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Abstract: Current evidence indicates that postischemic brain injury is associated with the accumulation
of folding proteins, such as amyloid and tau protein, in the intra- and extracellular spaces of neuronal
cells. In this review, we summarize protein changes associated with Alzheimer’s disease and their
gene expression (amyloid protein precursor and tau protein) after brain ischemia, and their roles
in the postischemic period. Recent advances in understanding the postischemic mechanisms in
development of neurodegeneration have revealed dysregulation of amyloid protein precursor, α-,
β- and γ-secretase and tau protein genes. Reduced expression of the α-secretase gene after brain
ischemia with recirculation causes neuronal cells to be less resistant to injury. We present the latest
data that Alzheimer’s disease-related proteins and their genes play a crucial role in postischemic
neurodegeneration. Understanding the underlying processes of linking Alzheimer’s disease-related
proteins and their genes in development of postischemic neurodegeneration will provide the most
significant goals to date for therapeutic development.

Keywords: brain ischemia; amyloid; tau protein; secretases; presenilin; neuronal death;
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1. Introduction

Brain ischemia is one of the most common forms of neurodegeneration, with a series of pathological
molecular processes that occur during and after ischemia and gradually spread to various brain
structures. New data suggest that there is a similarity between neuropathology developed in the
postischemic brain and Alzheimer’s disease [1–8]. Both ischemic stroke in human and experimental
ischemic brain episodes are life-threatening pathological events with development of Alzheimer’s
disease-type dementia after ischemia [9–15]. Current studies indicate that ischemia-reperfusion brain
injury can be involved in development of Alzheimer’s disease neuropathology [3,16]. First, ischemic
stroke and Alzheimer’s disease have the same risk factors like age, hyperlipidemia, hypertension and
diabetes. Second, the postischemic brain generates a unique pattern of disappearance of neuronal cells
in the CA1 area of the hippocampus with serious general brain atrophy, which is similar to the atrophy
noted in Alzheimer’s disease [17–21]. Third, neuroinflammatory reactions have an important role
in the progress of the postischemic brain and Alzheimer’s disease [22,23]. Fourth, the data suggest
that postischemic brain injury with recirculation can trigger the neuropathology of folding proteins
characteristic of Alzheimer’s disease by generation and accumulation of amyloid [19,24–26]. Finally,
investigations proved that tau protein pathology also played a significant role in progression after
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ischemic brain neurodegeneration [27–38]. In this review, we present changes in expression of genes
involved in the amyloidogenic metabolism of the amyloid protein precursor, which are associated
with the production of amyloid in the postischemic brain. In addition, we pay attention to whether
the amyloid is involved in death of neurons in the CA1 and CA3 areas of the hippocampus and
the medial temporal cortex postischemia. Also, we take into account the importance of ischemic
changes in gene expression of tau protein during clinical onset, progression and maturation of
brain neurodegeneration after ischemia. Below we summarize the latest data that Alzheimer’s
disease-related proteins, like amyloid and tau protein, and their genes, play a fundamental role in
postischemic neurodegeneration. Progress in understanding new key processes induced by brain
ischemia with recirculation, like changes in the genotype and phenotype of the Alzheimer’s disease
type, which are not yet fully explained, may help develop strategies for prevention and treatment
against neurodegeneration induced by ischemia.

2. Dysregulation of Amyloid Processing Genes in Global Cerebral Ischemia due to Cardiac Arrest
in Rats

In the CA1 area of the hippocampus, gene expression of the amyloid protein precursor was below
the control value within 2 days after ischemia and 7 and 30 days postischemia the expression of the
amyloid protein precursor gene was above the control values (Table 1) [39]. In the CA3 region, 2,
7 and 30 days following ischemia, the expression of the amyloid protein precursor gene was above the
control values (Table 1) [38]. In the medial temporal cortex, gene expression of the amyloid protein
precursor was below the control value within 2 days after ischemia and 7 and 30 days postischemia the
expression of the amyloid protein precursor gene was above the control values (Table 1) [40].

Table 1. Changes in the expression of the Alzheimer’s disease-associated amyloid protein precursor
gene in different brain structures at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA1 ↓ ↑ ↑

CA3 ↑ ↑ ↑

MTC ↓ ↑ ↑

Expression: ↑ increase; ↓ decrease. CA1-CA1 area of hippocampus, CA3-CA3 area of hippocampus, MTC-medial
temporal cortex.

The expression of the β-secretase gene went above the control values in the hippocampal CA1 area
2–7 days postischemia but 30 days following ischemia the β-secretase gene expression was below the
control value (Table 2) [39]. The expression of the β-secretase gene was below the control values in the
hippocampal CA3 area 2–7 days following ischemia. On the contrary, 30 days postischemia, β-secretase
gene expression was above control (Table 2) [38]. The expression of the β-secretase gene was above
the control value in the medial temporal cortex 2 days postischemia but 7–30 days postischemia gene
expression was reduced (Table 2) [40].

In the CA1 region of the hippocampus, expression of the presenilin 1 gene increased 2–7 days
after ischemia but 30 days postischemia the expression of this gene was below the control values
(Table 3) [39]. In the CA3 area of the hippocampus, expression of the presenilin 1 gene increased
2–7 days postischemia, and was below the control values 30 days after ischemia (Table 3) [38]. In the
medial temporal cortex, the expression of the presenilin 1 gene oscillated around the control values
during 2, 7 and 30 days postischemia (Table 3) [41].
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Table 2. Changes in the expression of the Alzheimer’s disease-associated β-secretase gene in different
brain structures at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA1 ↑ ↑ ↓

CA3 ↓ ↓ ↑

MTC ↑ ↓ ↓

Expression: ↑ increase; ↓ decrease. CA1-CA1 area of hippocampus, CA3-CA3 area of hippocampus, MTC-medial
temporal cortex.

Table 3. Changes in the expression of the Alzheimer’s disease-associated presenilin 1 gene in different
brain structures at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA1 ↑ ↑ ↓

CA3 ↑ ↑ ↓

MTC ↔ ↔ ↔

Expression: ↑ increase; ↓ decrease;↔ no changes. CA1-CA1 area of hippocampus, CA3-CA3 area of hippocampus,
MTC-medial temporal cortex.

In the CA1 area of the hippocampus, expression of the presenilin 2 gene increased 2–7 days
postischemia but, in contrast, 30 days following ischemia the expression of this gene was below the
control values (Table 4) [39]. In the CA3 field of the hippocampus, expression of the presenilin 2 gene
decreased 2–7 days after ischemia. On the contrary, 30 days postischemia, the expression of this gene
increased above the control values (Table 4) [38]. In the medial temporal cortex, the expression of
the presenilin 2 gene was above the control value on day 2 postischemia (Table 4) [41]. In contrast,
the expression of this gene oscillated around the control values during 7–30 days postischemia
(Table 4) [41].

Table 4. Changes in the expression of the Alzheimer’s disease-associated presenilin 2 gene in different
brain structures at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA1 ↑ ↑ ↓

CA3 ↓ ↓ ↑

MTC ↑ ↔ ↔

Expression: ↑ increase; ↓ decrease;↔ no changes. CA1-CA1 area of hippocampus, CA3-CA3 area of hippocampus,
MTC-medial temporal cortex.

In the CA3 region 2, 7 and 30 days postischemia, the expression of the α-secretase gene was below
the control values (Table 5) [38].

Table 5. Changes in the expression of the Alzheimer’s disease-associated α-secretase gene in the CA3
of the hippocampus at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA3 ↓ ↓ ↓

Expression: ↓ decrease.
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3. Amyloid Staining in Experimental Postischemic Brain

Postischemic brain injury, with a survival period up to 2 years, revealed brain parenchyma staining
to amyloid. The staining was found in intra- and extracellular spaces [18,21,24,42–55]. Amyloid was
noted in neurons and neuroglial cells [18,47,50,56–60]. Astrocytes with massive accumulation of amyloid
might be involved in the development of glial scar [18,50,58–60]. Additionally, reactive astrocytes
with huge accumulation of amyloid might be involved in repair of postischemic tissue with associated
astrocyte death [18,24,50,61,62].

Staining for amyloid has been noted in subcortical white matter and the periventricular
area postischemia [19,63,64]. The more intense injury of postischemic white matter is, the more
widespread staining of amyloid in the brain parenchyma occurs [65]. It is assumed that the above
kind of alterations are responsible for the development of leukoaraiosis after an ischemic brain
episode [64]. Extracellular deposits of amyloid ranged from very small dots to typical diffuse amyloid
plaques [18–20,24,48,50,66–71]. Multifocal diffuse amyloid plaques were observed in the ischemic
hippocampus, cortex, corpus callosum and around the lateral ventricles. The accumulation of diffuse
amyloid plaques in response to ischemia-reperfusion brain injury in rats was not transient, since it has
been documented that these plaques transform into senile amyloid plaques during one year after an
ischemic episode [72].

The accumulation of amyloid inside neuronal cells and astrocytes underscores the possible
importance of amyloid in the occurrence of postischemic neurodegeneration [24,45,59,60,67,68].
In addition, these accumulations may influence synaptic disintegration and turn on further retrograde
neuronal death after ischemia. These facts indicate that gradual postischemic amyloid accumulation
may be responsible for additional neurodegenerative mechanisms that could worsen the outcome
during recirculation by continuous neuronal death [9,19,21,47,48,54,55,73–75]. Postischemia amyloid
is generated as a product of neuronal death [44] and as a final point shows its own neurotoxic effects.
Amyloid is a neurotoxic particle and triggers intracellular mechanisms in neurons and neuroglial cells
that cause additional neuronal and neuroglial cell injury or death after ischemia [55,76].

4. Dysregulation of Tau Protein Gene in Global Cerebral Ischemia due to Cardiac Arrest in Rats

In the CA1 field of the hippocampus, gene expression of the tau protein was above the control
value within 2 days postischemia and 7–30 days postischemia the expression of the above gene was
below the control values (Table 6) [8,37]. In the CA3 area of hippocampus, its expression was opposite
(Table 6) [8,38].

Table 6. Changes in the expression of the Alzheimer’s disease-associated tau protein gene in different
brain structures at different times after experimental brain ischemia.

Survival 2 Days 7 Days 30 Days
Structures

CA1 ↑ ↓ ↓

CA3 ↓ ↑ ↑

Expression: ↑ increase; ↓ decrease. CA1-CA1 area of hippocampus, CA3-CA3 area of hippocampus.

5. Tau Protein Staining in Experimental Postischemic Brain

Massive staining of tau protein at neurons was found in the ischemic hippocampus and brain
cortex [52,77,78]. Tau protein staining was also noted in astrocytes, microglia and oligodendrocytes,
postischemia [31,33,79–81]. The above observations indicated that neuronal and neuroglial cells
display abnormalities in tau protein after an ischemic brain episode [79], which may illustrate a
prime pathological stage of the ischemic processes in these cells [80]. Another study showed that
tau protein itself can inhibit the transport of amyloid in the way of the neuron body at axons and
dendrites, leading to amyloid accumulation in the body of neurons [82]. Available evidence shows
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that postischemia, hyperphosphorylated tau protein dominates in neurons and goes along with
apoptosis [28,31,33,83,84]. The above-mentioned data indicate that neuronal apoptosis after ischemic
brain injury is straightway connected with tau protein hyperphosphorylation. Other observations
revealed that transient brain ischemia was engaged in a neurofibrillary tangle-like formation
postischemia [28,83,84]. The above data provide a neuropathological basis for neurodegeneration
following brain ischemia with recirculation [28].

6. Amyloid and Tau Protein in Postischemic Human Brain and Plasma

In autopsy studies of human postischemic brains, the relationship between ischemia and the
accumulation of amyloid was observed [25,85–87]. Studies have documented diffuse and senile
amyloid plaques in the hippocampus and cortex [25,85–87]. The neurons’ staining for amyloid
depended on the brain area. Cortical and hippocampal neurons were the most intensely stained.
In contrast, the staining of dentate gyrus neuronal cells appeared to be weak. Some neuronal cells
were also labeled with antibodies against tau-1 [86]. Ependymal and epithelial cells were stained
intensively for amyloid. Examined brain vessels of gray and white matter were surrounded by amyloid
deposits. The deposits had mainly a cuffs shape. In postischemic brains, weak staining for amyloid was
noted around blood–brain barrier vessels [86]. Amyloid around the blood–brain barrier microvessels
indicated that it originated from serum. Data from a clinical study showing that plasma amyloid had
been raised in patients following brain ischemia supported the above suggestion [26,88,89]. According
to another study, β-amyloid peptide 1–40 and 1–42 were documented in the human postischemic
hippocampus [25]. This strong staining of different amyloid forms may contribute to the development
of postischemic neurodegeneration.

Observations of patients for a period of 4 days postischemia showed an increase in blood
amyloid [26]. The increase correlated with clinical outcome after ischemic brain injury [26]. The results
support the notion that ischemic brain with reperfusion may play a key role in the amyloidogenic
processing of amyloid protein precursor. Tau protein was evident in plasma postischemia in humans
with two peaks at 2 and 4 days, and most likely indicated the progression of neuron changes during
recirculation [29]. Observed bimodal elevation of tau protein in blood is consistent with two types of
neuronal death: firstly via necrosis and secondly by apoptosis [30]. It seems likely that the profiles
reflect a time course of primary and secondary postischemic neuronal alterations [30]. The above
observations suggest that tau protein in human blood has the potential to be used as a predictor for the
neurological outcome postischemia [29,30]. Other data revealed that transient focal cerebral ischemia
in humans was involved in the development of neurofibrillary tangles [27].

7. Neuropathophysiology in Postischemic Brain

After ischemia with reperfusion, a massive release of excitatory amino acids, and an intracellular
overload of calcium in the hippocampus, were documented [90]. The release of glutamate from
presynaptic endings, and its deficient reuptake, triggered an increase of glutamate in the extracellular
space of the hippocampus [90]. As a consequence of the above-mentioned process, glutamate receptors
were excessively stimulated, leading to an enormous influx of calcium to the neuronal cells by calcium
channels [90]. Consequently, calcium was released from intracellular compartments into the neuronal
cytoplasm. Subsequently, intracellular calcium could activate miscellaneous enzymes, necessary for
survival or death of neurons. For instance phospholipases, endonucleases, nitric oxide synthase and
proteases are activated via calcium and, as an ending effect of this course of action, injury to the nucleus,
membranes and cytoplasm organelles, with loss of neuronal cells, was observed. The above-mentioned
pathological pathways play a part in neuronal damage or death postischemia. As a rule, neuronal
death after an ischemic brain episode was considered as necrotic, but eventually the neuronal cells die
as a result of apoptosis. Necrosis happens due to deficit of energy and abnormal osmotic homeostasis
and involves a huge number of neurons in the brain parenchyma. The postischemic neurons swell as
they take up an overload of water and rupture of the cytoplasmic membrane takes place, which results
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in an outflow of neuronal contents into the neighboring tissue. DNA cleavage in necrotic neurons is a
delayed phase occurring by mechanisms needing serine proteases. The quick drop of energy in neurons,
and glucose uptake postischemia, are responsible for necrosis. Apoptosis has been noted in neurons
of the CA1 region of the hippocampus 4 days after brain ischemia with reperfusion. Postischemia,
caspase-3 plays a key role in the death of neurons [91–94]. The connection of autophagy and mitophagy
with apoptosis should be suggested, too [91–94]. Delayed neuronal death after postischemic injury is
controlled by apoptotic routes. Presently, one more neuronal cell death pathway called necroptosis
was documented after brain ischemia with reperfusion. In this mechanism, postischemic neurons
exhibited features of both necrotic and apoptotic processes. Another process of neuronal death is called
autophagic-programmed cell death. In this event, autophagosomes and autolysosomes are found in
dying neuronal cells. Recent evidence indicated that autophagy and mitophagy play a significant role
in postischemic brain injury [91–94].

8. Neuropathology in Postischemic Brain

The death of neurons in the CA1 hippocampal area develops 2–7 days following ischemia and is
called delayed neuronal death. Extending survival following brain ischemia injury, e.g., up to 2 years,
triggers alterations in neuronal cells in the hippocampal areas with nonselective sensitivity to ischemia,
e.g., in the CA3 area [19]. In contrast, changes in the striatum, mainly of medium-sized neurons,
are noted primarily in the dorsolateral area. In the postischemic cortex, layers 3, 5 and 6 presented
numerous neuronal changes [18,67,68]. Borderline zones of the brain cortex were also a region of
intense neuronal changes after ischemia. Between 6–24 months following ischemia insult of brain,
in addition to localized neuronal death various types of pathological neuronal injuries were observed.
The first took the form of chronic neuronal change. Other changes were acute neuronal modifications
postischemia and were present in those regions of brain parenchyma which were not involved in early
changes, e.g., sectors CA2, CA3 and CA4 of the hippocampus [19]. Disappearance of neuronal cells in
the CA1 hippocampal area, with a decrease in acetylcholine level, was found following focal brain
ischemia. This suggests that neuronal death may also result from failure of neuronal stimulation and
cholinergic transmission [90].

In the regions of massive neuronal damage, an intense response of microglia and astrocytes
was observed [18,22,23,67,68,95]. Additionally, postischemic astrocytes in the hippocampal CA1
region showed an enhanced response to cytokines [95]. This evidence indicates that the rise in
neuroinflammatory mediators in astrocytes is directly related to the selective sensitivity of neurons to
brain injury as a result of an ischemic episode [95]. The above data imply that neuronal cells in sensitive
regions of the ischemic brain are targets for interleukin-1β produced by astrocytes. This is explained by
the intensified expression of the neural interleukin-1 receptor. Also, interleukin-1β has been proved to
play an important role in the development of alterations in brain cells and the development of edema
after brain injury due to an ischemic episode with reperfusion. Postischemic inflammatory mediators
can trigger a self-sustaining cycle that leads postischemic pathology to neurodegeneration. In brain
ischemia, interleukin-1 is a key player stimulating neurons to amyloidogenic processing of the amyloid
protein precursor along with the release of neuroinflammatory mediators. These processes cause
abnormality in the functioning of neurons and, in the end, their death with irreversible disruption
of the neural network. The death of neurons results from, among others causes, neuroinflammatory
mediators, which additionally cause neuronal pathology. This process activates microglia causing
further strengthening, which leads to self-propagation of the inflammatory cycle. Moreover, strong
evidence was provided that the amyloid which is produced following brain ischemia [19,24,50] promotes
the release of inflammatory mediators by microglia. In the hippocampus, activation of neuroglial cells
precedes neuronal injury and neuronal death, and lasts long after an ischemic episode [22,23].

There is plenty evidence of abnormal synaptic activity following experimental brain
ischemia [96,97]. This is supported by ultrastructural observations in the hippocampal CA1 region
following ischemia [97]. Other studies have revealed that brain ischemia triggers the activity of synaptic
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autophagy, which is associated with the death of neurons in the hippocampal CA1 area following
transient ischemia [98,99]. What is more, a reduction in excitatory synaptic transmission was noted
after brain ischemia in the hippocampal CA1 subfield [90]. The rise in intracellular calcium following
an ischemic episode activates calpain activity in neurons, and calpain target proteins are present in
glutaminergic and GABAergic synapses. In ischemia-reperfusion brain injury, calpain cleaves pre- and
postsynaptic proteins. Calpain-related cleavage of proteins contributes to the loss of neuronal cells in
ischemic brain parenchyma [100].

The effect of brain ischemia on the permeability of the blood-brain barrier has been widely
studied for many years, and vice versa. Ischemia-reperfusion brain injury triggers a number of
changes that increase the permeability of the blood-brain barrier to cellular and noncellular blood
elements (e.g., platelets, amyloid) and lead to opening of tight junctions and diffuse leakage of blood
elements through the necrotic wall of the blood vessel [63,70,101–104]. In postischemic damage to the
blood-brain barrier, two unusual features deserve attention. One is important because of the chronic
effects of extravasated amyloid [105,106] in the development of neurodegeneration, and the other
relates to the leakage of platelets, which causes massive toxic, mechanical and rapid destruction of
brain parenchyma [107]. It has long been known that platelets continuously produce a neurotoxic
amyloid. The ability of the amyloid to cross the ischemic blood-brain barrier leads to its location of
neurotoxic effects on specific neuronal populations, which may then lead to subsequent increased
production of amyloid in brain parenchyma. Circulating amyloid is delivered to ischemic brain tissue
and, therefore, contributes to brain amyloidosis, vasoconstriction and the development of cerebral
amyloid angiopathy following an ischemic-reperfusion brain episode [25,26,28,85–87,104,105,108,109].

Animal and human brains respond to brain ischemia by inducing neuroinflammation [22,23,110].
Shortly following brain ischemia-reperfusion injury, neurons and neuroglial cells trigger molecular
reactions that lead to the activation of astrocytes up to 28 days after ischemia. Activated astrocytes
multiply quickly and change their shape and function [110]. After activation, astrocytes secrete
proinflammatory cytokines, metalloproteinases and chemokines [110]. Substances released from
astrocytes, e.g., interleukin-1β and matrix metalloproteinases, increase the permeability of the
blood-brain barrier and enhance the transfer of leukocytes from the blood to the brain parenchyma [110].
The influx of these cells leads to further progressive ischemic tissue injury [22,23]. Microglia, like astrocytes,
also belong to the first line of defense and are activated within a few minutes following brain
ischemia [110]. Increased activation is noted 2–3 days after the onset of ischemia, persisting for
several weeks postischemia [110]. Activated microglial cells change their shape to amoeboid and
thus acquire phagocytic capacity [110]. Microglia secrete proinflammatory substances such as matrix
metalloproteinase-9, tumor necrosis factor α and interleukin-1, which are involved in blood-brain
barrier injury. Intensified influx of monocytes into ischemic brain parenchyma is observed during 24 h
postischemia as a result of additional damage to the blood-brain barrier by astrocytic and microglial
inflammatory mediators. An increased number of monocytes in brain parenchyma is observed up to
7 days after ischemia [110]. Over time, anti-inflammatory macrophages begin to dominate damaged
brain parenchyma because they are necessary for parenchyma regeneration processes [110]. Other cells
involved in the innate immune response triggered by brain ischemia are neutrophils which appear in
injured brain tissue immediately after ischemia [110]. They concentrate close to the ischemic region
and release oxygen free radicals, proinflammatory cytokines and proteolytic enzymes which cause
additional destruction of brain tissue [110]. The number of neutrophils appearing in the brain after
ischemia directly corresponds to the size of the ischemic injury region [110]. Furthermore, T and B
lymphocytes infiltrate brain tissue postischemia. Brain ischemia also triggers penetration of brain
parenchyma by natural killer cells [110]. Dendritic cells are involved in the immune response following
brain ischemia as well [110]. Mast cells present in brain vessels and meninges also participate in
the neuroinflammatory response following brain ischemia. Mast cells secrete cytoplasmic granules
containing heparin, histamine, TNF-α and proteases, e.g., tryptase, chymase, matrix metalloproteinase-2
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and matrix metalloproteinase-9, contributing to additional injury to the blood-brain barrier, brain edema
and neutrophil infiltration in damaged brain parenchyma [110].

Lesions in white matter and neuroglial cell proliferation were noted in the brains of animals
and humans following an episode of brain ischemia with reperfusion [18,19,22,23,63,64,67,68,111,112].
Ischemic injury of the brain in animals causes severe damage of the corpus callosum and subcortical
white matter [19,63,64,113]. These observations are consistent with proliferation of neuroglial cells
in both regions following ischemia-reperfusion brain injury [114]. Ischemia with reperfusion of the
brain increases the permeability of the blood-brain barrier, which allows inflammatory cells with
inflammatory mediators and amyloid to penetrate from the blood to the brain parenchyma, which in
turn causes massive lesions in white matter [26,66,88,105,106,109,115].

Evidence suggests that transient brain ischemia with reperfusion in animals and humans causes
massive loss of neuronal cells in the regions either belonging, or not, to areas of the brain selectively
sensitive to an ischemic episode [14,18,19]. Progressive processes that continue during reperfusion
after an ischemic episode are involved in ischemic brain neurodegeneration [14,19]. These processes
develop not only in the early stages following brain ischemia, but also in the late periods after the
resumption of brain circulation [14]. Over the years postischemia, developing neuropathological
processes cause generalized brain atrophy [14,17–19,21]. A general brain examination performed
following brain injury due to ischemia-reperfusion with survival up to 2 years showed hallmarks of
brain hydrocephalus [17–19,21]. Dilatation of the subarachnoid space around the brain hemispheres
has also been noted [18]. Complete hippocampal and striatal atrophy was reported [18,19]. The brain
cortex after ischemia in animals and humans was narrow, showing artificially increased neuronal
density [14,18,19]. In addition, features of late brain parenchyma atrophy, such as diffuse changes in
white matter in the form of cavitations and rarefaction, revealing advanced spongiosis, have also been
observed [18,19]. This phenomenon can be explained by a massive loss of neuronal cells, which is
accompanied by an increased permeability of the blood-brain barrier occurring both in the early and
late stages following ischemia-reperfusion brain injury [20,69,70,103].

9. The Development of Dementia Postischemia

After experimental brain ischemia injury, changes in behavior have been observed [9–12,73].
Locomotor hyperactivity was noted following ischemic brain damage, as in Alzheimer’s disease subjects,
and is correlated with neuronal disappearance and development of neuroinflammation [20,22,23].
Postischemic brain damage causes the loss of reference and working memory with progress of a spatial
memory deficit [9]. The progression of cognitive deficit develops slowly together with increase in
length of recirculation time [9]. Long-lasting motor hyperactivity with cognitive deficits and decreased
anxiety were also documented following repetitive transient postischemic brain injury in animals.
The behavioral abnormality was associated with huge brain atrophy [17–19,21,67,68,74,75]. Learning
and memory insufficiency following brain ischemia with recirculation move forward irreversibly and
persevere forever [9].

Soon after outcome of ischemic neuropathology in humans, the slow and progressive development
of dementia was found [15,116]. The occurrence of dementia following the first ischemic, and the
recurrent, stroke is evaluated around 10% and 33–41%, respectively [116]. For the duration of a
25-year follow-up, the occurrence of dementia was estimated around 48% [116]. Worldwide, dementia
following stroke occurs in between 5% and 50% of survivors, depending on diagnostic criteria,
population demographics and geographical location [13]. In fact, it is certain that dementia following
brain ischemia has many risk factors in common with the development of Alzheimer’s disease-type
dementia. Among other things, reduced glucose metabolism in the brain is an early event in the
pathology of Alzheimer’s disease and cerebral ischemia and may precede the neuropathological
accumulation of amyloid in both disease entities [117,118]. In the progression of pathology, amyloid
accumulation appears to play a key role, among other things, in the vessels of the brain, which again
leads to a gradual decrease in cerebral blood flow postischemia, closing the vicious circle [118]. It is
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highly likely that after brain ischemia, alterations may precede Alzheimer’s disease dementia and
cause all the consequences associated with the development of dementia in this disease entity.

10. Discussion

First of all, we present the reaction of the amyloid protein precursor gene and its product to
transient brain ischemia with reperfusion. Evidence revealed postischemic overexpression of the
amyloid protein precursor gene which correlated with the substantial rise of amyloid in the intra- and
extracellular spaces of the brain [24,60] and serum [26,88,109] with generation of diffuse and senile
amyloid plaques (Figure 1) [24,72].
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The studies also made known postischemic overexpression of the tau protein gene in the brain
tissue which correlated with the increase of tau protein in the intra- and extracellular spaces [36] and
plasma [29,30] with development of neurofibrillary tangles (Figure 2) [27].

Overexpression of the amyloid and tau protein genes begins at the same times as neuronal
death and neurodegeneration postischemia (Figures 1 and 2) [18,19]. Increased amyloid in brain
parenchyma and blood [24,26,60,88,109] was correlated with a parallel growth of tau protein in brain
tissue and plasma postischemia [29,30,36], and these alterations forecast a poorer clinical outcome.
Postischemic tau protein gene overexpression also paralleled overexpression of the caspase 3 gene,
which plays a significant role in apoptosis of neurons [91,93,94]. Additionally, it was noted that
stimulated caspase shows a relationship with the occurrence of a neurofibrillary tangle (Figure 2) [36].
Also, postischemic neurodegeneration and dementia showed a negative relationship with the amount
of amyloid and tau protein (Figures 1 and 2) [19,36]. Presented facts indicate that neuronal injury and
death in the postischemic brain need amyloid and tau protein. Therefore a new manner to control
neuronal survival or death is presented (Figures 1 and 2). Triggered neuropathological alterations,
such as excitotoxicity, oxidative stress, autophagy, mitophagy, apoptosis and neuroinflammation
through amyloid and tau protein clarify their probable neuropathological machinery in postischemic
neurodegeneration (Figures 1 and 2). Thus, it is highly likely that amyloid and tau protein, in addition,
increase postischemic injury or neuronal death (Figures 1 and 2).
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11. Conclusions

Evidence points to proteomic and genomic alterations of amyloid and tau protein in the
postischemic brain (Figures 1 and 2). As a consequence, bilateral injury to the brain triggers postischemic
neurodegeneration with development of dementia of an Alzheimer’s disease phenotype. Even so,
a considerable move forward has, in recent times, been completed in research of the neuropathogenecity
of amyloid and tau protein postischemia. However, strategic processes engaged in irreparable ischemic
neurodegeneration produced through both proteins (Figures 1 and 2) are, in spite of everything,
unknown. In this way, animal reversible models of brain ischemia seem to be a helpful approach for
clarifying the role of genes and their proteins straightforwardly connected with Alzheimer’s disease.
With detailed study, the genomic and proteomic processes can speed up the existing knowledge
about the neuropathogenesis of the postischemic brain, and stimulate upcoming exploration on brain
ischemia with innovative trends.
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