
Physics and Imaging in Radiation Oncology 28 (2023) 100496

Available online 27 September 2023
2405-6316/© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Research Article 

Evaluation of a clinically introduced deep learning model for radiotherapy 
treatment planning of breast cancer 

Nienke Bakx a, Maurice van der Sangen a, Jacqueline Theuws a, Johanna Bluemink a, 
Coen Hurkmans a,b,* 

a Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands 
b Faculties of Applied Physics and Electrical Engineering, Technical University Eindhoven, Eindhoven, The Netherlands   

A R T I C L E  I N F O   

Keywords: 
Breast cancer 
Clinical use 
Deep learning 
Radiotherapy 

A B S T R A C T   

Deep learning (DL) models are increasingly studied to automate the process of radiotherapy treatment planning. 
This study evaluates the clinical use of such a model for whole breast radiotherapy. Treatment plans were 
automatically generated, after which planners were allowed to manually adapt them. Plans were evaluated based 
on clinical goals and DVH parameters. Thirty-seven of 50plans did fulfill all clinical goals without adjustments. 
Thirteen of these 37 plans were still adjusted but did not improve mean heart or lung dose. These results leave 
room for improvement of both the DL model as well as education on clinically relevant adjustments.   

1. Introduction 

The process of radiotherapy treatment planning involves several 
manual and iterative steps, making it a time-consuming task. Besides, 
the outcome is prone to differences in experience of the planner [1]. To 
overcome these problems, in recent years, the number of studies to 
automate this process with the help of artificial intelligence (AI), and 
more specifically deep learning (DL), has increased [2,3]. The majority 
of these studies are of a retrospective nature, such as several studies for 
breast cancer [4–6], and only a limited number of DL models is actually 
implemented in clinical routine. However, a previous study regarding 
the clinical integration of DL treatment planning showed that a retro-
spective or simulated setting might not capture the real-world pro-
spective setting of clinical decisions [7]. Therefore, the clinical use of 
such models should be monitored [8]. Recently, a DL model for dose 
prediction for left-sided whole breast radiotherapy was introduced, after 
thorough evaluation of the model in a pre-clinical study setting [9,10]. 
In this study, the real-word use of this model was monitored and eval-
uated to study the effect of using a DL model in a clinical setting. 

2. Materials and methods 

2.1. Patients 

A DL dose prediction model, based on the 3D U-net architecture [11], 

was developed by RaySearch (RaySearch Medical Laboratories AB) and 
trained on an in-house collected dataset. This dataset was also previ-
ously used to train and evaluate a 2D U-net and a contextual atlas 
regression forest model [9,10]. However, since only the 3D U-net model 
is commercially available, this model was finally trained, commissioned 
and implemented in our clinical workflow in May 2022, using RaySta-
tion TPS. The dataset contained 105 left-sided node-negative breast 
cancer patients, treated with 15 fractions with a prescribed total dose of 
40.1 Gy, in breath-hold position. A tangential IMRT was used, with a 
beam energy of either 6 or 10 MV, and up to 8 segments of at least 9 cm2. 
Each beam contained at least one open segment with a high weight, 
together delivering approximately 200 MU, to promote robustness to 
swelling and breath hold position. More details on the dataset can be 
found in [9]. For evaluation, the clinical treatment plans of 50 patients 
treated after introduction of the DL model until December 2022 were 
included. 

2.2. Treatment plan generation 

The workflow to create DL plans consisted of several steps. First, the 
planner chose the appropriate beam energy, based on anatomy, and 
dorsal beam edges of the mediolateral and lateromedial beams were 
aligned. The beam angle was then automatically determined with the 
beam angle optimization method within RayStation, as previously 
described [12]. Next, the DL model predicted a voxel-wise dose 
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distribution, using a multichannel image volume as input, containing 
the binary masks of the PTV and OARs. However, since this prediction 
did not include any machine parameters and was not clinically appli-
cable as such, dose mimicking was used to calculate a deliverable plan. 
The mimicking algorithm available in the TPS was used, of which 
technical details can be found in [9,10,13]. After mimicking, the leaves 
of the open tangential fields with a large contribution to the total dose 
were manually retracted from the skin surface by approximately 4 cm, 
and one last optimization run of 40 iterations for segment weight and 
shape was performed to generate the final plan, further referred to as DL 
plan. After this process, the planners were allowed to adjust the DL plan 
by their own discretion by adding extra objectives or changing weights 
of the objectives during plan optimization, regardless of whether the DL 
plan already fulfilled the clinical goals or not. These plans were further 
referred to as adjusted plans. If both the DL plan and adjusted plans did 
not fulfill the clinical goals, the planner created a treatment plan 
manually, following former clinical guidelines, referred to as manual 
plan. 

2.3. Evaluation 

For all patients, the final treatment plan was evaluated using pre-
defined clinical goals of our institute, based on the Dutch national 
consensus criteria [14]. Furthermore, for all plans it was evaluated if the 
DL plan was directly used, adjusted, or if the final treatment plan was 
manually generated. If adjusted or manual plans were used, the original 
DL plans were generated again and compared to the final plans, based on 
several dose-volume histogram (DVH) parameters, such as mean dose to 
PTV, heart and lungs, and maximum dose to these regions, defined as the 
dose to 2% of the respective volume. To asses statistically significant 
differences, the Wilcoxon signed rank test was used. 

3. Results 

Fig. 1 summarizes the outcomes of the use of the DL model. For 37 
patients (74%), the DL plans did fulfill all clinical goals without any 
adjustments. However, for 13 of these patients (35% of fulfilled plans), 
the treatment plan was still adjusted by the planner. Most adjustments 
were made to decrease high dose areas and resulted in a mean decrease 
of 0.3 Gy of the D2% of the PTV (range 0.0 – 0.7 Gy, p < 0.05). However, 
it did not affect the mean heart dose (MDH) or mean lung dose (MLD), 
since dose differences between DL and adjusted plans were within 0.02 
Gy for both OARs. Thirteen treatment plans (26%) did not fulfill all 
clinical goals without intervention of the planner. In six cases (46% of 
failed plans), they could be easily adjusted to fulfill all clinical goals. In 1 
case the MHD still exceeded the predefined clinical goal after adjust-
ment, although it was improved after adjustments (3.0 Gy vs 2.5 Gy). 
Finally, for six patients a manual plan was created since the DL plan did 

not fulfil the clinical goals. The dose to 98% of PTV volume was insuf-
ficient for all these DL plans. Furthermore, the maximum dose to PTV 
was too high in four cases, too much of the external volume received a 
high dose in two cases and in one case the dose constraint of MHD was 
exceeded. For the latter case, manual planning still did not fulfill all 
clinical goals, but did improve PTV D2% (42.7 Gy vs 42.9 Gy) and MHD 
(2.2 Gy vs 2.4 Gy), compared to the DL plan. In addition, the beam 
angles were manually adjusted for two patients of this group, but re- 
planned DL plans with these angles still did not fulfill all clinical 
goals. In total, 45 of the patients were treated with a beam energy of 6 
MV, resulting in five patients treated with 10 MV. For four of the patients 
treated with 10 MV a manual plan was created, while the DL plan of the 
fifth patient also needed manual adjustments before fulfilling all clinical 
goals. Median (range) PTV volumes for 6 and 10 MV patients were 854 
cm3 (316–2029) and 1738 cm3 (1155–1939), respectively. Within the 
6MV group, median volumes were 774 cm3 (316–1332) for cases ful-
filling all clinical goals, and 1155 cm3 (736–2029) for the others. 

The DVH parameters for DL and adjusted plans are shown in Table 1. 
A statistically significant difference was found for mean and maximum 
dose to PTV, whereas no difference was found for heart and lungs. 

4. Discussion 

This study evaluated the outcomes for the first 50 patients for which 
a DL model was clinically used to create treatment plans for left-sided 
whole breast radiotherapy. DL plans fulfilled predefined clinical goals 
in 74% of the cases without any adjustments, and in 86% of the cases 
with limited manual adjustments. Of the 20 plans that were manually 
adjusted, 13 plans (65%) already fulfilled clinical goals without these 
adjustments, without improving MHD and MLD. In general, manual 
adjustments only statistically significantly decreased mean and 
maximum dose to PTV. The 6 plans which were manually re-planned, 
contained 4 out of the 5 plans with a beam energy of 10 MV. 

The difference in performance of the DL model for the two beam 
energies is noteworthy. When only considering 6 MV beam energy 
treatment plans, 82% of the DL plans fulfilled all clinical goals, which is 
93% when also considering plans with small adjustments. The beam 
energy is chosen by the planner based on the patient anatomy, where 10 
MV is chosen for a larger PTV volume. The DL plans that were manually 
re-planned, containing 4 out of the 5 10 MV plans, all lacked enough 
dose coverage to the PTV. When also considering the larger PTV vol-
umes for the 6MV plans that did not fulfill all clinical goals, it could be 
stated that the DL model performs less for larger PTV volumes, and it 
should be investigated if separate mimick settings for this patient group 
would improve the dose coverage. 

In our previous studies, two other DL models were tested both in a 
retrospective and pilot study, trained on the same dataset as the clinical 
DL model [9,10]. These were found to produce clinically acceptable 

Fig. 1. Summary of the outcomes of the dl plans for 50 patients. mhd = mean heart dose, MLD = mean lung dose.  
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plans in 90 to 95% of the cases, which is remarkably higher than the 
74% found in this study. However, the clinical goals regarding mean 
dose to PTV were less strict, without a constraint on the maximum value, 
which leads to a higher acceptability rate. This difference stresses the 
importance to always take the current clinical context into account 
when evaluating such models. 

No rejections of DL plans were reported in clinic, meaning all DL 
plans were deemed applicable when fulfilling all clinical goals. This 
result implies that the difference in clinical acceptability of the treat-
ment plans between the pilot study and current clinical use is only 
caused by the above mentioned difference in clinical goals, in contrast to 
the study of McIntosh et al., where the difference in acceptability is 
probably caused by a difference in perception of physicians towards the 
use of AI [7]. Conducting a pilot study and aligning quality standards for 
DL plans can therefore be regarded as requirements before successful 
clinical implementation of such models. To our knowledge, no other 
studies are monitoring DL models for planning in clinical practice to 
compare to, although Esposito et al. state that their approach is currently 
under clinical implementation [15]. 

This study shows that several aspects can be improved to further 
optimize the workflow and actually reduce the time needed for the 
whole treatment planning process. First of all, the outcome of the model 
could be further optimized by either improving the predicted or the 
mimicked dose. The outcomes of both steps can be steered by settings 
within the RaySearch algorithm, which were predefined during 
commissioning. Examples of settings are a minimum/maximum goal for 
ROIs after prediction, and minimum/maximum reference dose objec-
tives, aiming to keep the dose at least/most at the predicted dose’s levels 
during mimicking. Different mimick settings for different plan charac-
teristics, such as beam energies as suggested before, could be tested. The 
predicted dose could also be improved by further training of the model, 
for example by including more data. Eventually, an improved predicted 
dose better reflects a clinically deliverable treatment plan, making it less 
depending on dose mimicking. It was also observed that 35% of the 
fulfilled plans were still manually adjusted, although it did not improve 
MHD or MLD and thus had no clinical relevance. These adjustments 
were mainly made to decrease high dose regions in the PTV after visual 
inspection, while the PTV D2% already did not exceed the clinical goal. 
This preference of tweaking of the dose between 95 and 107% of the 
prescribed dose (mean dose within 1% of prescribed dose) was previ-
ously already shown to be strongly observer dependent. Therefore, it is 
important to educate planners on the outcomes of such evaluation, to 
make them aware of the effect of adjustments and optimize the work-
flow by minimizing these adjustments. 

In conclusion, the DL model successfully created a treatment plan in 
74% of the cases without manual intervention, or in 86% of the cases 
when small manual adjustments are considered. Clinical results did not 
differ much from the pilot study. Improvement of training and config-
uration of the DL model is still possible, but discussion and education on 
clinically relevant adjustments is also of high importance. 
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