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Abstract: Crassulacean acid metabolism (CAM) is an important photosynthetic pathway for plant
adaptation to dry environments. CAM plants feature a coordinated interaction between mesophyll
and epidermis functions that involves refined regulations of gene expression. Plant microRNAs
(miRNAs) are crucial post-transcription regulators of gene expression, however, their roles underlying
the CAM pathway remain poorly investigated. Here, we present a study characterizing the expression
of miRNAs in an obligate CAM species Kalanchoë marnieriana. Through sequencing of transcriptome
and degradome in mesophyll and epidermal tissues under the drought treatments, we identified
differentially expressed miRNAs that were potentially involved in the regulation of CAM. In total,
we obtained 84 miRNA genes, and eight of them were determined to be Kalanchoë-specific miRNAs.
It is widely accepted that CAM pathway is regulated by circadian clock. We showed that miR530
was substantially downregulated in epidermal peels under drought conditions; miR530 targeted two
tandem zinc knuckle/PLU3 domain encoding genes (TZPs) that were potentially involved in light
signaling and circadian clock pathways. Our work suggests that the miR530-TZPs module might
play a role of regulating CAM-related gene expression in Kalanchoë.

Keywords: crassulacean acid metabolism; microRNA; photosynthesis; drought; circadian clock;
Kalanchoë

1. Introduction

Crassulacean acid metabolism (CAM) is a modification of the photosynthesis pathway
involving the cooperation of multiple processes, including carbon metabolism and circadian
reversion of stomatal movements [1,2]. In CAM plants, the Calvin cycle is prefixed by initial
incorporation of CO2 into malate during the night, then during daytime, the stomata are
closed, and concentrated CO2 is released to ribulose bisphosphate carboxylase oxygenase
(Rubisco) for fixation [1,2]. This diurnal rearrangement attenuates the losses of water and
enhances the efficiency of photosynthesis by reducing photorespiration [3]; hence, many
CAM plants are classified as having high water use efficiency (WUE) and survive under
extremely dry environments [4,5].
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The adaptation of CAM to dry environments is thought to be driven by carbon
concentration mechanisms and has evolved numerous times in independent plant lin-
eages [6–8]. CAM resembles the C4 pathway in the process of the separation of CO2
fixation and Rubisco reaction [9], while CAM plants do not require anatomical changes
to chloroplasts [5,7]. The continuum system of CAM evolution (i.e., cycling, weak, idling,
strong) suggests that modification of regulatory pathways to accomplish the C3-to-CAM
conversion is achievable [9,10]. Recently, engineering the CAM pathway into C3 crops was
proposed to be a potent resolution to improve the sustainability of global agriculture and
agroforestry [11–14]. That is, by increasing water use efficiency (WUE), the engineered
herbaceous and woody crops are expected to be more resilient and competent in warmer
and drier environments [10–12,15].

To uncover the molecular drivers of CAM, extensive research, using large-scale tran-
scriptome, metabolome and proteome, has been reported [16]. A wealth of genome infor-
mation, gene expression databases and functional genomics tools are now available in CAM
plants [17] and new molecular players have been identified as important regulators in the
control of CAM processes, e.g., circadian clock genes and organic acid transporters [18–20].
With the support of high-quality reference genomes, functional genomics research in
CAM model systems of different plant lineages, has been conducted [17]. Kalanchoë is
among the best models due to the abundant knowledge of CAM physiology and biochem-
istry, the facile transformation and genome editing system, and the high-quality reference
genome [17,19,21,22]. Particularly, the knockdown lines of NAD-malic enzyme (NAD-ME),
cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) and phosphoenolpyruvate
carboxylase kinase (PPCK) of K. fedtschenkoi have displayed impaired rhythms of CO2
fixation and the temporal expression patterns of molecular clock genes, providing evi-
dence for circadian clock-mediated regulation of CAM processes [23,24]. Recently, the
CRISPR/Cas9-mediated mutagenesis has also been carried out in K. fedtschenkoi, which
provides a valuable platform for functional studies of CAM [22].

Plant microRNAs (miRNAs) are essential post-transcriptional regulators that are
involved in various biological processes including development, growth and stress re-
sponses [25,26]. Additionally, many miRNAs are responsive and functionally specialized to
biotic and abiotic stresses [27,28]. Evidence indicates that some deeply originating miRNAs
families are conserved in regulating multiple stress-related processes [27]. Additionally, the
miRNAs displaying diurnal expression patterns in Arabidopsis have been reported, sug-
gesting that they play regulatory roles in circadian clock and light signaling [29]. Whether
miRNAs play a role in the regulation of CAM-related biological processes (e.g., leaf suc-
culence, drought resistance and circadian clock) remains unknown. With the advent of
high-throughput sequencing technologies, miRNAs have been characterized in several
CAM species. A recent analysis of transcriptome and miRNAome in pineapple (an obligate
CAM species) revealed miRNAs with diel expression patterns and pointed to some inter-
esting miRNA-target regulations relevant to the CAM pathway [30]. Still, little information
of drought-responsive miRNAs is known in any CAM plant. Here, we performed small
RNA, transcriptome and degradome sequencing analyses in K. marnieriana under drought
conditions. We compared the miRNA expression profiles between epidermis and meso-
phyll tissues and revealed several deeply conserved as well as Kalanchoë-specific miRNAs
were responsive to drought stress. We uncovered that miR530 displays a circadian pattern
of expression and targets two tandem zinc knuckle/PLU3 domain encoding genes (TZPs),
suggesting a potential role of regulating CAM-related gene expression.

2. Materials and Methods
2.1. Plant Materials

Mature plants of K. marnieriana were grown in the greenhouse of the Research Institute
of Subtropical Forestry (119◦57′ N, 30◦04′ E; Fuyang, Zhejiang, China). Tissue was collected
from propagated plants of K. marnieriana grown in a growth chamber under photoperiod
of 12 h light/12 h dark at 24 ◦C and 40% humidity. Additionally, K. marnieriana plants were
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subjected to the drought treatments: 10 days without watering (D10), 25 days without wa-
tering (D25) and well-watered as the control condition. For the Agrobacterium-infiltration
assay, the Nicotiana benthamiana plants were grown at 22 ◦C under 16 h light/8 h dark
condition; one-month-old plants were used for the infiltration as described by [31].

2.2. RNA Preparation

For RNA preparation, the plant tissues were collected and frozen in liquid nitrogen
and stored at −80 ◦C before subsequent uses. Total RNA was extracted using an RNAprep
Pure Plant Kit (DP441, Tiangen, Beijing, China) from the mesophyll, epidermal peel and
leaves of K. marnieriana. The concentration and integrity of the total RNA were checked
before library construction. A Nanodrop 2000 spectrophotometer (Thermo Fisher, CA,
USA) was used to calculate the RNA concentration, and samples with more than 200 ng/uL
and optical density (OD) 260/280 above 2.0 were used for small RNA sequencing. Near
equal amounts of RNAs from different tissue types were mixed to construct libraries for
transcriptome assembly and degradome analysis.

2.3. RNA Sequencing and Analysis

The small RNA sequencing libraries were prepared by a TruSeq Small RNA Library
Preparation Kits (Illumina, San Diego, CA, USA) according to user’s manual from Illumina
as described by [32]. Briefly, following the isolation of suitable cDNA fragments by gel
electrophoresis analysis, the obtained libraries were enriched with small RNAs and loaded
onto an Illumina HiSeqTM 2000 platform for sequencing by Hangzhou LC-Bio Co., Ltd.
(Hangzhou, China). Total reads were trimmed of low-quality and adapter sequences
using the Illumina Pipeline. The mixed RNA sample was sequenced and assembled into
nonredundant unigenes using Trinity2.1.1.0 (Cambridge, MA, USA) [33]. Unigenes were
tentatively identified based on the best hits against known sequences in the database. The
transcriptome data of K. marnieriana were available in National Center for Biotechnology
Information (TSA accession number GIXV00000000). All sequencing reads were deposited
into the NCBI SRA database under Bioproject PRJNA684436. The identification of miRNA
was initially identified according previous pipelines [34]. Genome-wide prediction of
miRNAs was performed using the Shortstack3.4 (University Park, PA, USA) [35] and
combined results were obtained by removing redundant miRNAs with precursor sequences.
To quantify the abundance of miRNA, a transcripts per million value was defined as ‘counts
of read mapped to miRNA * 1,000,000’/‘reads mapped to reference genome’, followed
by differential expression analysis as described by [36]. For the degradome analysis, the
extracted sequencing reads over 20 nucleotides were used to identify potentially cleaved
targets by the CleaveLand 3.0 pipeline (University Park, PA, USA), and p-value of less than
0.05 was used to identify highly confident targets [37]. The Kalanchoë genome references
were used to identify the annotation of target genes.

2.4. Dual-Fluorescence Assay

To validate the miRNA target genes, the predicted target site and miRNA precursor
sequences were constructed into the Dual-Luciferase Sensors system (Addgene, 55206,
Watertown, MA, USA) [31]. All constructs were verified by sequencing. The miR530
precursor was obtained by amplifying the K. marnieriana genomic DNA using the sequence
specific primers (Supplementary Table S1). Then, the miRNA overexpression construct was
coinfiltrated with the target sites vector in tobacco accordingly [31]. For each combination,
including control and test groups, at least five biological replicates were used for efficiency
analysis [38].

2.5. Real-Time Quantification of Gene Expression

The expression levels of miRNAs were examined by qRT-PCR in conjunction with a
Mir-X™ miRNA FirstStrand Synthesis kit (Cat. 638313, TaKaRa, Dalian, China) according to
the user’s manual. The target gene expression analysis was performed using a PrimeScript
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kit (Cat. RR037Q, TaKaRa, Dalian, China). The gene-specific primers (Supplementary
Table S1) were designed by Primer Express 3.0.1 (Applied Biosystems, Foster City, CA,
USA). The RT-qPCR was performed on an ABI PRISM 7300 Real-Time PCR System (Foster
City, CA, USA). For qRT-PCR experiments, three biological replicates were used, and each
was repeated three times as technical replicates. The data were analyzed with the 2–∆∆CT
method [39].

3. Results
3.1. K. marnieriana Is an Obligate CAM Plant and Its CAM Expression Is Enhanced by
Drought Treatment

K. marnieriana is a closely related species to K. fedtschenkoi and K. laxiflora according to
its morphology and biological characteristics [40] (Supplementary Figure S1). Using the
sequence of 18S rRNA, we determined that this accession was closely related to other two
reported K. marnieriana plants (Supplementary Figure S1). To assess the drought responses
in K. marnieriana, we performed the acidity titration measurements between dawn and
dusk under different watering conditions. We found that, under the regularly watering
condition, the difference value (∆H+) of titratable acid in mature leaves of K. marnieriana
averaged 72 nmol H+ per kg, and the acidity levels were significantly increased under
the 10 days (D10) and 25 days (D25) of drought treatments (Supplementary Figure S1C),
indicating that the drought treatments enhanced the production of leaf titratable acids.

To reveal the miRNAs and their targets that were responsive to drought, we designed
an experiment of drought treatment by withholding water. Leaf epidermis and mesophyll
tissues were separated and collected for sampling at the D10 and D25 conditions (Figure 1).
We performed a combination of transcripts and small RNAs sequencing analyses and
focused on the miRNAs and their target genes. The K. laxiflora genome and transcriptome
assembly were both used as the references for miRNA gene identification. The transcrip-
tome assembly was obtained by using the mixed RNA samples contained 26,336 unigenes
with the N50 of 1434 bp (TSA GIXV00000000). We consolidated the prediction results to
remove redundant miRNAs. In total, we obtained 94 miRNAs, of which 29 were supported
by the genome assembly of K. fedtschenkoi (Figure 1; Supplementary Dataset S1). To predict
the targets of miRNA, we performed the Parallel Analysis of RNA Ends (PARE, also known
as degradome sequencing) to reveal the potential targeted transcripts of miRNAs in K.
marnieriana (Figure 1). The potential targets of miRNA were identified based on the fre-
quency of RNA ends. We determined that the integrative analyses of differential expression
of miRNAs and their targets were sufficient to inform the CAM-related regulation of gene
expression in Kalanchoë.
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(Supplementary Table S2). For the miRNA identification from transcriptome assembly, 
the secondary structure and the reads-mapping profile were evaluated to generate the 
high-confident miRNAs. We found that the 29 genome-supported miRNA displayed a 
more uniform precursor length and higher expression levels comparing to the transcrip-
tome-based miRNAs (Figure 2A). The mature sequences of miRNAs were annotated us-
ing plant miRNAs databases. We discovered that eight miRNAs from the 29 genome-sup-
ported miRNAs were not homologous to other plant miRNAs and were designated as 
Kalanchoë-specific miRNAs (Figure 2B). To further examine these Kalanchoë-specific miR-
NAs, we analyzed the secondary structure and sRNA coverage of precursors; all eight 
miRNAs displayed canonical features of miRNA genes (Figure 2B). 

Figure 1. The experimental design for transcriptome sequencing and pipeline of data analysis.
Drought treatments (10 and 25 days without watering) were performed using K. marnieriana cuttings
that were clonal propagated and subsequently sampled for sequencing. The transcriptome and
reference genome sequence were used for miRNA identification; the combined miRNA dataset was
further analyzed for expression profiling. To reveal the targets of miRNAs, the Parallel Analysis of
RNA Ends sequencing was performed using the mixed RNA samples from abovementioned tissues.

3.2. Identification of Conserved miRNAs and Lineage-Specific miRNAs in K. marnieriana

To uncover the miRNAs, we filtered the low-quality sequences and obtained 18–25 bp
small RNA (sRNA) sequencing reads for the bioinformatics identification pipeline (Sup-
plementary Table S2). For the miRNA identification from transcriptome assembly, the
secondary structure and the reads-mapping profile were evaluated to generate the high-
confident miRNAs. We found that the 29 genome-supported miRNA displayed a more
uniform precursor length and higher expression levels comparing to the transcriptome-
based miRNAs (Figure 2A). The mature sequences of miRNAs were annotated using plant
miRNAs databases. We discovered that eight miRNAs from the 29 genome-supported
miRNAs were not homologous to other plant miRNAs and were designated as Kalanchoë-
specific miRNAs (Figure 2B). To further examine these Kalanchoë-specific miRNAs, we
analyzed the secondary structure and sRNA coverage of precursors; all eight miRNAs
displayed canonical features of miRNA genes (Figure 2B).
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Novel miRNAs identified in Kalanchoë that are not homologous in other plant lineages. Different 
colors of each base indicate the depth of coverage of small RNA sequencing reads that are mapped 
to the precursor. The plot is made by strucVis version-0.4 (https://github.com/MikeAxtell/strucVis, 
accessed on 19 June 2018). 
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each condition was quantified (Supplementary Dataset S2) and used for subsequent sta-
tistical analysis. We found that 55 miRNAs were differentially expressed in epidermis, 
which was more than twice the number in mesophyll (Figure 3A). Only four miRNAs 
were found in both tissues (Figure 3B); 28 miRNAs were discovered under the D25 con-
dition in epidermis (Figure 3B). These results suggested that the drought stress might 
cause substantial changes of small RNAome, which could subsequently regulate the gene 
expression. We then focused on the Kalanchoë-specific miRNAs expression patterns under 
the drought conditions. We found that six Kalanchoë-specific miRNAs were responsive to 
the drought treatments (Figure 3C). Particularly, Kal-miR-C1878, significantly upregu-
lated in both mesophyll and epidermis, and Kal-miR-C689, which showed opposite pat-
terns between mesophyll and epidermis under the drought conditions (Figure 3C). 

Figure 2. Identification of miRNAs based on small RNA sequencing. (A) The distribution of miRNAs by using genome (red
dots) and transcriptome (blue dots) as the references, respectively. (B) Novel miRNAs identified in Kalanchoë that are not
homologous in other plant lineages. Different colors of each base indicate the depth of coverage of small RNA sequencing
reads that are mapped to the precursor. The plot is made by strucVis version-0.4 (https://github.com/MikeAxtell/strucVis,
accessed on 19 June 2018).

3.3. Differential Expression of miRNAs in Responsive to Drought Stress in Mesophyll
and Epidermis

To identify miRNA genes responsive to drought, we performed expression analysis to
reveal differentially expressed miRNAs. The expression level of mature miRNAs at each
condition was quantified (Supplementary Dataset S2) and used for subsequent statistical
analysis. We found that 55 miRNAs were differentially expressed in epidermis, which was
more than twice the number in mesophyll (Figure 3A). Only four miRNAs were found in
both tissues (Figure 3B); 28 miRNAs were discovered under the D25 condition in epidermis
(Figure 3B). These results suggested that the drought stress might cause substantial changes
of small RNAome, which could subsequently regulate the gene expression. We then focused
on the Kalanchoë-specific miRNAs expression patterns under the drought conditions. We
found that six Kalanchoë-specific miRNAs were responsive to the drought treatments
(Figure 3C). Particularly, Kal-miR-C1878, significantly upregulated in both mesophyll and
epidermis, and Kal-miR-C689, which showed opposite patterns between mesophyll and
epidermis under the drought conditions (Figure 3C).
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Figure 3. The differentially expressed miRNAs in epidermis and mesophyll in K. marnieriana. (A) Venn diagram of
differentially expressed miRNA under drought conditions in epidermis (orange) and mesophyll (green). The miRNA with
total TPM > 10 and 2-fold change (p-value < 0.05) were revealed. (B) Venn diagram of differentially expressed miRNA in
different tissues and drought conditions. (C) Differential expression Kalanchoë-specific miRNAs. The upper panel indicates
the differential expression of miRNAs in mesophyll (green); the lower panel indicates the differential expression of miRNAs
in epidermal peels (orange). * indicates significant difference (p-value < 0.05) based on the Student’s t-test results.

3.4. Diurnal Expression of the Targets of miRNAs in K. marnieriana Leaves

The diurnal expression of gene expression is fundamental to CAM, and we ask
whether the differentially expressed miRNAs under drought stress were involved in
the circadian expression of genes. Through the Parallel Analysis of RNA Ends (also known
as PARE sequencing or degradome), we predicted the targets of miRNAs by using the
transcripts from the Kalanchoë genome database. In total, 381 miRNA-target regulations
(p < 0.05) were identified (Supplementary Table S3). To further search for the miRNA-
target regulation related to CAM pathway, we evaluated the diurnal transcriptome dataset
from K. fedtschenkoi leaves [19]. We focused on genes that displayed the expression peaks
at morning and dusk periods (Supplementary Figure S2A; Supplementary Dataset S3).
Interestingly, we found that PLASMA MEMBRANE PROTON ATPASE 2 (Kaladp0008s0304)
was identified as a target of miR369, which was revealed as a key regulator of stomatal
movement in K. fedtschenkoi [19]. In the dusk-peaked gene cluster, we showed that two
candidate targets of Kal-miR_C1817, including a MYB transcription factor and POF like
gene, displayed high expression levels in the daytime (Supplementary Figure S2B). In the
morning-peaked gene cluster, we found that two TZP-like genes were the targets of miR530
(Supplementary Figure S2B). TZP genes, also known as BLUS3-like genes, were essential
regulators of circadian clock and blue light signaling pathways [41,42]. We hypothesized
that the miR530-TZP regulatory module might be involved in directing the diurnal gene
expression patterns in Kalanchoë.

3.5. The Expression of miR530 and TZP Genes Is Affected by Circadian Clock and Light Signaling

To investigate the miR530-TZP regulatory module, we identified and validated the
genomic locus of miR530 through cloning and sequencing. The precursor of miR530
contains a typical stem-loop structure with abundant accumulation of small RNAs at the
mature and star regions (Figure 4A). Based on the deep sequencing analysis, we found
that the mature miR530 levels in mesophyll tissues were not significantly changed under
the drought treatments (Figure 4B), while more than 20-fold reduction was revealed in the
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epidermis under D10 and D25 conditions (Figure 4C). To validate the targets of miR530,
the Dual-Luciferase Transient Expression System was employed to evaluate the efficacy
of miRNA and its targets [38]. This analysis showed that both targeting sites of TZP1
and TZP2 were regulated by miR530 (Figure 4C), suggesting those transcripts were both
cleaved by miR530 in Kalanchoë.
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Figure 4. miR530 targets KmTZP1 and KmTZP2 in K. marnieriana. (A) Secondary structure of miR530 precursor in K.
marnieriana. Different colors indicate the depth of coverage of small RNA sequencing reads that are mapped to the precursor
as described before. (B) Expression of miR530 mature sequences in epidermis (orange) and mesophyll (green) under the
drought treatments. Three biological replicates are used for each quantification and statistical analysis. The Student’s test
is performed. Stars indicate significant differences (** indicates p-value < 0.01). TPM, Transcripts Per Kilobase of exon
model per Million mapped reads. (C) Verification of target sites of miR530-TZP1 (left) and miR530-TZP2 (right) by the
dual-luciferase assay. For each combination of verification, five replicates are used for inoculation as described [31]. The
Student’s test is performed. A star indicates significant differences (* indicates p-value < 0.05; ** indicates p-value < 0.01).

In order to reveal the roles of miR530 in the regulation circadian gene expression,
we performed time-course analysis of miR530, TZP1 and TZP2 expression. Under the
normal light–dark cycling condition, we showed that the miR530 expression peaked in
the middle of the night and dropped to the lowest level before dawn (Figure 5A); this
pattern negatively correlated with expression of TZP1/2 which peaked before the onset of
light (Figure 5A). The expression pattern of miR530 under normal light–dark cycle was
tested by JTK_cycle, which displayed a rhythmic expression (p-value = 0.003, period = 12,
amplitude = 0.2) [43]. A dramatic reduction of TZP1/2 after lighting for 10 min, suggested
that expression of TZP1/2 was also regulated by the light signaling pathway (Figure 5A). We
continued to monitor the expression profiles for two consecutive days under the constant
light conditions. We found that miR530 retained the similar accumulation pattern in Day 1,
but the peaked expression shifted about nine hours in Day 2 (Figure 5B,C). Alternatively,
the expression of TZP1/2 remained a single peak expression with slight shifts in Day 1
but displayed disrupted expression patterns in Day 2 (Figure 5B,C). Taken together, these
results suggest that the expression of miR530 is potentially under the regulation of circadian
rhythm, and both light signaling and circadian clock pathways might be involved in the
regulation of TZP1/2 expression.
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Figure 5. The expression patterns of miR530, KmTZP1 and KmTZP2 determined by the circadian clock. (A) The diel
expression of miR530 and its targets (KmTZP1 and KmTZP2) under the normal light-dark cycle. The interval of time-points
is 3 h, and three biological replicates are used for gene expression analysis. The 5 min before and after the light-on are
sampled for gene expression analysis (indicated by arrows). (B) The diel expression of miR530 and its targets (KmTZP1 and
KmTZP2) under constant light conditions, which is performed immediately after the normal light–dark cycle as indicated in
(A). (C) The diel expression of miR530 and its targets (KmTZP1 and KmTZP2) in the second day of constant light conditions.
Each panel indicates a sampling cycle of 24 h.

4. Discussion

Plant miRNAs are critical regulators of gene expression to acclimate to the envi-
ronmental changes [44]. In this study, we performed a genome-wide identification of
drought-responsive miRNAs in the obligate CAM plant K. marnieriana. The experimental
design focused on the differences between epidermal peels and mesophyll (Figure 1),
which revealed potential regulatory miRNAs involved in stomatal regulation and organic
acid metabolism. Indeed, the differential expression analysis showed that a small number
of miRNAs were commonly regulated in epidermal and mesophyll peels (Figure 3B), sug-
gesting a functional assignment of regulating gene expression by different miRNA families.
The genome-wide identification of miRNAs resulted in the discovery of eight potential
Kalanchoë-specific miRNAs (Figure 2B). Interestingly, we showed that six newly evolved
miRNAs were responsive to drought stress (Figure 3C). It will be valuable to investigate
the functions and evolution of the Kalanchoë-specific miRNAs.

We showed that miR530 was specifically downregulated in epidermal peels but not in
mesophyll (Figure 4B) and we also showed that miR530 targeted two TZP genes (KmTZP1
and KmTZP2; Supplementary Figure S2B), whose homologous gene in Arabidopsis con-
trolled the morning-specific growth [41,45]. It has been shown that TZP was an essential
regulator of both light and photoperiodic signaling [42,46]. We hypothesize that drought
stress might induce the levels of TZP proteins to coordinate the stomatal movement and
carboxylation process in CAM species. Moreover, in a recent study of rice, the targeting
of TZP homolog by miR530 was revealed to determine the grain yield [47]. Together with
our findings in Kalanchoë, we postulate that miR530-TZP is an evolutionary conserved
regulatory module downstream of the light signaling pathways.

We also found that the expression of miR530 displayed a diurnal rhythm that peaked
before dawn (Figure 5). In the obligate CAM plant pineapple (Ananas comosus), the diel
profiling of miRNA revealed 20 miRNAs belonging to 14 families that were rhythmically
expressed in leaves [30]. A member of miR530 clade displayed diel expression, but its
target genes were not resolved [30]. The shared diurnal role of miR530 in pineapple and
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Kalanchoë indicates a potential functional convergence of recruiting miRNA-mediated gene
regulation in CAM pathway. We showed that the peak expression of miR530 gradually
shifted under the constant light conditions (Figure 5), suggesting that the circadian clock
was not solely involved in maintaining the diel rhythm. Coincidentally, KmTZP1/2 were
substantially downregulated at the onset of lights (Figure 5). Therefore, we propose that
light–dark cycle, as well as the circadian clock, are required to ensure the specific diel
expression patterns for miR530 and TZP targets. In recent years, the CRISPR/Cas9 based
genome editing tools were shown to be a powerful strategy of generating knockout mutants
for studying the functions of the CAM-related genes [22]. Future research can be performed
to generate knockout mutants, using CRISPR/Cas9-mediated gene editing, for the miR530
and its target genes to validate their function.

Circadian oscillation of CO2 fixation in CAM plants is a distinctive phenomenon that
is arguably controlled by a CAM-unique clock [48,49]. Several large-scale transcriptome
analyses, using different CAM plants (e.g., agave, ice plant and cacti), have been performed
to uncover diel coexpression clusters related to CAM [20,50–52]. Our analyses of diurnal
expression of miRNAs and their potential targets revealed several critical miRNA-target
modules that are associated with CAM-gene expression (Supplementary Figure S2). Our
work provides an additional data source of gene expression underlying CAM clock, and
comparative studies of miRNA-targets modules in various CAM plants can be effective
methods to uncover the molecular switches underlying convergent C3-to-CAM evolution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10061526/s1, Figure S1: K. marnieriana is a constitutive CAM plants with enhanced leaf
titratable acids under drought treatments. Figure S2: Diurnal expression of potential miRNA targets
that are identified by the degradome analysis. Table S1: The primers used in this study. Table S2: The
statistics of small RNA sequencing results in K. marnieriana. Table S3: The predicted miRNA targets
in the diel transcriptome based on the degradome analysis.
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