies vagotomy prevented behavioural changes
brought about by modifying the gut microbiome (Bercik
et al., 2011; Bravo et al., 2011). Moreover, we and others
have recorded changes in the excitability of rodent vagal
afferents in the jejunum (Perez-Burgos et al., 2013, 2015)
and colon (Buckley &O’Malley, 2018; Buckley et al., 2019,
2020) following mucosal exposure to specific bacterial
products. As vagal afferent sensory endings are sensitive
to oleanolic acid, a TGR5-specific agonist (Wu et al.,
2020), they are appropriately equipped to facilitate neural
transmission of information about BAs in the luminal
environment, but further research is needed in this area.

Endocrine-mediated gut–brain signalling evoked by
bile acids

Embedded within the intestinal epithelium are
enteroendocrine cells, specialised chemosensors with
luminal and basolateral sides. When activated, these
polarised sensory cells release endocrine factors baso-
laterally (Raybould, 2010) and represent an indirect mode
of interoceptive signalling. Expressing a multitude of
receptors, luminal contents including nutrients, micro-
bial products and BAs stimulate these sensory cells,
resulting in release of endocrine or neuromodulatory
molecules. BAs stimulate cholecystokinin-mediated
gallbladder contraction, induction of lipase activity
and pancreatic enzyme and bicarbonate release.
In the colon, but not the small intestine, TGR5 is
expressed on serotonin-secreting enterochromaffin cells

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(Lund et al., 2018), which release serotonin when
stimulated by bile salts. Interestingly, neoplastic
enterochromaffin cells exhibit enhanced sensitivity to
bile salt ligands (Kidd et al., 2008). Although serotonin
cannot cross the blood–brain barrier, enterochromaffin
cells are coupled to sensory nerves (Bellono et al., 2017),
revealing a clear neural pathway to facilitate signalling
between the gut lumen and the CNS.
Glucagon-like peptide-1 (GLP-1) and peptide YY

(PYY)-secreting L-cells are another subset of enteric
biosensors. Electrically excitable L-cells express an
abundance of receptors including receptors for micro-
bially produced factors such as short-chain fatty acids
(Tolhurst et al., 2012), GABA (Gameiro et al., 2005),
serotonin (Lund et al., 2018), as well as FXR and TGR5
both in rodents (Christiansen et al., 2019; Katsuma et al.,
2005) and in humans (Calderon et al., 2020; Trabelsi
et al., 2015). In isolated human enterocytes, almost
three-quarters of GLP-1-expressing enteroendocrine cells
were found to express TGR5, whereas only 16% of GLP-1
negative cells expressed the BA receptor, indicating that
GLP-1-secreting L-cells are the predominant cell type
activated by TGR5-stimulating BAs (Calderon et al.,
2020). Stimulation of L-cells by potent TGR5 agonists,
particularly LCA, increased intracellular cAMP and
calcium resulting in secretion of GLP-1 (Parker et al.,
2012). Moreover, elevated circulating concentrations of
GLP-1 following inhibition of ileal BA transporters was
explained by elevated luminal levels of BAs interacting
with colonic L-cells (Rudling et al., 2015). It is noteworthy
that TGR5 is expressed on the basolateral membrane
of L-cells (Brighton et al., 2015; Calderon et al., 2020;
Christiansen et al., 2019), indicating that BAs must
first traverse the epithelial barrier to stimulate GLP-1
release from L-cells. GLP-1 receptors are expressed in
several regions of the central nervous system (Baggio
& Drucker, 2014) and this hormone may be able to
cross the blood–brain barrier by simple diffusion (Kastin
et al., 2002). However, the enzyme dipeptidyl peptidase-4
rapidly degrades circulating GLP-1, and therefore high
concentrations of this hormone are primarily detected in
the intestinal lamina propria. An alternative signalling
pathway would be through neural signals generated
in vagal afferents, which express GLP-1 receptors
(Nakagawa et al., 2004; Ronveaux et al., 2014). Similar
to the coupling of enterochromaffin cells with peri-
pheral afferents (Bellono et al., 2017), L-cells also form a
neuroepithelial circuit, directly synapsing with sensory
afferents (Bohorquez et al., 2015), which signal to the
CNS (Buckley et al., 2020). In this way, L-cells could act
as sensory transducers to facilitate indirect transmission
of cross-barrier sensory signals from luminal BAs to the
CNS.
In contrast to the stimulatory action of conjugated

BAs on the TGR5–GLP-1 signalling pathway, primary

BAs, which have a higher affinity for nuclear FXR,
cause the release of FGF19, which decreases expression
of GLP-1 (Calderon et al., 2020). Furthermore, crosstalk
between these receptors contributes to the regulation of
glucose homeostasis (Kim & Fang, 2018), and functional
antagonism has also been reported between these two BA
receptors in the context of autophagy relating to fed and
fasting states (Carino et al., 2021). These studies exemplify
the complexity of BA signalling resulting in diverse
biological outcomes. Activation of FXR in the terminal
ileum induces secretion of FGF19, which is transported
via the portal vein to the liver where is stimulates hepatic
fibroblast growth factor receptor (FGR) 4. FGR4 regulates
de novo synthesis and mobilisation of hepatic BAs (De
Magalhaes Filho et al., 2017). However, FGF19 may also
cross the blood brain barrier (Hsuchou et al., 2013)
and bind to FGRs in select brain regions including the
hypothalamus, where it may modulate feeding behaviour
(Mertens et al., 2017), but could also impact upon gut
function through activation of the HPA axis. This indirect
signalling cascade, involving enteroendocrine cells and
neural afferents, elucidates a potential pathway by which
intestinal BA receptors could modify central neuro-
circuitry (Fig. 2).

Bile acids stimulate immune signalling molecules

BAs exhibit antimicrobial properties as evidenced in
the small intestine, where high bile concentrations pre-
vent small intestinal bacterial overgrowth (Dawson &
Karpen, 2015). Mechanistically, this may be mediated
through direct cytotoxicity (Staley et al., 2017), or by
stimulating innate immune mechanisms (D’Aldebert
et al., 2009). One such mechanism employed to protect
the intestinal epithelium from cytotoxic BAs is the
stimulation of BA diarrhoea by high colonic levels of BAs
(Hegyi et al., 2018). Moreover, monocytes, macrophages,
dendritic and natural killer cells all express TGR5 and
FXR receptors (Cipriani et al., 2011; Maruyama et al.,
2002; Vavassori et al., 2009). Generally, it appears that
BA moieties and their conjugates are important for
fine-tuning the immune response to the diversity of anti-
gens to which the gut is exposed (Sun et al., 2021), with
a bias in favour of gut tolerance (Fiorucci et al., 2018).
Indeed, TGR5-induced activation of monocytes and
macrophages inhibits phagocytic activity and secretion
of pro-inflammatory cytokines (Haselow et al., 2013;
Perino et al., 2014; Pols et al., 2011). Cytokine and chemo-
kine release from monocytes and dendritic cells is also
suppressed following FXR activation, and overall it is
protective against the effects of intestinal inflammation
(Gadaleta, van Erpecum et al., 2011). Changes in BA
pools impact on intestinal immune function (Fiorucci
et al., 2021), both directly through their variable affinity

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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for different BA receptors on host immune cells and
indirectly by modifying luminal microbial profiles. Pre-
viously largely ignored, formation of BA minor species or
intermediates (Doden & Ridlon, 2021), as a consequence
of mature secondary BA formation (DCA from CA, LCA
and UDCA from CDCA), is important, as many are
now being assigned roles as mediators of both innate
and adaptive immunity (Campbell et al., 2020; Meng
et al., 2018; Song et al., 2019). Given the established
interactions between luminal factors and immune
cells residing in the gut, the circulation and the CNS
(Fung, 2020), BAs could also employ immune-mediated
gut-to-brain signalling pathways (Buckley et al., 2014;
O’Malley, 2016) in interoceptive communication with the
CNS (Fig. 2).

Bile acid-mediated signalling under
pathophysiological conditions

Diversity and richness of the gut microbiome is an
indicator of good gut health (HumanMicrobiome Project
Consortium, 2012), and this in turn appears to maintain a
healthy diversity of BAs across the spectrum. However, in
disease states, where gut microbial dysbiosis occurs, the
expected consequence is alterations to the size and the
diversity of the BA pool (Contijoch et al., 2019; Joyce et al.,
2014). Elevated activity of BSH has been associated with
inflammation (Parasar et al., 2019) and BSHs are central
to the drive towards infection (Mullish et al., 2019), which
could, in turn, influence immune-mediated signalling
to the CNS. A role for microbes and BA signatures
in intestinal and microbial health is clearly defined in

Figure 2. Bile acids as bioactive molecules in the gut–brain signalling axis
The illustration depicts interactions between colonic microbes with bile salt hydrolase activity and luminal bile acids
(BAs). These BAs may subsequently bind to BA receptors, which are expressed on enteroendocrine, immune and
neural cells. When circulating BA levels are elevated (under pathophysiological conditions), BAs may cross the
blood–brain barrier and bind to TGR5 and FXR, which are expressed on neural cells, astrocytes and microglia. The
figure is adapted from a ‘Gut-brain axis’ template, by BioRender.com (2021). Retrieved from https://app.biorender.
com/biorender-templates
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the incidence of recurrent Clostridia difficile infections,
where microbial diversity is reduced through recurrent
antibiotic use. This resulted in altered BA signatures
characterised by loss of secondary BAswith a concomitant
gain in primary BAs (Brown et al., 2018). Inflammatory
bowel diseases (Crohn’s disease and ulcerative colitis)
are also linked to alterations in BA signatures. Faecal
microbiota from individuals with inflammatory bowel
disease is less diverse and more unstable (Pascal et al.,
2017), and associations to inflamed and non-inflamed
regions point to specificmicrobial drivers of inflammation
and epigenetic regulation (Ryan et al., 2020). Although
signatures differed, a common emerging theme in these
patients was increased CA and a selective decrease in
circulating secondary BAs (Duboc et al., 2013; Sinha et al.,
2020; Weng et al., 2019).
It is generally accepted that manifestation of symptoms

characteristic of the functional bowel disorder, IBS, is due
to dysfunctional gut–brain communication (Enck et al.,
2016). The gut microbiome is altered in IBS patients
(Rajilic-Stojanovic et al., 2011). As deconjugated bile acids
can drivemicrobial phylum-level shifts (Islam et al., 2011),
changes in bacterial profiles mediated by bile acids may
be a contributory factor in IBS. Indeed, chronic watery
diarrhoea is a symptom of luminal accumulation of bile
acids due to malabsorption (Conley et al., 1976; Coyne
et al., 1976), and a subset (∼25%) of individuals with
IBS-D exhibit elevated faecal BAs resulting in accelerated
colonic transit, which is linkedwith diarrhoea and visceral
pain sensitivity (Slattery et al., 2015). Bile acids may also
influence motility in this subtype (Peleman et al., 2017).
Interestingly, treatment with colestipol, which binds BAs
and prevents ileal reabsorption, improved IBS symptoms
(Bajor et al., 2015). The therapeutic potential of BAs in
functional bowel disorders is currently being explored
(Rao et al., 2010).
Treatment with BAs may also have benefits in

age-related cognitive decline. In mouse models of
Alzheimer’s disease, a neurodegenerative condition
characterised by progressive cognitive impairment,
dietary supplementation with tauro-UDCA positively
altered amyloid plaque deposition and neuronal
injury (Nunes et al., 2012) and in Parkinson’s disease,
defective mitochondrial function was in part restored
on administration of UDCA (Mortiboys et al., 2013).
Indeed, BA profiles change with age. In mouse studies,
BA concentrations increased, particularly conjugated
BAs and secondary BAs (Fu et al., 2012), whereas
in humans the levels of BA-committed precursor
7α-hydroxy-4-cholesten-3-one, was inversely correlated
with ageing (Bertolotti et al., 2007). Interestingly, Sato
et al. (2021) reported that the minor BA intermediates
associatedwith immune cell differentiationwere prevalent
in centenarians. BA activities were related to enhanced
pathogen resistance, and the authors speculated on their

roles in toxin clearance, better bone health and immune
functions in maintaining health in ageing. Thus, host cell
senescence in ageing goes hand-in-hand with microbial
bacterial cell senescence leading to changes in BA profiles
and BA-mediated signalling.

Concluding remarks

Gaining an understanding of the physiological
mechanisms by which microbes, residing in the external
environment of the intestinal lumen, influence inter-
oceptive signalling from the gut to the brain has received
substantial research interest in recent times. While it
is generally accepted that a dynamic and interactive
relationship exists between microbiota and BAs, the
potential contribution of BAs as independent bioactive
signalling molecules in gut–brain communication has
been somewhat overlooked.
As discussed, BAs may signal to the CNS using both

direct and indirect mechanisms (Fig. 2). Once in the
systemic circulation BAs may operate as endocrine
factors and cross the blood–brain barrier to directly
bind to BA receptors expressed on neural cells in the
brain. However, this appears to occur primarily under
pathophysiological conditions when concentrations of
BAs are elevated. Under physiological conditions, it is
more likely that indirect pathways represent the pre-
dominant signalling conduits for BAs. This may be
through activation of BA receptor-expressing enterocytes
or enteroendocrine cells. Hormone-secreting biosensors
release neuromodulatory factors such as serotonin and
GLP-1 that have the capacity to stimulate vagal afferent
fibres. An alternative signalling route is through activation
of FXR-expressing enterocytes, which secrete FGF19, a
neuromodulatory factor that can cross the blood–brain
barrier. Further research is needed to elucidate these
possible signalling routes. Finally, we described the pre-
dominantly anti-inflammatory effects of BAs on the
immune system and how changes to the BA pool could
influence immune-mediated gut-to-brain signalling. Even
when focused on a single class of signalling molecule such
as BAs, the simplicity of the term ‘gut–brain axis’ belies
the complexity of direct and indirect signalling pathways,
whichmay be activated by amultitude of BA specieswhich
have variable affinities for several BAs’ receptors. It has yet
to be determined if the actions of nuclear or membrane
receptor binding BAs have contrasting or complimentary
effects in terms of interoceptive signalling. It is also not
clear whether regional differences in BA profiles in the
proximal and distal intestine relay distinct information
to the CNS. Moreover, pathophysiological changes
differentially modify these signalling pathways adding to
the complexity. Much remains to be elucidated regarding
the physiological mechanisms of these intriguing
bioactive signalling molecules.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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