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Abstract

Introduction In rheumatoid arthritis (RA), synovial fluid (SF)
contains a large number of neutrophils that contribute to the
inflammation and destruction of the joints. The SF also contains
granulocyte-macrophage colony-stimulating factor (GM-CSF),
which sustains viability of neutrophils and activates their
functions. Using proteomic surveillance, we here tried to
elucidate the effects of GM-CSF on neutrophils.

Methods Neutrophils stimulated by GM-CSF were divided into
four subcellular fractions: cytosol, membrane/organelle, nuclei,
and cytoskeleton. Then, proteins were extracted from each
fraction and digested by trypsin. The produced peptides were
detected using matrix-assisted laser desorption ionisation-time-
of-flight mass spectrometry (MALDI-TOF MS).

Results We detected 33 peptide peaks whose expression was
upregulated by more than 2.5-fold in GM-CSF stimulated
neutrophils and identified 11 proteins out of the 33 peptides
using MALDI-TOF/TOF MS analysis and protein database
searches. One of the identified proteins was neutrophil

gelatinase-associated lipocalin (NGAL). We confirmed that the
level of NGAL in SF was significantly higher in patients with RA
than in those with osteoarthritis. We next addressed possible
roles of the increased NGAL in RA. We analysed proteome
alteration of synoviocytes from patients with RA by treatment
with NGAL in vitro. We found that, out of the detected protein
spots (approximately 3,600 protein spots), the intensity of 21
protein spots increased by more than 1.5-fold and the intensity
of 10 protein spots decreased by less than 1 to 1.5-fold as a
result of the NGAL treatment. Among the 21 increased protein
spots, we identified 9 proteins including transitional
endoplasmic reticulum ATPase (TERA), cathepsin D, and
transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold
and 1.6-fold, respectively. Two-dimensional electrophoresis
followed by western blot analysis confirmed the upregulation of
TERA by the NGAL treatment and, moreover, the western blot
analysis showed that the NGAL treatment changed the protein
spots caused by post-translational modification of TERA.
Furthermore, NGAL cancelled out the proliferative effects of
fibroblast growth factor (FGF)-2 and epidermal growth factor
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lating factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; HRP: horseradish peroxidase; IL: interleukin; IEF: isoelectric focusing;
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(EGF) on chondrocytes from a patient with RA and proliferative
effect of FGF-2 on chondrosarcoma cells.

Conclusions Our results indicate that GM-CSF contributes to
the pathogenesis of RA through upregulation of NGAL in

neutrophils, followed by induction of TERA, cathepsin D and
TG2 in synoviocytes. NGAL and the upregulated enzymes may
therefore play an important role in RA.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory polyarthri-
tis, characterised by a proliferation of synovial cells and infiltra-
tion of inflammatory cells into the synovium. In RA, synovial
fluid (SF) contains a large number of neutrophils, which are
attracted from the synovial microstructure to the synovial cav-
ity by chemotactic agents such as Cba and leukotriene B [1].
The neutrophils in SF make contact with immune complexes
and digest them by phagocytosis. This process activates neu-
trophils. The activated neutrophils are characterised by a high
level expression of CD69, since CD69 is located intracellulary
in neutrophils at a resting state and moves rapidly to the cell
surface upon stimulation with phorbol myristate acetate or N-
formylmethionine leucyl-phenylalanine [2]. The activated neu-
trophils release reactive oxygen species [3,4], cytokines such
as interleukin (IL)1 and IL8 [5] and proteases [6], leading to
the inflammation and destruction of the joints in RA.

Development of neutrophils from haematopoietic stem cells
involves several cytokines. In particular, granulocyte colony-
stimulating factor (G-CSF) maintains neutrophil production at
steady state and increases production of neutrophils in emer-
gency situations [7,8]. By contrast, granulocyte-macrophage
colony-stimulating factor (GM-CSF) sustains the viability of
neutrophils and activates their functions. For example, GM-
CSF primes neutrophils via phosphorylation of p47phox for
the activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, which produces superoxide anions [9]. Fur-
ther, GM-CSF increases the activity of extracellular signal-reg-
ulated kinase (ERK) and delays apoptosis, possibly through
the activation of Lyn kinase [10,11]. In addition, GM-CSF stim-
ulates neutrophils to express CD69 activation marker on their
surface [12]. Clinically, GM-CSF has been reported to be pro-
duced at high levels from synoviocytes of patients with RA in
vitro [13] and, in fact, GM-CSF has been detected in SF from
patients with RA [14]. Thus, GM-CSF possibly contributes to
inflammation and destruction of joints in RA through neutrophil
activation. Therefore, it would be of great help in understand-
ing the pathogenesis of RA to clarify the effects of GM-CSF
on neutrophils. In the present work, we have tried to elucidate
the novel effects of GM-CSF on neutrophils by using pro-
teomic surveillance.

Proteomic surveillance methods, which have recently showed
prominent advances, are roughly divided into two types. The
first is direct use of mass spectrometry, and the other is the
combination of two-dimensional electrophoresis (2-DE) and
mass spectrometry (MS). Here, we first used matrix-assisted
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laser desorption ionisation-time-of-flight (MALDI-TOF) MS to
detect neutrophil peptides upregulated by GM-CSF. This
technique is reliable, as we recently used it to successfully
detect disease-specific short peptides in systemic sclerosis
[15]. We next used 2DE-MS to elucidate effects of one of the
GM-CSF-affected proteins, neutrophil gelatinase-associated
lipocalin (NGAL), on synoviocytes. NGAL has been reported
to be stimulated by GM-CSF in [35S]methionine metabolic
studies [16]. Our present proteomic surveillance study con-
firmed the upregulation of NGAL by GM-CSF in neutrophils.
Further, our present study found that stimulation of RA synovi-
ocytes by NGAL enhanced production of transitional endo-
plasmic reticulum ATPase (TERA), cathepsin D, and
transglutaminase 2 (TG2). Additionally, NGAL abolished the
proliferative effects of fibroblast growth factor (FGF)-2 and
epidermal growth factor (EGF) on chondrocytes from a patient
with RA, and the proliferative effect of FGF-2 on chondrosar-
coma cells.

Materials and methods

Cells and clinical samples

Human neutrophils were separated by dextran sedimentation
and Ficoll-Hypaque (GE Healthcare Bioscience, Piscataway,
NJ, USA) density-gradient centrifugation [17] from peripheral
blood of healthy volunteers. A chondrosarcoma cell line of
OUMS-27 [18] was obtained from Health Science Research
Resources Bank of Japan (Cell number, IFO50488).

Synoviocytes were prepared from synovial tissue samples
obtained from 62-year-old and 73-year-old women with RA,
and chondrocytes were obtained from a 72-year-old woman
with RA during knee joint arthroplasty. Synovial fluid samples
were obtained from 13 patients with RA (13 women, O men;
aged 59 to 84 years old, mean age 70.7 years) and 13
patients with osteoarthritis (OA) (10 women, 3 men; aged 55
to 89 years old, mean age 69.0 years). The patients were diag-
nosed according to the respective classification criteria for
each of the two diseases [19,20]. All the clinical samples were
obtained after the patients gave their informed consent, and
this study was approved by the local institutional ethics
committee.

Stimulation of neutrophils with GM-CSF and proteome
analysis by MALDI-TOF MS

The purified neutrophils were resuspended in RPMI 1640 con-
taining 10% foetal bovine serum (FBS), 100 U/ml penicillin,
100 pg/ml streptomycin, and 2 mM glutamine. The neutrophils
were cultured in the presence or absence of 400 U of



recombinant human GM-CSF (Millipore, Billerica, MA, USA)/
107cells under 5% CO, at 37°C for 18 h [12]. Then, the neu-
trophils were divided into four fractions: cytosol, membrane/
organelle, nuclei and cytoskeleton, and proteins were
extracted from each of the fractions using Subcellular Pro-
teome Extraction Kit (Merck, Rahway, NJ, USA), according to
the manufacturer's instructions. Each of the four protein frac-
tions was digested by trypsin (Promega, Madison, WI, USA)
for 3 h. The trypsin-digested peptides, concentrated by Ziptip
C18 (Millipore), were placed on the anchor chip of a MALDI-
TOF mass spectrometer (Ultrafrex, Bruker Daltonics, Bremen,
Germany) together with 100 fmol of a bradykinin fragment (m/
z of 757) (Sigma, St Louis, MO, USA) as an internal control
and 0.3 ug of 4-hydroxy-a-cinnamic acid matrix.

Next, mass spectra of peptide peaks were detected using the
automatic linear positive mode for simple comparison between
the sample groups. The MS analysis was then performed
using reflector mode to obtain accurate masses for the pep-
tides. Finally, the MS/MS (TOF/TOF) analysis and subsequent
sequence searching using Mascot [21] were performed to
identify the sequences of peptides of interest. A comparative
analysis of the mass spectra of the peptide peaks between the
GM-CSF-treated and the untreated samples was performed
by using ClinProt Tools software v. 1.0 (Bruker Daltonics) as
previously described [15]. The intensities of the detected pep-
tides were normalised using that of the bradykinin fragment.

Western blotting

The cultured neutrophils were solubilised in lysis buffer con-
taining 30 mM Tris-HCI, pH 8.5, 4% 3-((3-cholamidopro-
pyl)dimethylammonio)propanesulfonate (CHAPS), 7 M urea,
and 2 M thiourea. After centrifugation for 30 min at 14,000 g,
the supernatant was used for separation by 12.5% sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis
(PAGE). The separated proteins were then transferred to nitro-
cellulose membranes. After blocking for 1 h in phosphate buff-
ered saline (PBS) containing 1% bovine serum albumin and
0.1% Tween-20, the membrane was incubated for 1 h with a
rat monoclonal anti-human NGAL antibody (R&D Systems,
Minneapolis, MN, USA), followed by incubation with horserad-
ish peroxidase (HRP)-conjugated goat anti-rat IgG antibodies.
Immunoreactive bands were detected by using 3,3'-diami-
nobenzidene (DAB) and H,0.,.

Real-time polymerase chain reaction (PCR)

Total RNA was isolated from the cultured neutrophils using an
RNeasy mini kit (Qiagen, Hilden, Germany). Reverse transcrip-
tion of mMRNA was performed using oligo-dT primers (Invitro-
gen, Carlsbad, CA, USA) and SuperScript Il reverse
transcriptase (Invitrogen). The produced cDNA were used as
templates for quantitative PCR amplification. The sequences
of the primers used were as follows: NGAL (forward) 5'-gtag-
gcctggcagggaatg-3'; NGAL (reverse) 5'-ggaacaaaagtcct-
gatccagtagtc-3'; glyceraldehyde 3-phosphate dehydrogenase
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(GAPDH) (forward) 5'-aatggaaatcccatcaccatcit-3'; GAPDH
(reverse) 5'-catcgccccacttgattttg-38'. PCR was  performed
using a LightCycler FastStart DNA Master SYBR Green |
(Roche Diagnosis, Mannheim, Germany). The expression of
mRNA for NGAL was normalised by that of a constitutively
expressed housekeeping gene of GAPDH, and the values are
expressed as a ratio of NGAL/GAPDH.

Quantitation of NGAL in synovial fluids by ELISA
Concentrations of NGAL in the synovial fluid of patients with
RA and of patients with OA were measured using a commer-
cially available ELISA kit (Antibodyshop, Gentofte, Denmark)
according to the manufacturer's instructions.

Preparation of total protein from the cultured
synoviocytes and protein labelling

The separated synoviocytes were cultured in Ham's nutrient
mixture F-12 containing 10% FBS, 100 U/ml penicillin, and
100 pg/ml streptomycin. After two passages, almost all the
cells were fibroblast-like synoviocytes (type A synoviocytes),
as judged by microscopic observations. The cells were treated
with or without 10 pg/ml of recombinant human NGAL (R&D
Systems) under 5% CO, at 37°C for 48 h. After two washes
in PBS, the cells were dissolved in a lysis buffer containing 30
mM Tris-HCI (pH 8.0), 4% CHAPS, 7 M urea, and 2 M thiou-
rea for 2-DE analysis. The extracted proteins were labelled
with saturation dyes of Cy3 and Cy5 according to the manu-
facturer's instructions.

Two-dimensional differential gel electrophoresis (2D-
DIGE) analysis and protein identification

The labelled proteins were separated by 2D-DIGE as
described previously [22]. Briefly, 2.5 ng of each protein sam-
ple of synoviocytes treated or untreated by NGAL was
reduced with 2 nmol of Tris (2-carboxyethyl)-phosphine hydro-
chloride (Molecular Probes, Eugene, OR, USA) for 1 h at
37°C. Subsequently, 4 nmol of Cy5 saturation dye, freshly dis-
solved in anhydrous N, N-dimethylformamide, was added and
the reaction was incubated at 37°C for 30 min. The labelling
reaction was terminated by addition of an equal volume of lysis
buffer (7 M urea, 2 M thiourea, 4% CHAPS, 130 mM dithioth-
reitol (DTT), and 2.0% Pharmalyte pH 4-7 (GE Healthcare)).
All the labelling procedures were carried out in the dark. For
the internal standard, equal aliquots (2.5 pg) of each sample,
untreated or treated with NGAL, were pooled and labelled
with Cy3 saturation dye. Then, the saturation Cy3-labelled
internal standard sample and each of the individual saturation
Cyb-labelled proteins were mixed and diluted to a final volume
of 450 pl. the labelled proteins were mixed and loaded onto a
24 cm Immobiline Dry-Strip covering the range of pH 4 to pH
7 (GE Healthcare) for isoelectric focusing (IEF) using IPGphor
(GE Healthcare). After IEF, the strips were equilibrated in the
equilibration solution (50 mM Tris-HCI, pH 8.8, 6 M urea, 30%
glycerol, 2% SDS, 10 mg/ml DTT) for 15 min at room temper-
ature. The equilibrated strips were placed on top of 12.5%

Page 3 of 12

(page number not for citation purposes)



Arthritis Research & Therapy Vol 11 No 1 Katano et al.

SDS-PAGE slab gels and sealed with a solution of 0.5% (w/
v) agarose. Separation of the proteins by 2-DE was performed
using 12.5% SDS-PAGE. The separated labelled proteins
were scanned at 100-um resolution using an image analyser
(Typhoon 9400 Imager, GE Healthcare) according to the man-
ufacturer's instructions. The acquired gel images were ana-
lysed using Progenesis software (Perkin EImer, Wellesley, MA,
USA).

For identification of proteins, 2-DE gel fragments with approx-
imately 1 mm in diameter, which corresponded to protein
spots of interest by the image analysis, were recovered and
washed in double-distilled water for 15 min. Then, the gel frag-
ments were cut into small pieces and decoloured in 200 pl
decolouring solution (25 mM ammonium hydrogen carbonate,
50% acetonitrile) at room temperature for 10 min. The gel
pieces were rehydrated in 10 ul trypsin solution (50 mM
ammonium hydrogen carbonate, 5 mM calcium chloride, 0.02
pg/pl trypsin) and incubated at 37°C for 16 h for digestion of
the contained proteins with the trypsin. The digested peptides
were extracted from the gel pieces using trifluoroacetic acid
(TFA) and acetonitrile. Specifically, the digested products
were supplemented with 50 pl of 5% TFA in 50% acetonitrile
solution and vortexed. After centrifugation, the supernatant
was recovered. After three more cycles of this extraction, the
supernatant was filtered and concentrated down to 10 plin an
evaporator. The peptide sample solution was stored at -20°C
until mass spectrometric analysis. Masses of the digested
peptides in the samples were determined using a MALDI-
TOF/TOF MS (Uliraflex, Bruker Daltonics). A list of the peptide
masses determined was compiled for searching of the
National Center for Biotechnology Information (NCBI) protein
database using the Mascot software program (Matrix Science,
London, UK).

2-DE separation and western blotting analysis of TERA
Synoviocytes were prepared from synovial tissue sample
obtained from a 62-year-old woman with RA, and cultured as
described above. After two passages, the cells were treated
with or without 10 pg/ml of recombinant human NGAL for 48
h. Proteins were extracted and 100 pg of each protein sample
from synoviocytes, treated or untreated with NGAL, were sep-
arated by 2-DE. The separated proteins were blotted onto a
polyvinylidene difluoride membrane and detected with anti-
TERA antibody (Affinity BioReagents, Golden, CO, USA)
using ECL Advance western blotting detection reagents (GE
Healthcare).

Dimethylthiazol diphenyltetrazolium bromide (MTT)
assay

OUMS-27, a human chondrosarcoma cell line, was cultured in
DMEM containing 10% FBS, 100 U/ml penicillin, 100 pg/ml
streptomycin, and 4 mM glutamine under 5% CO, at 37°C. A
total of 3 x 103 cells were seeded into each well of the 96-well
plates. Then, the cells were treated with FGF-2 (1 ng/ml), and/
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or NGAL (1 pg/ml). After 0, 24, 48, and 96 h, the medium was
replaced by a new batch containing MTT (0.5 mg/ml) and the
cells were further incubated at 37°C for 4 h. Finally, the
medium containing MTT was removed and 0.2 ml of 100%
dimethylsulfoxide was added to each well. The absorbance
was measured at 570 nm and at 650 nm as background
subtraction.

Chondrocytes were prepared from cartilage tissue sample
obtained from a 72-year-old woman with RA during knee joint
arthroplasty, and cultured as described above. A total of 3 x
108 cells were seeded into each well of the 96-well plates.
Then, the cells were treated with FGF-2 (1 ng/ml) or EGF (1
ng/ml), and/or NGAL (1 pg/ml) for O, 48, and 72 h, and sub-
jected to the MTT assay.

Statistical analysis

Statistical significance was calculated by using the Student t
test. A value of p < 0.05 was considered to be statistically
significant.

Results

Proteome analysis of GM-CSF-treated or -untreated
neutrophils by MALDI-TOF MS

To understand effects of GM-CSF on resting neutrophils, we
treated neutrophils obtained from healthy donors with GM-
CSF for 18 h, at which point maximal CD69 induction by GM-
CSF was observed [12], and then compared their proteome
profile to that of untreated neutrophils using MALDI-TOF MS.
First, we confirmed that GM-CSF induced activation of neu-
trophils by detecting CD69 on the cell surface using flow
cytometry. On untreated neutrophils CD69 was undetectable,
however the GM-CSF-treated neutrophils expressed CD69
strongly (data not shown). Next, we tried to ascertain whether
GM-CSF affected neutrophil proteins by MALDI-TOF MS. We
extracted total proteins from the GM-CSF-treated neutrophils
and from the untreated neutrophils, digested them with trypsin
and subjected the peptides produced to MALDI-TOF MS.
Although many peptide peaks were detected, the intensities of
the peaks were low (data not shown). Therefore, the differ-
ences between the peaks from treated and untreated neu-
trophils were poorly reproducible and the identification of the
peptides by MS/MS analysis was confusing. Consequently,
we divided the neutrophils into four subcellular fractions:
cytosol, membrane/organelle, nuclei and cytoskeleton. Pro-
teins extracted from each fraction were digested by trypsin,
and the peptides produced subjected to MALDI-TOF MS. In
this way, we successfully obtained representative peptide
peak profiles as shown in Figure 1. We detected a total of 544
peptide spectra in the fractions. The intensities of the peptide
peaks were normalised by the intensity of the bradykinin pep-
tide fragment added as an internal control. Then, peptide
peaks whose intensities were not less than 2.5-fold higher, or
not more than 1 to 2.5-fold lower in GM-CSF-treated neu-
trophils than in untreated neutrophils, were selected for



Available online http://arthritis-research.com/content/11/1/R3

Figure 1
cytosolic fraction membranes/organelles fraction GM-CSF
A x 10* x 10*,
s 1375.7
08 1097.6 1436.9 ( )
1 9635 L1987 1455.7 11988
1325 ) 041 466 10426 9
1097.5 12727 1375.6
0 | il l . A " 00
x 10 x 10"
8 oeas 1375.6
08 . 1436.9
ol 11987 14557 . 1198.8 (+)
11325 04 12299
> 1097.5 l 12727 13755 9766 10426
N oy el A ok sadia)
* 5 o=t 1000 1100 1200 1300 1400 b0
: 1000 1100 1200 1300 1400
= nucleic fraction cytoskeleton fraction
o v— x10¢

1375.7 1436.8

3000

2000
1097.5

1464.8)

1436.8

1339.7

1000 1195.6

1243.7

st

5.7

0
3000 137.

2000

1097.5

1464.8)

I

1000

Mk,

1229.9

e 1108.7

1175.6

1229.8 13753

.

97[.()

1136.6
1019.6

Ll

AT

393.:
sihe bbb S

o

1000 1100 1200 1300 1400

L

1108.6
el
1000 1100

1200 1300 1400

>

m/z

Detection of trypsin digested peptides from granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated neutrophils by
matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Neutrophils, treated with GM-CSF or
untreated, were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei and cytoskeleton. Then, proteins were extracted from
each fraction and digested by trypsin. The produced peptides, concentrated by Ziptip C18, were placed together with a bradykinin peptide (m/z of
757) as an internal control on a chip of the MALDI-TOF MS. Representative spectra from 900 to 1,500 m/z are shown in each of the four fractions.

analysis. Using this method 47 peptide peaks (increase: 33,
decrease: 14) were selected, as shown in Table 1.

We then tried to identify these peptides by de novo sequenc-
ing using MS/MS analysis and subsequent protein database
searching. We successfully identified amino acid sequences
and parent proteins for 11 of the 47 peptide peaks, as shown
in Table 2.

Confirmation of increased expression of NGAL in GM-
CSF-treated neutrophils

Among the 11 identified proteins (Table 2), we focused on
NGAL as it has been reported to be involved in the allosteric
activation of matrix metalloproteinase (MMP)-9 [23-25], and in
the protection of MMP-9 against degradation [23-25]. In fact,
elevated serum levels of MMP-9 in RA have been reported
[26].

The intensity of the NGAL-derived peptide (m/z 1,971.0:
monoisotopic ion, and m/z 1,972.0, 1,973.0, 1,974.0: isotopic
ions) showed an approximate fourfold increase from the GM-
CSF treatment, as shown in Figure 2a. We first investigated
whether GM-CSF upregulated the expression of an entire
NGAL molecule in neutrophils. Specifically, NGAL in the
whole neutrophil lysate was detected by SDS-PAGE followed
by western blotting with antibodies to human NGAL. We dem-
onstrated upregulated production of the entire NGAL mole-
cule in neutrophils by GM-CSF (Figure 2b). Further, we next
measured the amounts of NGAL mRNA by real-time PCR. As
shown in Figure 2c¢, the level of NGAL mRNA after 4 h of stim-
ulation with GM-CSF increased to be approximately fivefold
higher than the level prior to stimulation (p = 0.01). This ele-
vated level almost disappeared after 18 h, which indicated the
effect of GM-CSF was transient. Thus, the increased produc-
tion of the entire NGAL molecule by GM-CSF was demon-
strated both at the transcript and protein levels.
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Table 1

Katano et al.

Table 1 (Continued)

Peptide peak intensities increased or decreased by the
treatment of granulocyte-macrophage colony-stimulating
factor (GM-CSF)

Peptide peak intensities incr d or decr d by the
treatment of granulocyte-macrophage colony-stimulating
factor (GM-CSF)

m/z Ratio (treated/untreated) Fraction
2,176.0 5.0 Cytosol
2,216.0 33 Cytosol
763.4 3.1 Cytosol
2,042.1 2.9 Cytosol
963.5 2.9 Cytosol
2,726.4 2.8 Cytosol
2,0089 238 Cytosol
2,138.2 2.7 Cytosol
1,882.9 2.7 Cytosol
854.4 2.7 Cytosol
795.5 2.7 Cytosol
1,5615.7 26 Cytosol
1,883.9 2.6 Cytosol
1,630.8 25 Cytosol
825.2 7.8 Organelle/membrane
1,791.0 4.0 Organelle/membrane
841.2 3.7 Organelle/membrane
2,191.3 3.7 Organelle/membrane
845.2 3.0 Organelle/membrane
2,690.6 2.9 Organelle/membrane
861.2 2.8 Organelle/membrane
2,045.2 2.7 Organelle/membrane
19542 2.7 Organelle/membrane
1,813.0 2.6 Organelle/membrane
711.4 2.6 Organelle/membrane
1,479.9 25 Organelle/membrane
23842 25 Organelle/membrane
841.1 2.6 Nuclei
792.5 0.3 Nuclei
1,577.9 29 Cytoskeleton
1,562.0 2.8 Cytoskeleton
1,669.9 2.6 Cytoskeleton
1,684.0 2.6 Cytoskeleton
1,231.8 26 Cytoskeleton
1,810.0 04 Cytoskeleton
2,064.1 0.4 Cytoskeleton
743.1 0.4 Cytoskeleton
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2,053.1 0.4 Cytoskeleton
2,036.1 0.4 Cytoskeleton
1,760.0 0.3 Cytoskeleton
1,636.0 0.3 Cytoskeleton
2,621.4 0.3 Cytoskeleton
1,772.3 0.3 Cytoskeleton
1,762.0 0.3 Cytoskeleton
2,152.2 0.3 Cytoskeleton
2,035.1 0.3 Cytoskeleton
2,0156.2 0.3 Cytoskeleton

Detection of NGAL in synovial fluid of patients with RA or
OA

As stated above, GM-CSF-activated neutrophils increased the
production of NGAL in vitro. Therefore, we addressed whether
the concentration of NGAL in synovial fluid (SF) of patients
with RA was elevated by ELISA. We found the concentrations
of NGAL in SF were significantly higher in patients with RA
than in patients with osteoarthritis (OA) (p =0.009, Figure 2d),
as described previously [27]. Taking this result together with
the in vitro increase of NGAL in the GM-CSF-stimulated neu-
trophils, the elevated NGAL levels in the joints of patients with
RA would be explained by the activation of neutrophils by GM-
CSF.

Proteome analysis of the effects of NGAL on
synoviocytes

Next, we addressed possible roles of the increased NGAL in
RA. As reported, NGAL is involved in the allosteric activation
of MMP-9 and protection of MMP-9 from degradation [23-25].
However, other functions of NGAL remain to be elucidated.
We tried to detect other effects of NGAL on synoviocytes.
NGAL did not stimulate synoviocytes to proliferate nor survive
(data not shown). Since the concentration of NGAL was found
to be high in synovial fluid in RA (Figure 2d), we analysed pro-
teome alteration in synoviocytes from patients with RA by
treatment with NGAL in vitro. Specifically, proteins extracted
from synoviocytes, treated or untreated with NGAL, were sep-
arately labelled with two different fluorescent dyes (Cy3 and
Cy5) and then analysed by 2D-DIGE, which provided a visual
image of proteome differences (Figure 3). For a quantitative
assay, equal amounts of proteins from NGAL-treated and
untreated synoviocytes were mixed and labelled with Cy3 as a
standard. Additionally, each of the two samples was labelled
with Cy5 and then was compared with the standard. Approxi-
mately 3,600 protein spots were detected on the gel. Out of
the detected protein spots, the intensities of 21 protein spots
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Identification of the increased neutrophil proteins by the treatment of granulocyte-macrophage colony-stimulating factor (GM-CSF)

m/z Protein Ratio (treated/untreated) Fraction Accession no. (Swiss-Prot)
2,176.0 S100 calcium binding protein A9 5.0 Cytosol [Swiss-Prot:P06702
763.4 Neuropeptide S 3.1 Cytosol [Swiss-Prot:POCOP6
963.5 S100 calcium binding protein A8 2.9 Cytosol [Swiss-Prot:P05109
854.4 NADH dehydrogenase 1 o subcomplex subunit 3 2.7 Cytosol [Swiss-Prot:095167
795.5 Membrane-associated guanylate kinase 2.7 Cytosol [Swiss-Prot:Q96QZ27
1,515.7 Actin, B 2.6 Cytosol [Swiss-Prot:P60709
825.2 Ubiquitin-conjugating enzyme E2 E1 7.8 Organelle/membrane  [Swiss-Prot:P51965
1,791.0 Neutrophil gelatinase-associated lipocalin (NGAL) 4.0 Organelle/membrane  [Swiss-Prot:P80188
841.2 BMP-binding endothelial regulator protein 3.7 Organelle/membrane  [Swiss-Prot: Q8N8U9
845.2 Glycoprotein M6-b 3.0 Organelle/membrane  [Swiss-Prot:Q13491
1,480.0 FYVE, RhoGEF and PH domain-containing protein 4 2.5 Organelle/membrane  [Swiss-Prot:Q96M96

BMP, bone morphogenetic protein; FYVE, phenylalanine (F)/tyrosine (Y)/valine (V)/glutamic acid (E) domain; Rho, Ras homolog; GEF, guanine

nucleotide exchange factor; PH, pleckstrin homology.

were found to have increased by more than 1.5-fold and 10
decreased by less than 1 to 1.5-fold as a result of the NGAL
treatment (Table 3). We tried to identify the 21 increased pro-
tein spots, and successfully identified 9 protein spots as
shown in Table 4. Among the nine identified proteins, TERA,
TG2 and cathepsin D are especially interesting, since they are
thought to be involved in promotion of inflammation (as dis-
cussed below).

Confirmation of the upregulation of TERA after the NGAL
treatment

To confirm the results obtained from the proteomic analysis,
we determined whether TERA was increased after NGAL
treatment using western blot analysis. This experiment was
performed using synoviocytes from a different donor. Proteins
were extracted from the synoviocytes treated with or without
NGAL, and separated by 2-DE. The separated proteins were
blotted onto a membrane and detected with anti-TERA anti-
body. As shown in Figure 4, a series of protein spots with sim-
ilar MW but different pl values were detected as TERA. We
measured the total amount of chemical luminescence of each
sample. The amounts from the NGAL untreated and treated
samples were 3.22 x 107 AU and 6.52 x 107 AU, respectively.
Thus, we have shown NGAL treatment increases the amount
of TERA in synoviocytes. Furthermore, 2-DE separation and
western blotting revealed that the NGAL treatment decreases
protein spots with basic pl (Figure 4a, arrow) and increases
protein spots with acidic pl (Figure 4b, arrowhead). These
acidic pl shifts of the protein spots without apparent change
of MW could be caused by post-translational modifications
(PTMs) such as acetylation and/or phosphorylation.

Effect of NGAL on the proliferation of OUMS-27 and
chondrocytes treated with FGF-2 and EGF

Using a chondrosarcoma cell line (OUMS-27) and chondro-
cytes from a patient with RA, we tried to elucidate the effects
of NGAL on proliferation of chondrocytes and on the
proliferative action of growth factors. First of all, we tested the
action of three growth factors, FGF-2, EGF and TGF-a, on the
proliferation of OUMS-27 cells. The proliferation of OUMS-27
cells was significantly upregulated by FGF-2, but not by EGF
or TGF-a. (data not shown). Therefore, we tested the effects of
NGAL with FGF-2. We found, as shown in Figure 5a, NGAL
alone did not bring about any significant effects on the prolif-
eration of the cell line. However, the simultaneous addition of
NGAL and FGF-2 totally cancelled the proliferative effects of
FGF-2 on OUMS-27 cells (Figure 5a). Next, we elucidated the
effects of NGAL on the chondrocytes from a patient with RA.
Similarly, NGAL alone did not bring about any significant effect
on the proliferation of the chondrocytes, but the simultaneous
addition of NGAL and FGF-2/EGF cancelled the proliferative
effects of FGF-2 (Figure 5b) and of EGF (Figure 5c) on the
chondrocytes.

Discussion

In this study, we investigated effects of GM-CSF on neu-
trophils by the proteomic approach to understand the role(s)
of neutrophils in RA. We have revealed that GM-CSF upregu-
lates the expression of NGAL in neutrophils and that the con-
centration of NGAL in synovial fluid is elevated significantly in
RA patients compared to OA patients. As mentioned earlier,
NGAL is reported to be involved in the allosteric activation of
MMP-9 and protection of MMP-9 from degradation [23-25],
and further, levels of MMP-9 are reported to be high in the
serum and synovial fluid of RA patients [26]. Therefore, neu-
trophils activated by GM-CSF possibly bring about strong

Page 7 of 12

(page number not for citation purposes)


http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P06702
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P0C0P6
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P05109
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O95167
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q96QZ7
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P60709
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P51965
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P80188
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8N8U9
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q13491
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q96M96

Arthritis Research & Therapy Vol 11 No 1 Katano et al.

Figure 2
(a) x10* 1791.0 (b)
o 1792.0 GM-CSF
S GM-CSF
_____ O NC
L 08 ) +)
2
o 06 1793.0 NGAL
5
0.4 Ll
0.2
0 bePAA AL S S AN NIANINALAL
1788 1790 1792 1794 1796 1798 1800
m/z
(©) T 012 p=001 () -0.009
2 O GM-CSF (-) 3.0 ,p"—|
S 0.1 .
b B GM-CSF (+) 25 8
S 008 _
E g 2.0 o
0.06
3 215
o 3
0.04
< n.s. % 1.0 8
< ———
Z 0.02
: ~—l . &
0
0 S
4hr 18hr RA OA

culture time

Confirmation of increase of neutrophil gelatinase-associated lipocalin (NGAL) in neutrophils stimulated with granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) and in the synovial fluid of patients with rheumatoid arthritis (RA). (a) The intensity of the peptide with m/z
1,791.0, detected by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and identified as NGAL by de
novo sequencing using MS/MS and protein database searching, was compared between the organelle/membrane fractions of GM-CSF-treated and
untreated neutrophils. (b) The increase of NGAL indicated by the mass spectrometric detection was further confirmed by western blotting using
neutrophil lysate. Neutrophils treated with GM-CSF for 18 h or untreated were lysed, and separated on 12.5% SDS-PAGE gels. Then NGAL was
probed by antibodies to human NGAL. The bound antibodies were visualised by horseradish peroxidase (HRP)-labelled secondary antibody and
3,3'-diaminobenzidene (DAB). NC, negative control — no first antibody and only HRP-labelled secondary antibody was used.(c) NGAL mRNA
expression measured by real-time polymerase chain reaction (PCR) analysis. Total RNA was isolated from neutrophils treated with or without GM-
CSF for 4 and 18 h. The amount of NGAL mRNA was expressed as a relative value, compared to that of the constitutively expressed housekeeping
gene of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data are presented as mean + standard deviation (SD) (n = 3). (d) Concentration
of NGAL in synovial fluid was measured by ELISA. The horizontal bars indicate the mean values. Each open circle indicates a concentration of NGAL

in synovial fluids from individual patients.

activation of MMP-9 by producing NGAL, a pathway that
would lead to invasion of immune cells and degradation of car-
tilage. The activation of MMP-9 is the main known function of
NGAL, so we addressed the need to find other effects of
NGAL on synoviocytes. By 2D-DIGE proteomic analysis, we
identified nine proteins whose expression is upregulated in
synoviocytes by NGAL.

Of the nine identified proteins, three (TG2, cathepsin D and
TERA) were interesting for the following reasons. First, TG2
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belongs to a family of calcium-dependent enzymes which cat-
alyse the acyl transfer reaction between the y-carboxamide
group of a protein-bound glutamine residue and the primary
amine group of either a protein-bound lysine residue or other
polyamine molecules [28]. Although formation and remodel-
ling of the extracellular matrix [29] are well investigated func-
tions of TG2, intracellular roles have been highlighted only
recently. Specifically, TG2 has been reported to activate
nuclear factor (NF)xB that contributed to the progression of
inflammatory diseases independently of kB kinase activation
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A representative two-dimensional differential gel electrophoresis
(2D-DIGE) analysis of neutrophil gelatinase-associated lipocalin
(NGAL)-affected proteins in synoviocytes. Proteins from synovio-
cytes treated with NGAL or untreated were labelled separately with
Cy5 (green) and Cy3 (red), and then were separated on the same gel
using the 2D-DIGE system. Approximately 3,600 protein spots were
visualised by laser scanning. On treatment with NGAL, the intensities of
15 and 6 protein spots increased by up to more than 1.5-fold and
decreased by less than 1 to 1.5-fold, respectively. Identified protein
spots are indicated by open circles. The number near the circle is the
spot number, as indicated in Table 4.

by polymerising IkB [30]. Further, TG2 has been reported to
serve as an inhibitor of apoptosis of cells by crosslinking of
caspase 3 [31]. Taking these reports together with our data,
the increase of TG2 by NGAL may contribute to activation of
NF«xB in synoviocytes and their proliferation in RA.

The second protein of interest was cathepsin D, an aspartic
protease. Cathepsin D has been reported to play important
roles in the release T cell epitopes from protein antigens for
presentation by major histocompatibility complex (MHC) class
Il molecules [32,33]. Further, synovial cells in patients with RA
are known to aberrantly express MHC class Il molecules and
to act as antigen-presenting cells [34-36]. Thereby the
increase of cathepsin D may promote immune reaction in the
joints. Cathepsin D is associated with the proliferation, inva-
sion and metastasis of tumour cells. In fact, cathepsin D has
been reported to correlate directly with the prognosis of
patients with cancer of various organs [37-40]. Additionally,
cathepsin D has been reported to be expressed in synovial tis-
sue of patients with RA at a high level compared to that with
OA [41]. Thus, the high expression of cathepsin D in RA would
be involved in the enhancement of aberrant immunological
reactions as well as the enhancement of proliferation or inva-
sion of synoviocytes of RA.

The third identified protein of interest was TERA, also known
as valosin-containing protein. TERA plays a key role in the
ubiquitin-dependent proteasome degradation pathway [42].

Number of neutrophil gelatinase-associated lipocalin (NGAL)-
affected synoviocyte proteins detected by 2D-DIGE

Change of spot intensities (treated/untreated) No. of protein spots

3.0<x 1
2.0<x<3.0 3
1.5<x<20 17
0.67<x<15 2,245
05<x<0.67 7
0.33<x<0.5 2
x<0.33 1
Total 2,276

TERA has been reported to work as an antiapoptotic factor
and promote metastasis of tumour cells through constant acti-
vation of NFkB in vitro [43] and has been reported to play an
important role in Akt-mediated signalling of cell survival [44]. In
fact, high-level expression of TERA in tumours has been
reported to be a poor prognostic marker in patients with color-
ectal carcinomas [45]. It should be mentioned here that TERA
was the protein with the most increased level after NGAL-
treatment among the nine identified proteins (Table 4), and

Figure 4
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Western blotting analysis of transitional endoplasmic reticulum
ATPase (TERA). Synoviocytes prepared from a patient with rheuma-
toid arthritis (RA) were cultured in the absence (a) or the presence (b)
of neutrophil gelatinase-associated lipocalin (NGAL) for 48 h. Proteins
were extracted and separated by two-dimensional electrophoresis (2-
DE). The separated proteins were blotted and detected with anti-TERA
antibody. Arrows represent the protein spots decreased after the
NGAL treatment. Arrowheads represent the protein spots increased
after the NGAL treatment.
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Table 4
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The identified synoviocyte proteins increased by neutrophil gelatinase-associated lipocalin (NGAL)

Spot no.  Ratio (treated/untreated) MW (kDa)/pl (observed) Protein MW (kDa)/pl (calculated) Accession no. (Swiss-Prot)
497 4.8 93.3/5.4 Transitional endoplasmic 89.0/5.1 [Swiss-Prot:P55072
reticulum ATPase
451 1.6 95.0/5.5 Actinin 4 104.8/5.3 [Swiss-Prot:043707
540 1.6 91.0/5.4 Transglutaminase 2 77.3/5.1 [Swiss-Prot:P21980
2,217 1.5 29.5/5.6 Cathepsin D 44.5/6.1 [Swiss-Prot:P07339
1,004 1.6 67.6/6.4 T-complex protein 1 subunit  57.3/6.0 [Swiss-Prot:P78371
1,877 1.6 38.9/5.7 Dimethylargininase-2 38.9/5.7 [Swiss-Prot:095865
2,135 1.6 32.9/5.4 Prohibitin 29.8/5.6 [Swiss-Prot:P35232
2,344 1.8 28.0/5.9 Endoplasmic reticulum 28.0/5.9 [Swiss-Prot:P30040
protein 29
2,857 1.5 18.4/6.0 Nucleoside diphosphate 17.1/5.8 [Swiss-Prot:P15531

kinase A

PTMs of TERA were changed by the treatment (Figure 4).
Therefore, increased amounts and changed PTMs of TERA in

the synoviocytes treated by NGAL may also contribute to both
inflammation of synovium and proliferation of synovial cells.

Figure 5

Taken together, the increased level of NGAL expressed from
GM-CSF-stimulated neutrophils in SF upregulates TG2,
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Effect of neutrophil gelatinase-associated lipocalin (NGAL) on the proliferation of OUMS-27 cells (a) and chondrocytes (b, c). A chondrosa-
rcoma cell line (OUMS-27) and chondrocytes from a patient with rheumatoid arthritis (RA) were cultured in medium containing 1 ng/ml fibroblast
growth factor (FGF)-2 (a, b) or 1 ng/ml epidermal growth factor (EGF) (c) and/or 1 pg/ml NGAL. After the time indicated on the x axis, the prolifera-

tion of OUMS-27 cells and chondrocytes were measured by dimethylthiazol diphenyltetrazolium bromide (MTT) assay.
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cathepsin D and TERA. Thereafter, these three enzymes pos-
sibly cause a proliferation of synovial cells and infiltration of
inflammatory cells into the synovium, leading synovial cells to
the RA state.

Finally, we investigated whether NGAL affected the prolifera-
tion of chondrocytes and chondrosarcoma cells. Interestingly,
NGAL cancelled the proliferative effect of FGF-2 and EGF on
chondrocytes and that of FGF-2 on chondrosarcoma cells, but
did not suppress the baseline proliferation of either cell type.
This indicates that NGAL inhibits the FGF-2 and EGF signal-
ling pathway in an intracellular or extracellular manner. FGF-2
and EGF, as well as TGF-f and other growth factors, are
thought to be important for homeostasis of cartilage. For exam-
ple, FGF-2 has been reported to play crucial roles in enhanc-
ing chondrogenic lineage differentiation in human bone
marrow-derived mesenchymal cells [46] and in adipose-
derived mesenchymal cells [47]. Therefore, the cancellation of
the proliferative effects of FGF-2 and EGF by NGAL would
contribute to the degradation of cartilage in RA.

Conclusion

Our study implicates the follwing chain reaction in RA: GM-
CSF-stimulated neutrophils increase production of NGAL,
then NGAL enhances immunological and/or cell biological
activation of synoviocytes through TG2, cathepsin D, and
TERA. Further, NGAL abolishes chondrocyte proliferation by
FGF-2 and EGF. NGAL may therefore be a crucial pathogenic
factor and also a therapeutic target of RA.
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