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Summary

Background: miRNA have been proposed as potential biomarkers of metabolic

diseases.

Objectives: To identify potential miRNA biomarkers of early metabolic-associated

fatty liver disease (MAFLD) and/or insulin resistance (IR) in preadolescent children.

Methods: A total of 70 preadolescents, aged 8.5–12 years old participated in the

study. Hepatic fat was assessed by magnetic resonance imaging. Fasting blood bio-

chemical parameters were measured and HOMA-IR calculated. Peripheral blood

mononuclear cells (PBMC)-derived miRNA profiles associated with MAFLD (≥5.5%

hepatic fat) and IR (HOMA-IR ≥2.5) were identified using untargeted high-throughput

miRNAs sequencing (RNA-seq).

Results: A total of 2123 PBMC-derived miRNAs were identified in children with

(21.4%) or without MAFLD. Among them, hsa-miR-143-3p, hsa-miR-142-5p and hsa-

miR-660-5p were up-regulated, and p-hsa-miR-247, hsa-let-7a-5p and hsa-miR-

6823-3p down-regulated. Importantly, children with MAFLD had consistently higher

miR-660-5p expression levels than their peers without it (p < 0.01), regardless of

weight status. A total of 2124 PBMC-derived miRNA were identified in children with
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IR (28.6%) versus children without IR, where thirteen of them were dysregulated

(p < 0.05) in children with IR. In addition, children with IR showed higher levels of

miR-374a-5p and miR-190a-5p (p < 0.01) and lower levels of miR-4284 and miR-

4791 (p < 005), than their peers without IR in both the whole sample and in those

with overweight or obesity.

Conclusions: Our study results suggest circulating miR-660-5p as a potential bio-

marker of the presence of MAFLD in preadolescent children while circulating miR-

320a, miR-142-3p, miR-190a-5p, miR-374a-5p and let-7 family miRNAs could serve

as potential biomarkers of IR in children.
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1 | INTRODUCTION

Metabolic-associated fatty liver disease (MAFLD) is the most common

liver disorder and the second most common cause of liver transplanta-

tion.1 MAFLD has been considered the hepatic manifestation of meta-

bolic syndrome and of systemic insulin resistance (IR).2 The

interaction between IR and MAFLD cause a vicious circle, where IR

has been determined as one of the inductors of MAFLD, increasing

hepatic de novo lipogenesis and impairing insulin-mediated suppres-

sion of adipose tissue lipolysis by inducing free fatty acids flux into

the liver.3,4 In turn, MAFLD has been also directly associated with the

aggravation of IR and, in consequence, with an increased risk of devel-

oping type 2 diabetes (T2D), already in childhood.3,5

The MAFLD term has been recently agreed among different

expert groups in order to reflect more accurately the current knowl-

edge of fatty liver disease associated with metabolic dysfunction.6,7

The definition of paediatric MAFLD is based on the evidence of

intrahepatic fat accumulation in addition to one of the following

three criteria: excess overall adiposity, presence of prediabetes or

T2D, or evidence of metabolic dysregulation defined as the pres-

ence of at least two cardiometabolic risks according to sex and age

percentiles.7 It is estimated that MAFLD is present in nearly 10% of

general paediatric population8 and in 30% of children with over-

weight or obesity.9

The development and progression of paediatric MAFLD is com-

plex and multifactorial, and the underlying mechanisms have not been

entirely elucidated.10 However, there is evidence that dietary habits,

environmental and genetic factors can lead to the development of

metabolic alterations directly associated with hepatic fat accumulation

and inflammation.11,12 Although this disease is reversible and easily

treatable in the early stages, its asymptomatic evolution, together

with its high prevalence and costly (magnetic resonance imaging, MRI)

and/or invasive (liver biopsy) diagnosis methods make early identifica-

tion and treatment difficult.11 For that reason, the search for potential

biomarkers has become a priority line in MAFLD research. Nowadays,

there is evidence that excess adiposity and lifestyle factors such as

sugar-rich diets and sedentary behaviours are strong risk factors for

the development and progression of hepatic steatosis through epige-

netic mechanisms.10,13,14

MicroRNAs (miRNAs), one of the major forms of epigenetic mod-

ulation, are short, noncoding RNA molecules (21–23 nucleotides) that

have been proposed as potential biomarkers and therapeutic targets

for MAFLD14,15 and type 2 diabetes in adults.16 In children, there are

still few studies examining the miRNAs expression levels in relation-

ship with obesity-related comorbidities, IR or MAFLD.17–24 These

studies, however, were performed through targeted analysis of sev-

eral candidate miRNAs previously identified in adult studies.19–24 To

date, as far as we are aware, there are no previous studies developed

through a high-throughput untargeted search of miRNAs in paediatric

population with MAFLD and/or IR. Therefore, the main objective of

the present work was to identify potential miRNA biomarkers of early

MAFLD and/or IR in preadolescent children, and, secondly, to analyse

the associations of miRNA expression levels with cardiometabolic risk

factors.

2 | METHODS

2.1 | Study design and participants

This cross-sectional formed part of the PREDIKID project

(ClinicalTrials.gov ID: NCT03027726) whose overall aims were: (1) to

evaluate the effect of a 22-week family-based multidisciplinary inter-

vention program including exercise on insulin resistance syndrome

(IRS) risk in children with a high risk of developing T2D, and (2) to

identify the profile of microRNA in peripheral blood mononuclear cells

in children with a high risk of developing type 2 diabetes, and its

response to a multidisciplinary intervention program including exer-

cise. Details of sample calculation, randomization, the characteristics

of the study participants, methodological procedures and measure-

ments taken are available elsewhere.25

For the current proposal, baseline data of 70 preadolescent chil-

dren aged 8.5–12 years old and with complete and valid data on MRI-

diagnosed hepatic steatosis (5.5% hepatic fat), IR and miRNA levels
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were analysed. Having other hepatic pathologies such as viral hepati-

tis, toxic hepatitis or autoimmune diseases were considered as exclu-

sion criteria.

The study protocol, which complies with the ethical guidelines of

the Declaration of Helsinki (2013 revision), was approved by The

Euskadi Clinical Research Ethics Committee. Participants were

recruited at the Paediatric Endocrinology Unit of the University Hos-

pital of Araba, and at primary care clinics. The parents or legal guard-

ians of each childprovided written, informed consent.

2.2 | Measurements

2.2.1 | Hepatic fat and insulin resistance

Hepatic fat percentage was assessed by MRI using a Magnetom

Avanto system (Siemens Healthcare, Erlangen, Germany).25 The pres-

ence of MAFLD was determined as a hepatic fat percent ≥5.5%26 in

addition to one of the three following criteria: overweight or obesity,

presence of prediabetes or T2D, or as evidence of metabolic dysre-

gulation defined as the presence of at least two cardiometabolic

risks according to sex and age percentiles.7 The homeostasis model

assessment of insulin resistance [HOMA-IR = insulin (mU/L) � glu-

cose (mmol/L)/22.5] was calculated by fasting serum concentrations

of glucose and insulin.27 HOMA-IR ≥2.5 determined the pres-

ence of IR.

2.2.2 | Anthropometric and biochemical parameters

Body mass (SECA 760), height (SECA 220), and waist circumference

(SECA 201) were measured in duplicate following standard protocols.

Thereafter, the body mass index (BMI) (kg/m2) and the waist-to-

height ratio (WHtR) were calculated.28 Weight status was defined

according to the body mass index (BMI) age and sex-specific cut-off

values provided by Word Obesity Federation.29

The plasma concentrations of cholesterol, high-density lipopro-

tein (HDL), low-density lipoprotein (LDL), triglycerides (TG), glycated

haemoglobin (HbA1c), glucose, insulin, aspartate aminotransferase

(AST), alanine aminotransferase (ALT) and gamma-glutamyl-

transferase (GGT) were measured in fasting blood samples serum

using standard protocols.25

2.2.3 | RNA purification and miRNA analysis

Total RNA from peripheral blood mononuclear cells was isolated using

RNAeasy Kit (Quiagen). miRNAs profiles were analysed using specific

RNA-seq methodology. Briefly, gene libraries were prepared using

TruSep Small RNA Sample preparation kit (Illumina, Inc) following

manufacturer's instructions. Libraries with 145–160 bp size were

selected to undergo deep sequencing on Illumina's MiSeq Next Gen-

eration Sequencing system. Sequencing reactions were performed on

Illumina's MiSeq Reagent Kit V3. Analysis of results was pre-

processed and analysed using MiSeq Reporter, Bowtie, SAMtools and

miRDeep software tools; as well as R/Bioconductor packages.

2.3 | Bioinformatic analysis

Assignation of mapped sequencing reads to miRNA expression data

using miRbase version 21 database was performed with feature-

Counts R function.30 Differential expression of miRNAs was tested

using DESeq2 R package.31

2.4 | Statistical analysis

Differences in anthropometric and clinical characteristics between

children with or without MRI-diagnosed MAFLD and between chil-

dren with or without HOMA-IR determined IR were analysed using

the independent t-test or x2 test. T-test was performed to analyse dif-

ferences in miRNAs expression between: (i) children with or without

MAFLD, and (ii) children with or without IR. The miRNA expression

levels were log2- transformed for analysis. Partial correlations were

performed to examine the association between miRNAs expression

levels and biochemical parameter concentrations adjusting for sex,

age and BMI. Statistical analyses were carried out with statistical soft-

ware SPSS v.23.0 (IBM, Armonk, New York). Significance was set

at α = 0.05.

3 | RESULTS

Clinical and anthropometric characteristics of participants according

to the presence (21.4%) or absence of MAFLD, and to the presence

(28.6%) or absence of IR are shown in Table 1. Children with MAFLD

had significantly higher waist-to-height ratio, diastolic blood pressure

and lower HDL, than their peers without MAFLD (Table 1). TG and

ALT levels tended to be higher in children with MAFLD (p < 0.07)

when compared to those without MAFLD. Children with IR had signif-

icantly higher weight, BMI, TG, glucose and insulin levels and lower

HDL levels than their peers without IR (Table 1).

A total of 2123 circulating miRNAs were identified in our sample

of children with or without MAFLD (Table S1), where six of them

were significantly dysregulated (p < 0.05) in children with MAFLD –

hsa-miR-143-3p, hsa-miR-142-5p and hsa-miR-660-5p were up-regu-

lated, and p-hsa-miR-247, hsa-let-7a-5p and hsa-miR-6823-3p were

down-regulated (Table 2). We observed that miR-660-5p expression

levels were consistently higher in children with MAFLD than in their

peers without it (Table 3). Thus, we observed similar results in the

whole sample (p < 0.01), and when we analysed separately those chil-

dren with overweight or obesity (p < 0.05) and children with normal

weight (p < 0.02). In addition, MAFLD was significantly related to

higher let-7a-5p, miR-142-5p and miR-142-5p expression levels only

in children with normal weight.
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When comparing children with IR versus children without IR, a

total of 2124 circulating miRNAs were identified (Table S2), where

thirteen of them were significantly (p < 0.05) dysregulated in children

with IR – hsa-miR-320a, hsa-let-7d-5p, hsa-let-7a-5p, hsa-miR-374a-

5p, hsa-let-7 g-5p, hsa-miR-185-5p, hsa-miR-142-3p, hsa-let-7b-5p,

hsa-miR-15b-5p, hsa-let-7f-5p and hsa-miR-190a-5p were up-regu-

lated, whereas hsa-miR-4284 and hsa-miR-4791were down-regulated

(Table 2). Children with IR showed significantly higher levels of miR-

374a-5p and miR-190a-5p (p < 0.01) and lower levels of miR-4284

and miR-4791 (p < 005), than their peers without IR in both the whole

sample and in those with overweight or obesity (Table 3). In addition,

miR-let-7f levels were negatively associated with IR only in children

with normal weight (p < 0.01).

3.1 | Association of miRNA expression levels with
biochemical parameters

Figures 1 and 2 show the associations of MAFLD and IR, respectively,

previously identified miRNA expression levels with cardiometabolic

risk factors. Among MAFLD-associated miRNAs, it was observed that

lower miR-247 (p = 0.017) and higher miR-660-5p (p = 0.067) expres-

sion levels were associated with higher percentage hepatic fat and

that higher expression levels of miR-142-5p were correlated with ALT

plasma concentrations (p = 0.031). Among IR-associated miRNAs,

miR-374a-5p and miR-190a-5p were positively correlated (p = 0.004

and p = 0.035, respectively) and miR-4284 inversely (p = 0.034) asso-

ciated with HOMA-IR. In addition, miR-374a-5p and let-7b-5p miRNA

expression showed significant correlations with TG plasma concentra-

tions (p = 0.035 and p = 0.031, respectively).

4 | DISCUSSION

In the present study, we conducted an untargeted high-throughput

miRNAs sequencing and specific circulating miRNA profiles associated

with MAFLD and IR in preadolescent children were detected.

To date, there is very limited data on the associations of circulat-

ing miRNAs with MAFLD. In adults, miR-122 is the most studied

miRNA associated with the presence and severity of MAFLD.32 Other

miRNAs such as miRNA-99a and miRNA-34a, have also been associ-

ated with MAFLD.33,34 In children, as far as we are aware, there are

only three previous studies examining differences in miRNA expres-

sion levels between children with and without MAFLD. In contrast to

our findings, these studies reported that the miRNA-122 was dysregu-

lated in children with suspected MAFLD. Thus, two previous studies

conducted in children and adolescents aged 8–18 years old,19,24

showed that miR-122 and miR-34a-5p expression levels were signifi-

cantly elevated in those with obesity and ultrasound-based19 or MRI

based24 diagnosed-MAFLD compared with children with overweight

or obesity without MAFLD. The association of the miR-122 levels

with hepatic enzyme levels was also reported in three European

cohorts of pre-pubertal children.20 However, previous studies were

conducted following candidate miRNAs analysis of biomarkers of fatty

liver in adults, and the untargeted approach for identifying novel bio-

markers in children is lacking.

In our study approach of untargeted RNA sequencing, we did not

detect significant differences in miR-122 or miR-34a levels between

children with and without MRI-diagnosed MAFLD. Our results, how-

ever, show consistent associations of the miR-660 with MAFLD in

preadolescent children. Indeed, we observed that (i) miR-660 was

upregulated in children with MAFLD, (ii) children with MAFLD had

higher mean expression levels than children without MAFLD, (iii) the

results were consistent in children with overweight/obesity and in

children with normal-weight, and (iv) mean expression levels of miR-

660 were correlated with hepatic fat percent. Further studies con-

ducted in vitro and in vivo animal models have associated miR-66035

with the proliferation and activation of hepatic stellate cells and liver

fibrosis which may explain our findings. These findings suggest that

the miR-660-5p could be a potential specific biomarker of MAFLD,

independently of the presence of overweight or obesity.

We also observed that the miR-142-5p was upregulated in chil-

dren with MAFLD, and normal weight than their control peers. These

results are in line with studies in vitro and in vivo with animal models

TABLE 2 Mean fold change expression of circulating miRNA
levels in children with metabolic-associated fatty liver disease
(MAFLD) compared to children without MAFLD and circulating
miRNA levels in children with insulin resistance (IR) compared to
children without IR

miRNAs Fold change (log2) p

Children with MAFLD versus children without MAFLD (N = 70)

p-hsa-miR-247 �1.00 0.010

hsa-let-7a-5p �0.56 0.019

hsa-miR-143-3p 0.70 0.027

hsa-miR-142-5p 0.50 0.046

hsa-miR-6823-3p �0.88 0.047

hsa-miR-660-5p 0.51 0.049

Children with IR versus children without IR (N = 70)

hsa-miR-320a 1.02 0.002

hsa-let-7d-5p 0.87 0.002

hsa-miR-4284 �1.03 0.002

hsa-let-7a-5p 0.61 0.007

hsa-miR-374a-5p 0.69 0.009

hsa-let-7 g-5p 0.58 0.012

hsa-miR-185-5p 0.65 0.014

hsa-miR-142-3p 0.50 0.021

hsa-let-7b-5p 0.60 0.029

hsa-miR-15b-5p 0.61 0.029

hsa-miR-4791 �0.71 0.033

hsa-let-7f-5p 0.34 0.037

hsa-miR-190a-5p 0.54 0.038

Abbreviations: IR, insulin resistance; MAFLD, metabolic-associated fatty

liver disease. Bold values indicate p value < 0.05.
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showing that the miR-142-5p was related to the accumulation of

lipids in the hepatocytes and with increased hepatic steatosis.36 Nev-

ertheless, these findings should be taken with caution. Indeed, we did

not find any consistent and significant differences in miR-142-5p in

the whole sample of children and mean expression levels of miR-142-

5p were not significantly correlated with the percentage of

hepatic fat.

Nowadays, there are very few studies analysing circulating levels

of miRNAs in children with IR21–24 and the results are controversial.

Mohany et al. examined three circulating miRNAs (miR-486, miR-

146b and miR-15b) in a sample of 120 children aged 6–14 years.23

The authors reported that the circulating levels of the three miRNAs

were significantly higher in children with obesity and with type 2 dia-

betes compared to either healthy controls or children with obesity but

without type 2 diabetes. Lischka et al. analysed the expression of

16 circulating miRNAs in children with severe obesity and observed

that circulating levels of two of them, miR-34a and miR-122, were sig-

nificantly higher in those children with prediabetes.24 In adults and

animal models, many other miRNAs have been identified as potential

biomarkers of IR or type 2 diabetes. Likewise, according to a meta-

analysis of 39 case–control studies, miR-148b, miR-223, miR-130a,

miR-19a, miR-26b and miR-27b could be proposed as biomarkers of

diabetes.37

In the current study, children with IR had elevated levels of miR-

320a. This finding is in concordance with a previous study in children

with obesity aged 2.0–5.8 years in which a specific search of

179 mRNAs was conducted.21 In adults, circulating miR-320a has

been previously associated with IR and with the progression of prediabe-

tes to diabetes.38,39 In addition, this miRNA has been proposed as a pre-

dictor of the response to several pharmacological therapies for

diabetes.38,39 In mice, it was observed that this miRNA could damage

pancreatic b-cells, increase ROS levels and induce β-cell apoptosis.38,40

We also found that the circulating miR-190a-5p levels were con-

sistently higher in children with IR independently of their weight

F IGURE 1 Correlation analyses of circulating
miRNAs associated with MAFLD with
cardiometabolic risk factors depicted by a heat
map (N = 70). Colours of the heat map represent
the r values of the correlations analyses. Red
colour represents direct association, whereas
blue colour represents inverse associations.
Intensity of colour is proportional to the strength
of the correlation. *p < 0.05, Ϯp < 0.07. ALT,

alanine aminotransferase; BMI, body mass index;
HOMA-IR, homeostatic model assessment; IR,
insulin resistance; MAFLD, metabolic-associated
fatty liver disease; TG, triglycerides. The analyses
were adjusted with sex, age and BMI

F IGURE 2 Correlation analyses of circulating miRNAs associated
with IR with cardiometabolic risk factors depicted by a heat map
(N = 70). Colours of the heat map represent the r values of the
correlations analyses. Red colour represents direct association,
whereas blue colour represents inverse associations. Intensity of
colour is proportional to the strength of the correlation. *p < 0.05,
Ϯp < 0.07. ALT, alanine aminotransferase; BMI, body mass index;
HOMA-IR, homeostatic model assessment; IR, insulin resistance;
MAFLD, metabolic-associated fatty liver disease; TG, triglycerides.
The analyses were adjusted with sex, age and BMI
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status and that it was significantly correlated with HOMA-IR. In

patients with type 2 diabetes, the miR-190a-5p was associated with

the risk of developing diabetic retinopathy41 In animal models, miR-

190a-5p expression levels were higher in liver tissues of mice with

liver fibrosis than in their respective controls.42

We observed significant differences in mean expression levels of

miR-142-3p between children with obesity and with and without IR,

in agreement with previous findings in adults43,44 and children.21 In a

sample of 250 school children, Al-rawaf et al. studied the association

of specific miRNAs with different parameters associated with meta-

bolic syndrome and reported higher levels of circulating miR-142 in

those with higher HOMA-IR.22 The circulating miR-142-3p was also

found up-regulated in adults with morbid obesity45 and T2D46 and

was proposed as a potential biomarker for acute and chronic

inflammation.47

Likewise, we observed that miR-4791 and miR-4284 were down-

regulated, and miR-374a-5p was up-regulated in preadolescent with

IR and that there were significant differences in mean expression

levels between in children with and without IR, either in the whole

sample or in children with overweight or obesity, but not in normal

weight children. These results suggest that the excess of overall adi-

posity might be influencing these miRNAs expression levels. There are

very few studies examining these miRNAs and most of them have

been explored in cancer disease.48–50 Interestingly, in concordance

with our results, one previous case–control study in Asian patients

with or without prediabetes or T2D, observed that the miR-347a-5p

was correlated with HOMA-IR.51

The use of the high-throughput untargeted analysis of circulat-

ing miRNAs methodology and the MRI-based diagnosis of MAFLD

should be considered as important strengths of the current study.

More studies on bigger number of preadolescent girls and boys of

multi-ethnic origin and with varied weight status categories are needed

before the use of the proposed miRNAs as biomarkers at population

and clinical level. Indeed, both pathological conditions, MAFLD and IR,

have a strong hereditability that recommends to confirm or refute our

findings according to ethnic origin, as well as by sex and weight status

categories.

In conclusion, our study findings provide additional knowledge of

the possible epigenetic regulation in MAFLD and IR. Disease-specific

miRNAs were detected among paediatric population, where miR-

660-5p, miR-320a, miR-142-3p, miR-190a-5p, miR-374a-5p and let-7

family miRNAs of special interest. Our study results suggest circulat-

ing miR-660-5p as a potential biomarker of the presence of MAFLD in

preadolescent children while circulating miR-320a, miR-142-3p, miR-

190a-5p, miR-374a-5p and let-7 family miRNAs could serve as poten-

tial biomarkers of IR in children.
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