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Learning from limited exemplars (few-shot learning) is a fundamental, unsolved problem

that has been laboriously explored in the machine learning community. However, current

few-shot learners are mostly supervised and rely heavily on a large amount of labeled

examples. Unsupervised learning is a more natural procedure for cognitive mammals

and has produced promising results in many machine learning tasks. In this paper, we

propose an unsupervised feature learning method for few-shot learning. The proposed

model consists of two alternate processes, progressive clustering and episodic training.

The former generates pseudo-labeled training examples for constructing episodic tasks;

and the later trains the few-shot learner using the generated episodic tasks which

further optimizes the feature representations of data. The two processes facilitate each

other, and eventually produce a high quality few-shot learner. In our experiments, our

model achieves good generalization performance in a variety of downstream few-shot

learning tasks on Omniglot and MiniImageNet. We also construct a new few-shot person

re-identification dataset FS-Market1501 to demonstrate the feasibility of our model to a

real-world application.

Keywords: unsupervised, few-shot learning, clustering, pseudo labels, episodic learning

1. INTRODUCTION

Few-shot learning, which aims to accomplish a learning task by using very few training examples,
is receiving increasing attention in both of the machine learning and cognitive science community.
The challenge of few-shot learning lies on the fact that traditional techniques such as fine-tuning
would normally incur overfitting (Wang et al., 2018). To overcome this, an episodic training
paradigm was proposed (Vinyals et al., 2016). In such a paradigm, episodic training replaces the
conventional mini-batch training, such that a batch of episodic tasks, each of which have the same
setting as the testing environment, are presented to the learning model; and in each episodic task,
the model learns to predict the classes of unlabeled points (the query set) using very few labeled
examples (the support set). By this, the learning model acquires the transferable knowledge across
tasks, and due to the consistency between the training and testing environments, the model is able
to generalize to novel but related downstream tasks. Although this set-to-set few-shot learning
paradigm has made great progress, in its current supervised form, it requires a large number of
labeled examples for constructing episodic tasks, which is often infeasible or too expensive in
practice. So, can we build up a few-shot learner in the paradigm of episodic training using only
unlabeled data?
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It is well-known that humans have the remarkable ability to
learn a concept when given only several exposures to its instances,
for example, young children can effortlessly learn and generalize
the concept of “giraffe” after seeing a few pictures of giraffes.
While the specifics of the human learning process are complex
(trial-based, perpetual, multi-sourced, and simultaneous for
multiple tasks) and yet to be solved, previous works agree that its
nature is progressive and unsupervised in many cases (Dupoux,
2018). Given a set of unlabeled items, humans are able to organize
them into different clusters by comparing one with another. The
comparing or associating process follows a coarse-to-finemanner.
At the beginning of learning, humans tend to group items
based on fuzzy-rough knowledge such as color, shape, or size.
Subsequently, humans build up associations between items using
more fine-grained knowledge, i.e., stripes of images, functions
of items, or other domain knowledge. Furthermore, humans can
extract representative representations across categories and apply
this capability to learn new concepts (Kemp et al., 2010; Wang
et al., 2014; Gopnik and Bonawitz, 2015).

In the present study, inspired by the unsupervised and
progressive characteristics of human learning, we propose
an unsupervised model for few-shot learning via a self-
supervised training procedure (UFLST). Different from
previous unsupervised learning methods, our model integrates
unsupervised learning and episodic training into a unified
framework, which facilitates feature extraction and model
training iteratively. Basically, we adopt the episodic training
paradigm, taking advantage of its capability of extracting
transferable knowledge across tasks, but we use an unsupervised
strategy to construct episodic tasks. Specifically, we apply
progressive clustering to generate pseudo labels for unlabeled
data, and this is done alternatively with feature optimization via
few-shot learning in an iterative manner (Figure 1). Initially,
unlabeled data points are assigned into several clusters, and we
sample a few training examples from each cluster together with
their pseudo labels (the identities of clusters) to construct a set of
episodic tasks having the same setting as the testing environment.
We then train the few-shot learner using the constructed episodic
tasks and obtain improved feature representations for the data.
In the next round, we use the improved features to re-cluster

FIGURE 1 | The scheme of our model UFLST, which integrates two iterative processes: clustering and episodic training. At each iteration, unlabeled datapoints are

clustered based on the extracted features, and pseudo labels are assigned according to the cluster identities. After clustering, a set of episodic tasks are constructed

by sampling from the pseudo labeled data, and the few-shot learner is trained, which further optimizes feature representations. The two processes are repeated.

data points, generating new pseudo labels and constructing
new episodic tasks, and train the few-shot learner again.
The above two steps are repeated till a stopping criterion is
reached. After training, we expect that the few-shot learner
has acquired the transferable knowledge (the optimized feature
representations) suitable for a novel task of the same setting
as in the episodic training. Using benchmark datasets, we
demonstrate that our model outperforms other unsupervised
few-shot learning methods and approaches to the performances
of fully supervised models.

1.1. Related Works
In the paradigm of episodic training, few-shot learning
algorithms can be divided into two main categories: “learning
to optimize” and “learning to compare.” The former aims to
develop a learning algorithm which can adapt to a new task
efficiently using only few labeled examples or with only few
steps of parameter updating (Andrychowicz et al., 2016; Ravi
and Larochelle, 2016; Finn et al., 2017; Mishra et al., 2017;
Nichol and Schulman, 2018; Rusu et al., 2018), and the latter
aims to learn a proper embedding function, so that prediction
is based on the distance (metric) of a novel example to the
labeled instances (Vinyals et al., 2016; Snell et al., 2017; Liu et al.,
2018; Ren et al., 2018; Sung et al., 2018). In the present study,
we focus on the “learning to compare” framework, although
methods belonging to the other framework can also be integrated
into our model.

A number of unsupervised few-shot learning models have
been developed recently. Hsu et al. (2018) proposed a method
called CACTUs, which constructs tasks from unlabeled data
by partitioning features extracted by some prior unsupervised
feature learning methods, e.g., ACAI, BiGAN, and DeepCluster
in an automatic way and performs meta-learning over the
constructed tasks. Khodadadeh et al. (2018) proposed a method
called UMTRA, which utilizes the statistical diversity properties
and domain-specific augmentations to generate training and
validation data. Antoniou and Storkey (2019) proposed a similar
model called AAL, which uses data augmentations of the
unlabeled support set to generate the query data. All these
methods construct episodic tasks with the aid of unsupervised
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feature embedding or data augmentation; whereas in our
method, the construction of episodic tasks and model training
are performed iteratively within the same few-shot embedding
network, and they facilitate each other.

The idea of iterative training used in ourmodel is a type of self-
supervised training, which aims to artificially generate pseudo
labels for unlabeled data and then perform feature learning as
in the supervised manner iteratively. It is quite useful when
supervisory signals are not available or too expensive (de Sa,
1994). This idea was first applied in NLP tasks, which aims to
self-train a two-phase parser-reranker system using unlabeled
data (McClosky et al., 2006). Xie et al. (2016) proposed a Deep
Embedded Clustering network to jointly learn cluster centers
and network parameters. Caron et al. (2018) further proposed
strategies to solve the degenerated solution problem during deep
clustering. Fan et al. (2018) and Song et al. (2018) applied the
iterative training idea to the person re-identification task, both
of which aim to transfer the extracted feature representations
to an unseen domain. However, none of these studies have
considered integrating iterative clustering and episodic training
in unsupervised few-shot learning as we do in this work.

2. MATERIALS AND METHODS

2.1. Preliminaries
In this section, we introduce the proposed model UFLST in
detail. Consider a M-way K-shot classification task. Our goal
is to train a few-shot learner based on the unlabeled data
set X = {xi}

N
i=1, where N is the total number of unlabeled

datapoints. The previous studies have demonstrated that by
matching the training and testing paradigms, episodic learning
can extract transferable knowledge across tasks suitable for few-
shot classification (Vinyals et al., 2016). In the supervised setting,
one can easily construct a set of episodic tasks, with each task
having K training examples {(xk, yk)} per class to learn the
few-shot classifier and Q query examples per class to evaluate
the learned classifier. Totally, there are K + Q examples for
each of M classes in each episodic task. In the unsupervised
setting, however, we do not have labeled data to construct
episodic tasks directly. Therefore, we consider using pseudo
labels generated by a clustering algorithm to support episodic
learning. Different from the previous work (Hsu et al., 2018)
which uses a prior trained feature embedding network to extract
fixed representations of data, data representations in our model
are dynamically fine-tuned along with the episodic training.

Let us denote the embedding function in UFLST as fθ , which
takes X as the input and outputs the corresponding feature
vector Z = {zi}, for i = 1, . . . ,N, where θ represents the
network parameters. Firstly, we cluster the unlabeled data based
on the embedding features Z and obtain the pseudo labels of
data {yi}, for i = 1, . . . ,N. Secondly, using the pseudo labeled
data, we construct a set of episodic tasks T = {T1,T2, ...,TS},
with S the number of constructed tasks in the current iteration,
and carry out episodic learning, which improves the embedding
features Z further. Notably, each episodic task Ts has the same
setting as the application, i.e., it is a M-way K-shot classification.
The above two steps are performed iteratively until a stopping

criterion is reached. Below describes the two training processes
in more detail.

2.2. Data Clustering
2.2.1. Distance Metric for Clustering
To cluster data, the first is to choose a suitable metric measuring
the distance between data points. For constructing a large
number of episodic tasks, an over-complete partition of data
points is preferred, leading to a large number of classes with
a small number of examples in each class. In such a situation,
the conventional Euclidean distance or the Cosine distance is
no longer optimal. Inspired by the re-ranking idea used in
object retrieval as a post-processing tool to improve the retrieval
accuracy, we propose to use the k-reciprocal Jaccard distance
(KRJD)metric (Qin et al., 2011; Zhong et al., 2017) as the distance
measurement between two feature points zi and zj, which is
written as

Jij = 1−
|R(zi, k) ∩ R(zj, k)|

|R(zi, k) ∪ R(zj, k)|
. (1)

Here, R(z, k) counts the k-reciprocal nearest neighbors of a
feature point z and is given by

R(z, k) =
{
zj |

(
zj ∈ N(z, k)

)
∩

(
z ∈ N(zj, k)

)}
, (2)

where N(z, k) denotes the k nearest neighbors of z. R(z, k)
imposes the condition that z and each element of R(z, k) are
mutually the k nearest neighbors of each other.

Compared to the Euclidean distance, KRJD takes into account
the reciprocal relationship between data points, and hence is
a stricter metric measuring whether two feature points match
or not. Given a query probe, we find that the results of
nearest neighbors based on the KRJD is more accurate than
that of the Euclidean distance (i.e., the k-nearest neighbors) as
demonstrated in Figure 2 (see Appendix 1 for more detail).

2.2.2. Density-Based Spatial Clustering
To partition feature points and generate pseudo labels, we
adopt a clustering method called density-based spatial clustering
algorithm (DBSCAN) (Ester et al., 1996). This method regards
clusters as the areas of high density separated by low density
regions, that is, a cluster is composed of a set of core points (i.e.,
those points in a high density region close to each other) and a
set of non-core points (i.e., those points in the surrounding low
density regions close to the core points but not to themselves).
Compared to the conventional Kmeans algorithm, DBSCAN has
a number of appealing properties: (1) it applies to any shape
of clusters, as opposed to the Kmeans algorithm assuming that
clusters are convex; (2) it requires no assumption of the number
of clusters; (3) it can detect outliers, which is extremely useful for
iterative training, as data points are typically intertwined in the
first few iterations.

After applying DBSCAN, we get the pseudo label set (the
cluster identity), which is expressed as

{yi} = DBSCAN (ms, ǫ, {zi}) , (3)
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FIGURE 2 | Comparison between k-nearest neighbors and k-reciprocal nearest neighbors. Given an probe (in the black box), nearest neighbors of the example are

shown. Examples in green boxes are those in the same class and examples in red boxes are those in different classes. (A–C) Examples from Omniglot, MiniImageNet,

and FS-Market1501, respectively. The upper row in each panel is the result of k-nearest neighbors and the lower row in each panel is the result of k-reciprocal nearest

neighbors. By adopting KRJD, more positive examples (those in the same class) appear in the nearest neighborhood of the probe.

where the parameter ms defines the minimum sample value, i.e.,
the minimum number of points huddled together for a region
to be considered as dense, and the parameter ǫ defines the
distance threshold, i.e., the maximum distance for two points to
be considered as in the same neighborhood. Higherms or lower ǫ

indicate higher density is necessary to form a cluster. Bothms and
ǫ affect the cluster numbers and the size of clusters. In general,
we want the constructed episodic tasks T to be diverse, so that

transferable knowledge can be acquired by the few-shot learner.
This corresponds to setting small ms and ǫ. We will discuss the
choice ofms and ρ in section 2.5.

2.3. Episodic Training
After removing outliers (i.e., those data points in low density
regions in the feature space) in DBSCAN, we construct episodic

tasks using the remaining pseudo labeled data {(x̃i, ỹi)}
Ñ
i=1, with
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Ñ the number of remaining points. For each episodic task Ti,
we randomly sample M classes and K + Q examples per class as
described in section 2.1, with K + Q ≤ ms.

A number of metric loss functions can be used in our
model, including the prototypical loss (Snell et al., 2017),
the triplet loss (Weinberger and Saul, 2009; Hermans et al.,
2017), the contrastive loss (Hadsell et al., 2006), and the center
loss (Wen et al., 2016). To save space, here we mainly describe
the prototypical loss. More results of using other metric loss
functions can be found in Appendix 2. The prototypical loss
aims to learn a prototype for each class and then discriminate a
novel example based on its distance to allM prototypes, which is
written as

Lproto(z, cp; θ) =
exp(−‖z− cp‖

2
2)∑M

m exp(−‖z− cm‖
2
2)
, (4)

where z is a data point from the query set of class p, and cm is
the prototype of class m given by cm =

∑
zi∈Sm

(zi)/K, with Sm
the support set of class m. In practice, we choose to minimize

the negative log value of Equation 4, i.e., L
log
proto(z, cp; θ) =

− log Lproto(z, cp; θ), as the log value better reflects the geometry
of the loss function, making it easier to select a suitable learning
rate to minimize the loss function.

In summary, the above two steps for data clustering and
episodic training are performed iteratively. They facilitate
each other, similar to the EM-style algorithm: data clustering
frequently generates pseudo labeled data for episodic learning,
and the latter improves the feature representations of data, which
in return further improve the clustering quality and few-shot
learning (see section 4 for more discussions on why the iterative
learning works). The pseudo code of UFLST is summarized in
Algorithm 1.

2.4. Datasets
Omniglot contains 1,623 different handwritten characters from
50 different alphabets. There are 20 examples per class and each
of them was drawn by a different human subject via Amazon’s
Mechanical Turk. Following Vinyals et al. (2016), we split the
data into two parts: 1,200 characters for training and 423 for
testing, and we resize the images to 32× 32, instead of 28× 28.

MiniImageNet is derived from the ILSVRC-12 dataset. We
follow the data split as suggested in Ravi and Larochelle (2016),
which contains 100 classes including 64 for training, 16 for
validating, and 20 for testing. Each class contains 600 colored
images of size 84× 84.

FS-Market1501 is a person re-identification (Re-ID) dataset
modified from the Market1501 dataset (Zheng et al., 2015).
The training set contains 12,936 images with 751 pedestrian
identities and the testing set contains 16,483 images with the
remaining 750 pedestrian identities. All images were resized to
256× 128. For more details of how to construct FS-Market1501,
see Appendix 3.

2.5. Implementation Details
When training on Omniglot and MiniImageNet, we set the
model architecture to be the same as in the previous works for
fair comparison. The model consists of four stacked layers, and

Algorithm 1:Unsupervised Few-shot Feature Learning via Self-
supervised Training (UFLST)

Input: Unlabeled data set X = {xi}, the few-shot feature
embedding fθ0 , the training iteration T.

Output: Trained few-shot embedding fθT
1: t = 0
2: repeat

3: Clustering:

4: Extracting features {zi} of {xi} using the feature extractor
fθ t .

5: Calculating KRJD Jij based on the K-reciprocal nearest
neighbors of any data pairs zi and zj.

6: Clustering data using DBSCAN and generating pseudo
labels {yi}.

7: Removing outliers and obtaining the pseudo labeled data
set {(x̃i, ỹi)}.

8: Episodic Training:

9: Constructing a set of episodic tasks {Ts}; for each task,
randomly samplingM classes withK+Q examples per class
from {(x̃i, ỹi)}.

10: Updating model parameters θ t by training the few-shot
learner on the series of episodic tasks {Ts}.

11: t = t + 1
12: until t = T

each layer comprises 64-filter 3 × 3 convolution, followed by
a batch normalization, a ReLU nonlinearity, and 2 × 2 max-
pooling. When training on FS-Market1501, due to high variance
in pedestrian pose and image illumination, we use Resnet50
pretrained on ImageNet as the backbone, followed by a global
max-pooling layer and a batch normalization layer. Omniglot is
relatively easy compared to the other two datasets, and therefore
we only pre-process data with normalization. For MiniImageNet
and FS-Market1501, we randomly flip images horizontally and
crop them with random sizes, and then normalize them with
the channel-wise mean and standard deviation of the whole
dataset. Color information is important to partition images in
FS-Market1501 (pedestrians with the same ID vary in pose,
view angle, and illumination but not in the color), while it is
not that important to partition images in MiniImageNet (Caron
et al., 2018). Hence, we discard color information and increase
local contrast by adding a linear transformation based on Sobel
filters as proposed in Bojanowski and Joulin (2017) and Paulin
et al. (2015). For the clustering method DBSCAN, we set ms =

2 and ǫ to be the mean of top P values of distance pairs,
with P = ρN(N − 1)/2 and ρ = 0.0015. The values of
ms and ǫ are set to be relatively small to ensure that feature
points are well-separated, so that diverse episodic tasks can
be constructed (for more details of the choice of ms and ǫ,
see Appendix 4). For the prototype loss, we used a higher
“way” value (M = 60) during training, which leads to better
performances as empirically observed in Snell et al. (2017).
Since it is possible that the numbers of points in some clusters
are too small, we only train the model in the M-way 1-shot
learning scenario, i.e., K = Q = 1. The total number
of iterations during training is set to be 100, and in each
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iteration, 500 episodic tasks are constructed. We used Adamwith
momentum to update model parameters, and the learning rate is
set to be 0.001.

3. RESULTS

3.1. Comparison With Non-episodic
Learning Methods
Episodic learning plays a key role in leveraging unsupervised
few-shot feature learning. To demonstrate this, we first compare
our model with other unsupervised feature learning methods
without employing episodic learning. Three such methods are
chosen, which are (Denoising) AutoEncoder (Vincent et al.,
2008), InfoGAN (Chen et al., 2016), and DeepClustering (Caron
et al., 2018) (for the detailed training process of these methods,
see Appendix 5). These methods are the typical approaches
used to learn useful feature representations, covering a
wide range of unsupervised feature learning strategies
including reconstruction (prediction), two-player games,
discriminative clustering, and so on. For comparison, we
use the features extracted by these methods to calculate the
prototype of each class directly and perform the M-way
K-shot classification. The results are presented in Table 1,
which shows that: (1) compared to other unsupervised
feature learning methods whose learning objective is different
from ours, iterative data clustering and episodic learning
improves the few-shot learning performance significantly,
even when the Kmeans clustering with the Euclidean distance
is used in our model; (2) by applying DBSCAN with the
KRJD metric, the performance of our model is improved
further to a large extent. Notably, DeepClustering also jointly
learns the parameters of a neural network and the cluster
assignments of the resulting features. However, it optimizes
the feature representations with a relatively simple learning
objective (softmax classification) which is not suitable for
few-shot classification.

3.2. The Effect of Iterative Training
In our model, iterative training will gradually improve the
clustering quality and the performance of the few-shot learner.
To demonstrate this, we randomly select 10 hand-written
characters from the Futurama alphabets in Omniglot and
visualize clustering behaviors over iteration with T-SNE (Maaten
and Hinton, 2008). As shown in Figure 3, initially all data points
are intertwined with each other and no clear cluster structure
exists. Over training, clusters gradually emerge, in the sense that
data points from the same class are grouped together and the
margins between different classes are enlarged. This indicates
that our model gradually “discovers” the underlying semantic
structure of the data. We quantify the clustering quality by
computing the normalized Mutual Information (NMI) between
the pseudo labels generated by the clustering algorithm {ỹi} and
the ground truth of real labels {ŷi}, which is given by,

NMI
(
{ŷi}, {̃yi}

)
=

I({ŷi}, {̃yi})√
H({ŷi})H({̃yi})

, (5)

where I(·, ·) is the mutual information between {ŷi} and {̃yi},
and H(·) the entropy. The value of NMI lies in [0, 1], with 1
standing for the perfect alignment between two sets. Note that
NMI is independent of the permutation of labeling orders. As
shown in Figure 4 (left), the value of NMI increases with the
training iterations and gradually reaches a high value close to
1. Remarkably, the value of NMI well predicts the classification
accuracy of the few-shot learning (Figure 4, right). These results
demonstrate that iterative data clustering and episodic training
are able to discover the underlying structure of data manifold,
and extract the representative features of data necessary for the
few-shot classification task.

3.3. Comparison With State-of-the-Art
Unsupervised Few-Shot Learning Methods
We compare our model with other state-of-the-art unsupervised
few-shot learning methods, including CACTUs (Hsu et al.,

TABLE 1 | Performances of our model compared to other non-episodic unsupervised feature learning methods on Omniglot and MiniImageNet.

Omniglot MiniImageNet

Methods (M, K) Clustering Metric (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

Baseline N/A N/A 57.97 79.25 34.17 59.33 25.91 32.38 37.01 38.95

AutoEncoder N/A N/A 53.63 77.34 32.98 55.01 26.17 33.01 37.98 39.39

Denoising autoEncoder N/A N/A 59.63 79.89 34.78 60.88 27.81 34.19 39.01 40.11

InfoGAN N/A N/A 51.49 76.38 31.01 53.99 29.81 36.47 40.17 42.46

BiGAN+KNN N/A N/A 49.55 68.06 27.37 46.70 25.56 31.10 37.31 43.60

BiGAN+LC N/A N/A - - - - 27.08 33.91 44.00 50.41

DeepClustering Kmeans Euclidean 59.07 79.81 34.05 60.12 28.91 36.01 39.29 41.98

UFLST Kmeans Euclidean 69.54 86.18 47.11 69.19 31.77 43.03 51.35 55.72

UFLST BSCAN KRJD 96.51 99.23 90.27 97.22 37.75 50.95 59.18 62.27

Baseline performance means training from scratch. Results based on BiGAN are adapted from Hsu et al. (2018). For complete results with confidence intervals, see Appendix 6. The

best performances are in bold.
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2018), UMTRA (Khodadadeh et al., 2018), and AAL (Antoniou
and Storkey, 2019), as shown in Table 2. On Omniglot, our
model outperforms them to a large extent. Remarkably, the best
performances of our model approaches that of two supervised
methods, which are the upper bounds for unsupervised
learning. Our model also achieves significant improvement on

MiniImageNet (note that we only test the model under the
5-way few-shot learning scenario). For example, in the 5-way 1-
shot scenario, our model achieves 37.75%, which is significant
compared to the baseline performance 25.91%.

We also note that some methods outperform our model
on MiniImageNet, e.g., DeepCluster-CACTUs-ProtoNets and

FIGURE 3 | Visualizing clustering results during iterative training with T-SNE. 10 characters from the Futurama alphabets in Omniglot are were selected and results

from iteration 1, iteration 5, and iteration 10 are showed here.

FIGURE 4 | Performances of iterative training under the 5-way 1-shot learning scenario on the Omniglot dataset. (Left) NMI vs. training iteration. (Right)

Classification accuracy vs. training iteration.

TABLE 2 | Comparison to state-of-the-art unsupervised few-shot learning models on Omniglot and MiniImageNet under different settings.

Omniglot MiniImageNet

Methods (M, K) (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

ACAI/DC-CACTUs-MAML (Hsu et al., 2018) 68.84 87.78 48.09 73.36 39.90 53.97 63.84 69.64

ACAI/DC-CACTUs-ProtoNets (Hsu et al., 2018) 68.12 83.58 47.75 66.27 39.18 53.36 61.54 63.55

BiGAN-CACTUs-MAML (Hsu et al., 2018) 58.18 78.66 35.56 58.62 36.24 51.28 61.33 66.91

BiGAN-CACTUs-ProtNets (Hsu et al., 2018) 54.74 71.69 33.40 50.62 36.62 50.16 59.56 63.27

UMTRA+AutoAugment (Khodadadeh et al.,

2018)

83.80 95.43 74.25 92.12 39.93 50.73 61.11 67.15

AAL-MAML++ (Antoniou and Storkey, 2019) 88.40 97.96 70.21 88.32 33.30 49.18 – –

AAL-ProtoNets (Antoniou and Storkey, 2019) 84.66 89.14 68.79 74.28 37.67 40.29 – –

UFLST+Kmeans+Euclidean (ours) 69.54 86.18 47.11 69.19 31.77 43.03 51.35 55.72

UFLST+DBSCAN+KRJD (ours) 96.51 99.23 90.27 97.22 37.75 50.95 59.18 62.27

MAML (Finn et al., 2017) (supervised) 98.7 99.9 95.8 98.9 46.81 62.13 71.03 75.54

ProtoNets (Snell et al., 2017) (supervised) 98.8 99.7 96.0 98.9 46.56 62.29 70.05 72.04

Results based on BiGAN are adapted from Hsu et al. (2018). For complete results with confidence intervals, see Appendix 7. The best performances are in bold.
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UMTRA-AutoAugment achieve 39.18 and 39.93% in the 5-way
1-shot scenario, respectively. The reasons we believe are due
to three aspects. Firstly, for the convenience of comparing to
other (un)supervised few-shot learning methods, we have used
the 4-layer convnet as the few-shot embedding network. Such
a simple network is unable to adequately extract the semantic
meanings of images under the unsupervised setting, especially as
the in-class variations of MiniImageNet are large but the total
size of the dataset is small (only 64 classes with 600 images
per class in the training set). Secondly, for constructing diverse
episodic tasks, our model prefers to over-segment the data into
hundreds of clusters, whereas the ground truth cluster number
of MiniImageNet is only 64. This induces mismatch between
the constructed episodic tasks and the ground truth. Thirdly,
the methods outperforming our model adopt either powerful
prior unsupervised feature learning to partition data points
(the CACTU-based model) or complicated data augmentation
strategies to construct the episodic tasks (the UMTRA-based
model and the AAL-based model), while our model partitions
data points with the features directly extracted from the few-shot
embedding network and only adopts a simple data augmentation
strategy to avoid overfitting. One solution is to use deeper feature
embedders, e.g., Resnet12, AlexNet in our model to improve the
performance (see Appendix 9). Even so, our model still achieves
competitive results compared to other unsupervised few-shot
learning methods.

3.4. Results on FS-Market1501
In order to show the applicability of our model to a real-world
few-shot learning problem, we apply our model on the FS-
Market1501 dataset which has been described in section 2.4.
In reality, labeled data is extremely lacking for person Re-ID,
and unsupervised learning becomes crucial. Results in Table 3

show that our UFLST model performs very well on the 1-shot
learning problem on this dataset. Note that the 1-shot learning
problem we demonstrate here is to mimic the typical single query
setting in person Re-ID. For example, 50-way 1-shot means the
model needs to identify a pedestrian from one of 50 unknown
persons by training a classifier with only one image per person.
To compare our model with the supervised results as described
in section 3.3, we train a supervised model with the same model
architecture, i.e., the Resnet50 backbone pretrained on ImageNet
as described in section 2.5. Overall, we observe that our model
achieves encouraging performances compared to the supervised
methods, in particular, in the scenario of low-way classification.
This suggests that our model is potentially feasible in practice for
person Re-ID when annotated labels are unavailable.

4. CONCLUSION AND DISCUSSION

In this study, we have proposed a model UFLST for unsupervised
few-shot learning. Different from other unsupervised feature
learning methods, such as the prediction-based and the GAN-
based ones, our model exploits the paradigm of episodic training,
which is a more effective way to implement few-shot learning.
Recently, a few unsupervised few-shot learning models based on
episodic learning were proposed, and they have taken different
strategies to construct episodic tasks from unlabeled data. For

TABLE 3 | Performances of our model on FS-Market1501 with different settings.

5-way 10-way 15-way 20-way 50-way 100-way

Baseline 48.8 35.7 29.7 27.8 20.9 16.4

UFLST-Tripetloss 72.8 63.0 56.2 53.4 42.5 35.4

UFLST-Prototypeloss 88.3 81.2 75.8 73.0 62.5 54.0

UFLST-HardTripletloss 91.4 86.9 81.6 80.4 70.1 62.1

Supervised upper bound 96.8 94.7 92.5 91.1 83.7 77.3

Only 1-shot learning is considered to mimic the typical single query evaluation condition

in person Re-ID. We adopt three metric losses to optimize the model, see Appendix 8

for detail. The best performances are in bold.

instance, CACTUs constructs episodic tasks by partitioning
the features extracted by a prior-trained unsupervised feature
embedding network with different objective functions and
then train the few-shot learner (Hsu et al., 2018). UMTRA
utilizes a domain-specific data augmentation strategy to generate
synthetic tasks for the meta-learning phase, while in such a
way, the constructed episodic tasks are restricted by the data
augmentation strategy (Khodadadeh et al., 2018). Different from
the above methods, we propose a simple yet effective way to
construct episodic tasks, that is, we partition the features directly
from the few-shot embedding network and do this in an iterative
manner along with the training of the few-shot learner; and by
this, the construction of episodic tasks and the training of few-
shot learner are improved concurrently. Furthermore, to improve
the clustering quality, we have proposed to use the k-reciprocal
Jaccard distance metric to reduce false positive examples during
the clustering.

We have demonstrated encouraging performances of
our model on two benchmark datasets, Omniglot, and
MiniImageNet. We also constructed a new dataset called
FS-Market1501 adapted from Market1501 to test our model,
and demonstrated the feasibility of our model to real-world
applications. The high efficiency of our model also prompts us to
think about why it works. The key of our model is the iterative
implementation of data clustering and episodic training, and
they tend to facilitate each other as the EM-style algorithm. At
the beginning of training, the few-shot embedding network is
randomly initialized, and the embedded features are intertwined
with each other, making the constructed episodic tasks very
noisy. However, even in such a situation, the embedded
features are not completely random as observed in Noroozi
and Favaro (2016), which showed that the performance of a
randomly initialized convnet is above the chance level. For
example, a simple multilayer perceptron built on top of the
last convolutional layer of a random AlexNet achieves 12%
accuracy on ImageNet, while the chance level is only 0.1%. This
implies that this weak signal can be exploited to bootstrap the
discriminative power of our model through iterative training.
As shown in Figures 3, 4, data clustering and feature extraction
in our model facilitate each other, which eventually produces a
well-performed few-shot learner. To our knowledge, our work is
the first one that integrates progressive clustering and episodic
training for unsupervised few-shot learning. Notably, the idea
of unsupervised iterative learning of our model agrees with the
self-learning nature of humans. It will be interesting to further
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explore the relationship between human learning and machine
learning on unsupervised few-shot learning.
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